
15-414 Lecture 17 1

Instructor: Matt Fredrikson TA: Ryan Wagner

Incremental Proof Development in Dafny

In this discussion, we’ll see in more detail how to go about proving the total correctness of imperative
code in Dafny. We’ll use the precondition method discussed in last lecture to develop loop invariants
and assertions that are strong enough to establish our specification, while simultaneously developing
the proof in Dafny.

The program that we’ll consider implements bubble sort, a basic sorting algorithm with worst-
case performance O(n2), where n is the number of elements to be sorted. Although there are more
efficient sorting algorithms, bubble sort is a good way of illustrating several techniques and concepts
that are useful when reasoning about the correctness of imperative programs.

Partial Correctness

We begin by writing the basic code, absent any specification or annotation. Recall that bubble sort
takes a single array as input, and is composed of a nested loop. The outer loop begins indexing
at the end of the array, working its way towards the beginning, while the inner loop starts at the
beginning of the array and works towards the current index of the outer loop. With each iteration
of the outer loop, the largest element from the beginning of the array is moved towards the end
by swapping out-of-order pairs in the inner loop. In this way, the loop becomes more sorted with
each iteration of the outer loop by ensuring that elements in the range [i, a.Length− 1] are always
sorted.

1 method BubbleSort(a: array <int >)

2 {

3 var i := a.Length - 1;

4 while(i > 0)

5 {

6 var j := 0;

7 while(j < i)

8 {

9 if(a[j] > a[j+1])

10 {

11 a[j], a[j+1] := a[j+1], a[j];

12 }

13 j := j + 1;

14 }

15 i := i - 1;

16 }

17 }

Regarding the specification, our basic requirement is that whenever BubbleSort terminates, the
contents of a are in sorted ascending order. We encode this requirement in a predicate. The
predicate is true whenever for any indices i ≤ j within the index bounds, a[i] ≤ a[j].

1

15-414 Lecture 17 2

1 predicate sorted(a: array <int >, l: int , u: int)

2 reads a

3 requires a != null

4 {

5 forall i, j :: 0 <= l <= i <= j <= u < a.Length ==> a[i] <= a[j]

6 }

sorted takes three arguments: the array a, a lower-bound index l, and an upper-bound index u.
Note that our predicate essentially ignores calls with invalid index bounds, so that if 0 ≤ l ≤ u <
a.Length is false, then the predicate will always return true regardless of the contents of a. There
are two additional annotations present in the signature of sorted:

1. reads a tells Dafny that this predicate will read the contents of a. Whenever we write a
function or predicate that examines the contents of an array, we need to use this annotation
to let Dafny know.

2. requires a ! = null is a precondition on our predicate which says that we are not allowed
to invoke sorted on an array reference that might be set to null. This means that we are
not defining sortedness on null array references, so whenever we want to reason about this
predicate, we must prove that the reference we pass takes a proper value.

Having defined what it means for an array to be sorted in ascending order, we can write the
postcondition for our specification to state that sorted holds for every index in a (i.e., between 0
and a.Length− 1):

1 ensures sorted(0, a, a.Length -1)

Because our postcondition stipulates that the reference we’re passing to sorted isn’t null, we will
also need this precondition in our method. This is also evident by the lack of dynamic checks in
BubbleSort for null values; if we didn’t have this precondition, we could potentially dereference
a null pointer:

1 requires a != null

Looking for basic facts to add to our annotations, we start by observing that the outer loop index
variable i will always lie in the range [−1, a.Length−1]. For the inner loop, we can write a stronger
invariant for i, namely that it will lie in the range [1, a.Length − 1]. Additionally, the inner-loop
index variable j will lie in the range [0, i], giving us our initial set of basic annotations.

2

15-414 Lecture 17 3

1 method BubbleSort(a: array <int >)

2 requires a != null

3 ensures sorted(a, 0, a.Length -1)

4 {

5 var i := a.Length - 1;

6 while(i > 0)

7 invariant -1 <= i < a.Length

8 {

9 var j := 0;

10 while(j < i)

11 invariant 0 < i < a.Length && 0 <= j <= i

12 {

13 if(a[j] > a[j+1])

14 {

15 a[j], a[j+1] := a[j+1], a[j];

16 }

17 j := j + 1;

18 }

19 i := i - 1;

20 }

21 }

These annotations are clearly not strong enough to prove our desired postcondition, as they say
nothing about the contents of a. We’ll need to strengthen them, and in particular the loop invari-
ants. Starting with the outer loop, we propagate the postcondition backwards to the point where
the outer loop terminates. This will tell us what conditions need to hold when the loop exits to
support the postcondition, which will hopefully guide our intuition towards better loop invariants.

1 invariant -1 <= i < a.Length

2 assume i <= 0

3 ensures sorted(a, 0, a.Length -1)

Computing the verification condition,

−1 ≤ i < a.Length→ wlp(assume i ≤ 0, sorted(a, 0, a.Length− 1))
⇔ (−1 ≤ i < a.Length ∧ i ≤ 0)→ sorted(a, 0, a.Length− 1)
⇔ −1 ≤ i ≤ 0→ sorted(a, 0, a.Length− 1)

This isn’t all that surprising, and just points out that when the loop terminates, if i is either −1 or
0, then the contents of a should be sorted. Informally, we know that i will be either −1 or 0 when
the loop terminates, and if i = −1, then sorted will necessarily be true, so this fact doesn’t seem
to tell us anything new. We want to generalize this fact to something that reflects the progress
made at each iteration of the outer loop, such that when it is conjoined with the negated loop
guard ¬(i > 0), the postcondition will hold. After a bit of thought, we arrive at:

sorted(a, i, a.Length− 1)

Adding this to our outer loop invariant makes sense, as it corresponds to our observation that as the
method proceeds, it maintains the fact that the array remains sorted in the range [i, a.Length−1].
Additionally, we see that:

¬(i > 0) ∧ sorted(a, i, a.Length− 1)→ sorted(a, 0, a.Length− 1)

3

15-414 Lecture 17 4

Continuing on, we need to find an invariant for the inner loop that will be sufficient to preserve
our outer invariant. Applying the precondition method from the exit point of the inner loop to the
next iteration of the outer loop, we have:

1 invariant 0 < i < a.Length && 0 <= j <= i

2 assume i <= j;

3 i := i - 1

4 invariant -1 <= i < a.Length && sorted(a, i, a.Length -1)

We can effectively ignore the portion of the postcondition constraining the bounds of i, as a
straightforward calculation will verify that they are preserved by the loop. Then, computing the
corresponding verification condition:

0 < i < a.Length ∧ 0 ≤ j ≤ i→ wlp(assume i ≤ j; i := i− 1, sorted(a, i, a.Length− 1))
⇔ (0 < i < a.Length ∧ 0 ≤ j ≤ i ∧ i ≤ j)→ sorted(a, i− 1, a.Length− 1)
⇔ (0 < i < a.Length ∧ 0 ≤ j ∧ i = j)→ sorted(a, i− 1, a.Length− 1)

We might be tempted to generalize this fact by taking the consequent and adding it to our inner
loop invariant, giving us:

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1)

5 {

6 var i := a.Length - 1;

7 while(i > 0)

8 invariant -1 <= i < a.Length

9 invariant sorted(a, i, a.Length -1)

10 {

11 var j := 0;

12 while(j < i)

13 invariant 0 < i < a.Length && 0 <= j <= i

14 invariant sorted(a, i-1, a.Length -1)

15 {

16 if(a[j] > a[j+1])

17 {

18 a[j], a[j+1] := a[j+1], a[j];

19 }

20 j := j + 1;

21 }

22 i := i - 1;

23 }

24 }

This would make the basic path from the beginning of the outer loop to the beginning of the inner
loop:

1 invariant -1 <= i < a.Length && sorted(a, i, a.Length -1)

2 assume 0 < i;

3 j := 0

4 invariant 0 < i < a.Length && 0 <= j <= i && sorted(a, i-1, a.Length -1)

4

15-414 Lecture 17 5

Which would lead to the verification condition:

0 < i < a.Length ∧ sorted(a, i, a.Length− 1)→ sorted(a, i− 1, a.Length− 1)

This is not valid, as there is nothing in the antecedent to imply that a larger portion of the list is
sorted (i.e., [i− 1, a.Length− 1]) than what was assumed (i.e., [i, a.Length− 1]). We can observe
the following counterexample as concrete evidence that this condition is invalid:

1 2 3 5 4
(j) (i)

This array satisfies the antecedent, because it is sorted starting at i. It does not satisfy the
consequent, because it is not sorted starting at i− 1. To find a suitable invariant, we will need to
give this more thought. In the meantime, we will add the main invariant on the outer loop,

sorted(a, i, a.Length− 1)

to the inner loop, as we know that at the very least, it must be preserved.

It oftentimes helps to step through the execution of the code in question, examining they key
invariants that arise in actual traces. Let’s look at a small trace of bubble sort on the array
[4, 1, 3, 2].

4 1 3 2
Swap 4, 1

(j) (i)
1 4 3 2

Swap 4, 3
(j) (i)

1 3 4 2
Swap 4, 2

(j) (i)
1 3 2 4

(j) (i)

1 3 2 4
(j) (i)
1 3 2 4

Swap 3, 2
(j) (i)

1 2 3 4
(j) (i)

1 2 3 4
(j) (i)
1 2 3 4

(j) (i)

1 2 3 4
(j) (i)

Considering the outer invariant we’re currently trying to support, one fact stands out immediately:
throughout execution, all elements of a indexed by a value greater than i are greater than those
that are at most i. Formally, we observe the invariant:

∀k, k′.0 ≤ k ≤ i ∧ i < k′ < a.Length→ a[k] ≤ a[k′]

5

15-414 Lecture 17 6

We’ll rename this invariant partitioned(a, i), and add the predicate to our code.

1 predicate partitioned(a: array <int >, i: int)

2 reads a

3 requires a != null

4 {

5 forall k, k’ :: 0 <= k <= i < k’ < a.Length ==> a[k] <= a[k’]

6 }

This is pertinent to our main invariant, because bubble sort works by maintaining a partition on
a: the first half is unsorted, whereas the second half is sorted, and per our new invariant, contains
values that are at least as large as those in the unsorted portion. We add this invariant to both
loops, as is a property of the outer loop that is preserved by the inner loop.

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1)

5 {

6 var i := a.Length - 1;

7 while(i > 0)

8 invariant -1 <= i < a.Length

9 invariant sorted(a, i, a.Length -1)

10 invariant partitioned(a, i)

11 {

12 var j := 0;

13 while(j < i)

14 invariant 0 < i < a.Length && 0 <= j <= i

15 invariant sorted(a, i, a.Length -1)

16 invariant partitioned(a, i)

17 {

18 if(a[j] > a[j+1])

19 {

20 a[j], a[j+1] := a[j+1], a[j];

21 }

22 j := j + 1;

23 }

24 i := i - 1;

25 }

26 }

After attempting to verify the above code, it appears that our invariants are still not strong enough.
The verifier’s error message tells us that the two non-basic outer invariants might not be preserved
by the loop. Let’s examine the relevant basic path, and its corresponding verification condition to
gain further clarity.

6

15-414 Lecture 17 7

1 invariant 0 < i < a.Length && 0 <= j <= i &&

2 sorted(a, i, a.Length -1) &&

3 partitioned(a, i)

4 assume i <= j;

5 i := i - 1;

6 invariant -1 <= i < a.Length &&

7 sorted(a, i, a.Length -1) &&

8 partitioned(a, i)

The corresponding VC, after a bit of simplification, is:

0 < i < a.Length ∧ i = j ∧ sorted(a, i, a.Length− 1) ∧ partitioned(a, i)

→ sorted(a, i− 1, a.Length− 1) ∧ partitioned(a, i− 1)

This invariant is not valid, and the problem is similar to what we encountered earlier when we
tried to generalize by accepting an invariant that widened the sorted region. Consider the following
counterexample, which satisfies the antecedent but not the consequent.

2 1 4 3 5
(j) (i)

However, a bit of thought leads us to conclude that bubble sort would never produce this coun-
terexample state. We know this because bubble sort always propagates the largest value from the
unsorted region to the bottom of the sorted region. Indeed, throughout the inner loop a[j] contains
the largest value processed so far. Formalized, the corresponding invariant is relevant to the inner
loop:

∀k.0 ≤ k ≤ j → a[k] ≤ a[j]

After adding this, we have an implementation and proof that Dafny “almost” accepts.

7

15-414 Lecture 17 8

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1)

5 {

6 var i := a.Length - 1;

7 while(i > 0)

8 invariant -1 <= i < a.Length

9 invariant sorted(a, i, a.Length -1)

10 invariant partitioned(a, i)

11 {

12 var j := 0;

13 while(j < i)

14 invariant 0 < i < a.Length && 0 <= j <= i

15 invariant sorted(a, i, a.Length -1)

16 invariant partitioned(a, i)

17 invariant forall k :: 0 <= k <= j ==> a[k] <= a[j]

18 {

19 if(a[j] > a[j+1])

20 {

21 a[j], a[j+1] := a[j+1], a[j];

22 }

23 j := j + 1;

24 }

25 i := i - 1;

26 }

27 }

At this point, the verifier no longer complains about the loop invariants being preserved. Rather,
it notifies us that the postcondition might not hold on a path through our method, and points
to the head of the loop as the possible location at which our code may be incorrect (or our proof
incomplete). What is going on here? The loop exit condition conjoined with our key loop invariant
appears sufficient to establish the postcondition:

sorted(a, i, a.Length− 1) ∧ i ≤ 0→ sorted(a, 0, a.Length− 1)

Informally, we know that when the loop exits, i is either 0 or −1. When i = 0, the relevant VC is
certain to hold:

sorted(a, i, a.Length− 1) ∧ i = 0→ sorted(a, 0, a.Length− 1)

When i = −1, then we know that a.Length = 0, and our sorted predicate becomes:

∀i, j.0 ≤ l ≤ i ≤ j ≤ u < −1→ a[i] ≤ a[j]
⇔ false → a[i] ≤ a[j]

So it would seem that the postcondition holds in either case. It seems that the verifier is not picking
up on the relationship we need,

i < 0→ a.Length = 0

This is clearly true before the outer loop executes (i.e., immediately after i) is assigned, and cursory
inspection of the loop body suggests that it is maintained until the loop terminates. We can add
it as an invariant to our outer loop, and the verifier accepts our proof.

8

15-414 Lecture 17 9

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1)

5 {

6 var i := a.Length - 1;

7 while(i > 0)

8 invariant i < 0 ==> a.Length == 0

9 invariant -1 <= i < a.Length

10 invariant sorted(a, i, a.Length -1)

11 invariant partitioned(a, i)

12 {

13 var j := 0;

14 while(j < i)

15 invariant 0 < i < a.Length && 0 <= j <= i

16 invariant sorted(a, i, a.Length -1)

17 invariant partitioned(a, i)

18 invariant forall k :: 0 <= k <= j ==> a[k] <= a[j]

19 {

20 if(a[j] > a[j+1])

21 {

22 a[j], a[j+1] := a[j+1], a[j];

23 }

24 j := j + 1;

25 }

26 i := i - 1;

27 }

28 }

9

15-414 Lecture 17 10

Strengthening the Specification. We have managed to prove that when BubbleSort termi-
nates, its parameter contains a sorted list whenever it begins non-null. However, our specification
is not as strong as we may like it to be for some purposes. For example, consider the following
program, which satisfies the specifications we’ve given to BubbleSort.

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1)

5 {

6 var i := a.Length - 1;

7 while(i >= 0)

8 invariant -1 <= i < a.Length

9 invariant i >= 0 ==> forall j :: i < j < a.Length ==> a[j] == a[a.Length -1]

10 invariant sorted(a, i+1, a.Length -1)

11 {

12 a[i] := a[a.Length -1];

13 i := i - 1;

14 }

15

16 }

While a well-intentioned programmer is unlikely to deviate in spirit so far from the contract, the
point remains that our specification does not require that the contents of a differ in the post-state
only in their order from the pre-state; this is crucial to our expectations of what a sorting procedure
does.

We can strengthen our specification by adding to the postcondition that the final contents of a
be a permutation of their initial contents. Dafny has a syntactic facility for referring to the initial
contents of a reference type in specifications: the old(a) notation.

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1)

5 ensures permutation(a[..], old(a[..]))

This specification says that when BubbleSort terminates, the new contents of a must be a permu-
tation of their initial contents. Notice that when we refer to a in the arguments of permutation,
we suffix with [..]. This is Dafny’s notation for computing an array slice, which returns the con-
tents of an array between specified indices as a seq. Because we do not provide any indices, this
returns the entire contents of a as a seq<int>, and we do this so that the permutation predicate
we write can take seq<int> arguments rather than array<int>; sequences are nicer to work with
in specifications than arrays. We could have computed a sequence corresponding to any range of a
by writing a[low..high] had we needed to refer to specific portions of a.

Now we must write a predicate for permutation. Intuitively, we know that an array a is a permu-
tation of b if and only if for each possible value v, the number of occurrences of v in a is the same
as the number of occurrences in b. So, to encode the right predicate we will need a function that
counts the number of occurrences of a particular value in a sequence.

10

15-414 Lecture 17 11

1 function count(a: seq <int >, v: int): nat

2 {

3 if(|a| > 0) then

4 if(a[0] == v) then 1 + count(a[1..], v)

5 else count(a[1..], v)

6 else 0

7 }

With this function in hand, we can write our predicate for permutation in a straightforward
manner.

1 predicate permutation(a: seq <int >, b: seq <int >)

2 {

3 forall v :: count(a, v) == count(b, v)

4 }

When we attempt to verify our method against the new specification, Dafny tells us that the post-
condition might not hold. Of course, it is referring to the postcondition mentioning permutation,
which means that our current annotations are not sufficient to establish the newly-strengthened
specification. We must obtain new annotations sufficient to prove this property.

Unlike in the case of sorted, our implementation does not gradually establish that the current a is
a permutation of old(a). So, adding an invariant that incrementally asserts that a larger portion
of the array is a permutation of the old may not be necessary, and in fact may be more difficult to
prove than the straightforward choice of:

1 invariant perm(old(a[..]), a[..])

Intuitively, the only way in which our code modifies the contents of a is by swapping adjacent pairs
of elements. If we place this invariant, which is clearly strong enough to prove the postcondition
in question, on both loops, then we can reasonably expect to prove it by reasoning about localized
portions of a near the point of our modifications inside the inner loop. However, Dafny does not
accept our annotations yet.

Although it may seem obvious to us that no elements are added or removed from a in the line:

1 a[j], a[j+1] := a[j+1], a[j];

Dafny does not know how to connect these manipulations of the array to the properties relevant for
permutation. We need to demonstrate that the contents of a immediately after the update are a
permutation of the contents before it. To do this, it will be helpful to have some way of referring to
both versions of a simultaneously. Dafny supports ghost variables for exactly this purpose. Ghost
variables are declared with the modifier ghost, and are used only at verification time; they are
not compiled into variables that are allocated and updated when the program is run, so we do not
need to worry about the impact on performance that manipulating these variables would otherwise
have.

We declare and initialize a new ghost variable to track the contents of a before the update:

11

15-414 Lecture 17 12

1 ghost var a’ := a[..];

2 a[j], a[j+1] := a[j+1], a[j];

We now need to demonstrate that permutation(a[..], a′) holds after the update:

1 ghost var a’ := a[..];

2 a[j], a[j+1] := a[j+1], a[j];

3 assert permutation(a[..], a’);

The verifier still is not convinced that we’ve proven the claim, although we can check to make sure
that this assertion is sufficient to establish our loop invariants by temporarily switching the assert

to an assume:

1 ghost var a’ := a[..];

2 a[j], a[j+1] := a[j+1], a[j];

3 assume permutation(a[..], a’);

When we do this, the loop invariants and postconditions successfully verify, so we know that we’re
on the right track. This is an effective proof debugging technique that should be used frequently
to ensure that we aren’t wasting time proving facts that are irrelevant to our specifications.

Perhaps the verifier is having difficulty reasoning monolithically about the entirety of a and a′. To
help it along, let’s break both values down into simpler parts that highlight their differences. We
know that the only positions in which the two differ are j, j + 1. So, it should be the case that

a[..j] = a′[..j] ∧ a[j + 2..] = a′[j + 2..]

A quick check with an assert verifies that this is the case, and is recognized by Dafny. However,
we don’t need this assertion by itself in our proof, so we remove it before moving on.

Decomposing a and a′ in this manner makes it obvious that the two are permutations of eachother:
a[..j] and a′[..j] are permutations of eachother, a[j + 2..] and a′[j + 2..] are as well, and finally
a[j..j + 2] and a′[j..j + 2] are as well. However, Dafny does not accept this final fact, so we make
it very clear by being explicit about the contents of a[j..j + 2], a′[j..j + 2]:

1 ghost var a’ := a[..];

2 a[j], a[j+1] := a[j+1], a[j];

3 ghost var v1 , v2 := a[j], a[j+1];

4 assert a[..] == a[..j] + [v1, v2] + a[j+2..];

5 assert a’ == a[..j] + [v2, v1] + a[j+2..];

6 assert permutation ([v1, v2], [v2, v1]);

7 assume permutation(a[..], a’);

The only line that the verifier will not accept is the final. It seems that we have done enough to
prove the desired property, but let’s take a closer look to understand where Dafny might be getting
tripped up. permutation is a predicate over count, and we expect that a is a permutation of
a′ because for every value, count is the same in a[..j] and a′[..j], a[j..j + 2] and a′[j..j + 2], and
[v1, v2], [v2, v1]. Because a and a′ are composed of only these parts, we expect that count on the
full contents will match up as well. We can check this intuition with an assertion:

12

15-414 Lecture 17 13

1 assert forall v :: count(a[..], v) == count(a[..j], v) + count ([v1, v2], v) +

2 count(a[j+2..] , v);

The verifier complains, so presumably this is our culprit. Dafny does not realize that count is
distributive across sequence concatenation, i.e., that:

∀v.count(a + b + c, v) = count(a, v) + count(b, v) + count(c, v)

Now that we know this is the issue, it is not particularly surprising: count is non-trivial function
over sequences, and we require quantified reasoning over its behavior. We will need to prove it,
and because it is a general property that does not depend on the specifics of BubbleSort, we will
do so by creating a lemma that can potentially be reused later.

1 lemma count_distrib3(a: seq <int >, b: seq <int >, c: seq <int >)

2 ensures forall v :: count(a + b + c, v) ==

3 count(a, v) + count(b, v) + count(c, v)

Before we begin proving the main argument that count is distributive across concatenation, we
observe that the signature of this lemma may be more complicated than we’d like. The context
in which we’d like to use the lemma needs to relate this property to the concatenation of three
sequences, but intuition should tell us that we can achieve this by sequencing assertions of distribu-
tivity with respect to pairs of sequences. Formally, this corresponds to the claim that:

∀a, b, c, v. (count(a + b, v) = count(a, v) + count(b, v) ∧
count((a + b) + c, v) = count(a + b, v) + count(c, v))
→ count(a + b + c, v) = count(a, v) + count(b, v) + count(c, v)

To reason in this way, we need a lemma count distrib2 with the signature:

1 lemma count_distrib2(a: seq <int >, b: seq <int >)

2 ensures forall v :: count(a + b, v) == count(a, v) + count(b, v)

This allows us to complete count distrib3 by invoking count distrib2 twice:

1 lemma count_distrib3(a: seq <int >, b: seq <int >, c: seq <int >)

2 ensures forall v :: count(a + b + c, v) ==

3 count(a, v) + count(b, v) + count(c, v)

4 {

5 count_distrib2(a, b);

6 count_distrib2(a + b, c);

7 }

Note that we could have used count distrib2 directly in the body of BubbleSort to prove the
claim we’re after, but it would have cluttered the proof with more calls to the lemma.

Now we need to prove the postcondition for count distrib2. This is a universally-quantified
claim over all sequence element values v, so we’ll start off with the forall statement in the body,
which allows us to write a postcondition that will hold for every value in the iteration range of the
statement:

13

15-414 Lecture 17 14

1 lemma count_distrib2(a: seq <int >, b: seq <int >)

2 ensures forall v :: count(a + b, v) == count(a, v) + count(b, v)

3 {

4 forall(v: int)

5 ensures count(a + b, v) == count(a, v) + count(b, v)

6 {

7

8 }

9 }

Copying the formula within the scope of our postcondition’s quantifier is appropriate here, and
sufficient to prove the claim. Although it’s fairly straightforward to see in this example, we can
test it by inserting an assume false statement in the body of the loop.

We must now decide how to proceed with the main proof of the distributive property. Because the
objects that we refer to in the lemma postcondition are sequences, it is worth taking a moment to
consider the set of possible values that these objects can take. Sequences can be defined inductively,
with the empty sequence [] serving as the base case. The definition is as follows:

seq < T > ::= [] | [T] + seq < T >

This suggests that we can use structural induction to prove our claim. We will induce on the
structure of a, starting with the base case of a = []:

1 lemma count_distrib2(a: seq <int >, b: seq <int >)

2 ensures forall v :: count(a + b, v) == count(a, v) + count(b, v)

3 {

4 forall(v: int)

5 ensures count(a + b, v) == count(a, v) + count(b, v)

6 {

7 if(a == []) {

8 calc == {

9 count(a + b, v);

10 { assert a + b == b; }

11 count(b, v);

12 0 + count(b, v);

13 { assert count(a, v) == 0; }

14 count(a, v) + count(b, v);

15 }

16 }

17 }

18 }

We use an equality calculation to demonstrate the claim, and proceed by using the fact that a’s
emptiness makes concatenation with b the identity. The last few steps of this calculation are not
necessary for Dafny to accept the claim in this case, but are provided here to make the proof
explicit.

Continuing on with the inductive case, we need to separate a into its constituent parts according.
Having done so, we can recursively invoke the lemma on the smaller constituents to prove the claim.

14

15-414 Lecture 17 15

1 lemma count_distrib2(a: seq <int >, b: seq <int >)

2 ensures forall v :: count(a + b, v) == count(a, v) + count(b, v)

3 {

4 forall(v: int)

5 ensures count(a + b, v) == count(a, v) + count(b, v)

6 {

7 if(a == []) {

8 calc == {

9 count(a + b, v);

10 { assert a + b == b; }

11 count(b, v);

12 0 + count(b, v);

13 { assert count(a, v) == 0; }

14 count(a, v) + count(b, v);

15 }

16 } else {

17 calc == {

18 count(a + b, v);

19 { assert a + b == [a[0]] + (a[1..] + b); }

20 count ([a[0]] + (a[1..] + b), v);

21 (if a[0] == v then 1 + count(a[1..] + b, v) else count(a[1..] + b, v));

22 { count_dist(a[1..] , b); }

23 (if a[0] == v then 1 + count(a[1..] , v) + count(b, v)

24 else count(a[1..], v) + count(b, v));

25 count(a, v) + count(b, v);

26 }

27 }

28 }

29 }

Notice that the third line comes directly from the definition of count. As before, several of the final
steps are not necessary for Dafny to accept our proof, but are provided here for documentation.

This completes the proof that count distributes across concatenation, and thus the proof of
BubbleSort. The complete listing of BubbleSort’s code is given in the next figure.

15

15-414 Lecture 17 16

1 method BubbleSort(a: array <int >)

2 modifies a

3 requires a != null

4 ensures sorted(a, 0, a.Length -1) && perm(old(a[..]) , a[..])

5 {

6 var i := a.Length - 1;

7 while(i > 0)

8 invariant i < 0 ==> a.Length == 0

9 invariant sorted(a, i, a.Length -1)

10 invariant part(a, i)

11 invariant perm(old(a[..]), a[..])

12 {

13 var j := 0;

14 while(j < i)

15 invariant 0 <= j <= i

16 invariant sorted(a, i, a.Length -1)

17 invariant part(a, i)

18 invariant forall k :: 0 <= k <= j ==> a[k] <= a[j]

19 invariant perm(old(a[..]), a[..])

20 {

21 if(a[j] > a[j+1]) {

22 ghost var a’ := a[..];

23 a[j], a[j+1] := a[j+1], a[j];

24 ghost var v1 , v2 := a[j], a[j+1];

25 assert a[..] == a[..j] + [v1, v2] + a[j+2..];

26 assert a’ == a[..j] + [v2, v1] + a[j+2..];

27 count_distrib3(a[..j], [v1, v2], a[j+2..]);

28 count_distrib (3a[..j], [v2 , v1], a[j+2..]);

29 assert forall v :: count(a[..], v) ==

30 count(a[..j], v) + count([v1 , v2], v) + count(a[j+2..] , v);

31 assert perm([v1, v2], [v2, v1]);

32 assert perm(a[..], a’);

33 }

34 j := j + 1;

35 }

36 i := i - 1;

37 }

38 }

16

15-414 Lecture 17 17

Appendix: Using Z3 to check verification conditions

When reasoning about the validity of verification conditions on basic paths, it can be tedious to
look for counterexamples or attempt validity proofs by hand. Here, we’ll see how to use Z3, the
decision procedure utilized by Dafny, directly to assist our reasoning.

Running Z3 You will find the binaries for Z3 in the Dafny distribution you downloaded earlier
(assuming that you did not opt for the Visual Studio extension). You can also use Z3 via the web
interface at http://rise4fun.com/z3.

To run Z3 from the command line, invoke its binary (z3) with a single parameter corresponding to
a file containing the SMT problem that you would like to solve. Z3 accepts several input formats,
and the examples that we’ll see in this section are in the SMT2 format that you can read more
about at http://smtlib.cs.uiowa.edu/.

Encoding VCs To demonstrate the use of Z3 to encode verification conditions, we’ll look at
all of the partial correctness conditions in our completed BubbleSort method. However, to make
the examples relatively simpler and easier to follow, we’ll look at the version of BubbleSort that
doesn’t prove permutation(old(a[..]), a[..]).

The first basic path proceeds from the method entry point to the beginning of the outer loop.

1 requires a != null

2 i := a.Length - 1

3 invariant -1 <= i < a.Length

4 invariant sorted(a, i, a.Length -1)

5 invariant partitioned(a, i)

To encode this in Z3, we’ll first declare symbols corresponding to our syntactic entities. Starting
with the variables a, i, we have the following.

1 (declare -const a (Array Int Int))

2 (declare -const i Int)

We declare variables using declare-const, which accepts a type argument. a is defined to be an
element from the domain of Z3’s theory of arrays taking integer indices to integer-valued elemented,
and i and integer. The Array types used by Z3 have the same axioms as the theory of arrays that
we studied earlier in the semester.

1 (declare -const a (Array Int Int))

2 (declare -const i Int)

Now we need to define the predicates sorted and partitioned. Recall that predicates are functions
ranging over Booleans, so we use declare− fun to declare them, and then assert their semantics
as axioms (i.e., universally-quantified logical sentences). We also need some way of referring to
the length of our arrays, as the theory of arrays does not account for it, but it is mentioned in
our formulas. To do so, we’ll introduce an uninterpreted function length ranging over arrays, and
assert an axiom that requires the length of any array to be at least zero.

17

15-414 Lecture 17 18

1 (declare -const a (Array Int Int))

2 (declare -const i Int)

3

4 (declare -fun sorted ((Array Int Int) Int Int) Bool)

5 (declare -fun partitioned ((Array Int Int) (Int)) Bool)

6 (declare -fun length ((Array Int Int)) Int)

7

8 (assert (forall ((a (Array Int Int)))

9 (<= 0 (length a))))

10

11 (assert (forall ((a (Array Int Int)) (l Int) (u Int))

12 (iff

13 (sorted a l u)

14 (forall ((i Int) (j Int))

15 (=>

16 (and (<= 0 l) (<= l i) (<= i j) (<= j u) (< u (length a)))

17 (<= (select a i) (select a j)))))))

18

19 (assert (forall ((a (Array Int Int)) (i Int))

20 (iff

21 (partitioned a i)

22 (forall ((k1 Int) (k2 Int))

23 (=>

24 (and (<= 0 k1) (<= k1 i) (< i k2) (< k2 (length a)))

25 (<= (select a k1) (select a k2)))))))

Before moving on, notice a few things about this input format. Z3 is an SMT solver that is
fundamentally based on the “lazy” propositional encoding algorithm that we studied earlier in the
semester. Having algorithmic roots in DPLL, you should expect that it accepts CNF formulas
over some first-order background theory as input, and returns sat, unsat, or unknown as its result
(unknown is necessary as the background theory may be undecidable, or the user may want to place
a hard limit on the amount of time the solver is given). The lines beginning with assert correspond
to the CNF clauses that we’re giving as our input, and as such, they take a Boolean-valued term
(i.e., formula) as their only argument. When we ask Z3 to solve our instance, it will attempt to
decide whether each asserted formula can be satisfied conjunctively. However, it is worth pointing
out that Z3 is somewhat flexible with respect to the contents of each clause. It does not strictly
require the input to be a CNF, so the clauses don’t necessarily need to be disjunctive; they can
contain arbitrary logical connectives and theory symbols, as long as the final result is a Boolean
type.

The second thing to notice is the fact that formulas and terms are given in prefix notation. That
is, rather than writing:

F1 and F2 and · · · and Fn

Z3 expects its input to be given as:

(and F1 F2 · · · Fn)

If you haven’t seen this notation before, it may take a litle getting used to. However, the basic
idea is straightforward: rather than placing the operator between its arguments, it is placed at
the beginning of a parenthetical list, and the arguments follow in-order. In general, when a binary
operator is associative, Z3 will allow you to list an arbitrary number of arguments rather than
nesting successive instances of the operator within the arguments. This is why we were able to use

18

15-414 Lecture 17 19

one instance of and in the example above, rather than:

(and F1 (and F2 (and · · · Fn)))

Getting back to our example, recall that we’d like to check the verification condition for the basic
path:

1 requires a != null

2 i := a.Length - 1

3 invariant -1 <= i < a.Length

4 invariant sorted(a, i, a.Length -1)

5 invariant partitioned(a, i)

We’ve encoded our variables and all of the necessary predicates by making universally-quantified
assertions that reflect their semantics. For example, recalling the predicate that we wrote in Dafny
for sorted:

1 predicate sorted(a: array <int >, l: int , u: int)

2 reads a

3 requires a != null

4 {

5 forall i, j :: 0 <= l <= i <= j <= u < a.Length ==> a[i] <= a[j]

6 }

We encoded this in Z3 using the following assertion:

1 (assert (forall ((a (Array Int Int)) (l Int) (u Int))

2 (iff

3 (sorted a l u)

4 (forall ((i Int) (j Int))

5 (=>

6 (and (<= 0 l) (<= l i) (<= i j) (<= j u) (< u (length a)))

7 (<= (select a i) (select a j)))))))

This translation is fairly straightforward, with the only noteworthy artifact being the fact that we
universally-quantified the arguments to the predicate when encoding it in Z3. This reflects the
fact that we want this definition to hold for any arguments that we might apply the predicate
to. We did not account for the precondition in the Dafny predicate, as we have not encoded the
possibility that the array reference might be null into our SMT satisfiability problem. When Dafny
produces verification conditions, it certainly does account for this, but because we only reason
about sortedness in situations where the array reference is non-null (recall the precondition on
BubbleSort), we don’t need to address this additional complexity at the moment.

Inspecting the above basic path, we’ll replace the precondition a 6= null with true. This gives us
the verification condition:

true → wlp(i := |a| − 1,−1 ≤ i < |a|) ∧ sorted(a, i, |a| − 1) ∧ partitioned(a, i))
⇔ −1 ≤ |a| − 1 < |a| ∧ sorted(a, |a| − 1, |a| − 1) ∧ partitioned(a, |a| − 1)

We’d like to use Z3, a satisfiability solver, to check the validity of this formula. Recall that we can
exploit the connection between satisfiability and validity to accomplish this. Namely, we will check

19

15-414 Lecture 17 20

to determine whether the negation of our formula is satisfiable:

¬(−1 ≤ |a| − 1 < |a| ∧ sorted(a, |a| − 1, |a| − 1) ∧ partitioned(a, |a| − 1))

Continuing from the Z3 instance we left off with before, we simply add another assertion corre-
sponding to this condition:

1 (declare -const a (Array Int Int))

2 (declare -const i Int)

3

4 (declare -fun sorted ((Array Int Int) Int Int) Bool)

5 (declare -fun partitioned ((Array Int Int) (Int)) Bool)

6 (declare -fun length ((Array Int Int)) Int)

7

8 (assert (forall ((a (Array Int Int)))

9 (<= 0 (length a))))

10

11 (assert (forall ((a (Array Int Int)) (l Int) (u Int))

12 (iff

13 (sorted a l u)

14 (forall ((i Int) (j Int))

15 (=>

16 (and (<= 0 l) (<= l i) (<= i j) (<= j u) (< u (length a)))

17 (<= (select a i) (select a j)))))))

18

19 (assert (forall ((a (Array Int Int)) (i Int))

20 (iff

21 (partitioned a i)

22 (forall ((k1 Int) (k2 Int))

23 (=>

24 (and (<= 0 k1) (<= k1 i) (< i k2) (< k2 (length a)))

25 (<= (select a k1) (select a k2)))))))

26

27 (assert (not (and

28 (<= -1 (- (length a) 1))

29 (< (- (length a) 1) (length a))

30 (sorted a (- (length a) 1) (- (length a) 1))

31 (partitioned a (- (length a) 1)))))

32

33 (check -sat)

The last line instructs Z3 to decide the satisfiability of our assertions. If we save our instance to
vc.smt2, then we invoke Z3 as follows:

1 $ z3 vc.smt2

It should return promptly with:

1 $ z3 vc.smt2

2 unsat

Which tells us that our verification condition is valid: its negation is unsatisfiable.

Now let’s take a look at an invalid VC. Recall from earlier that the basic path:

20

15-414 Lecture 17 21

1 invariant 0 < i < a.Length && 0 <= j <= i &&

2 sorted(a, i, a.Length -1) &&

3 partitioned(a, i)

4 assume i <= j;

5 i := i - 1;

6 invariant -1 <= i < a.Length &&

7 sorted(a, i, a.Length -1) &&

8 partitioned(a, i)

With corresponding VC:

0 < i < a.Length ∧ i = j ∧ sorted(a, i, a.Length− 1) ∧ partitioned(a, i)

→ sorted(a, i− 1, a.Length− 1) ∧ partitioned(a, i− 1)

is invalid. We can use Z3 to check this by deciding the satisfiability of:

0 < i < a.Length ∧ i = j ∧ sorted(a, i, a.Length− 1) ∧ partitioned(a, i)

∧ ¬(sorted(a, i− 1, a.Length− 1) ∧ partitioned(a, i− 1))

Translating the problem into Z3’s input format, assuming that we’ve already defined the relevant
variables and axioms:

1 (assert (< 0 i))

2 (assert (< i (length a)))

3 (assert (= i j))

4 (assert (sorted a i (- (length a) 1)))

5 (assert (partitioned a i))

6 (assert (not (and (sorted a (- i 1) (- (length a) 1)) (partitined a (- i 1)))))

7

8 (check -sat)

It appears that Z3 hangs on this instance. Adding a 10-second timeout to the solver’s configuration
at the top of the input file:

1 (set -option :timeout 10000)

We see that the solver returns unknown. Because program verification is one of the primary ap-
plications that Z3 was developed to enable, it has been engineered to identify unsat instances
very quickly, as these correspond to valid verification conditions. However, for invalid conditions,
which correspond to sat instances, it is oftentimes not as effective. When Dafny’s verifier sees an
unknown answer from Z3, it assumes that the VC is invalid and returns an error message. The
program locations that it identifies in its error message are generated by obtaining a “reason” for
the unknown answer, which Z3 is usually able to return in the form of a subset of assertions on
which it had difficulty reasoning.

In our case, the difficulty is due to the quantifiers that we used to define sorted and partitioned;
as we’ve discussed previously, quantified formulas are especially difficult for automated reasoning
techniques to handle. Nonetheless, Dafny and Z3 do remarkably well handling such instances in
a large number of cases. A significant part of the challenge in developing a verifier lies in finding
a good SMT encoding for the generated verification conditions. The exact encoding that Dafny

21

15-414 Lecture 17 22

uses differs from the one we used here in numerous ways, which is why the verifier did not respond
with a timeout error message when we used the wrong loop invariant corresponding to this basic
path. You can examine the Z3 verification conditions generated by Dafny by invoking it with the
proverLog argument:

1 $ mono Dafny.exe prog.dfy /proverLog:@PROC@ -vc.smt2

This will cause the compiler to generate a file for each verification condition, where @PROC@ ex-
pands to the procedure that the condition corresponds to. As an exercise, examine the verification
conditions generated for BubbleSort, and try to make the Z3 verification conditions we wrote
above correspond more closely to those generated by Dafny. Understanding, at least in some level
of detail, how the verifier works behind the scenes will further remove the mystery from some of
the error messages that you encounter when proving your code.

22

