
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 14:
Deductive Verification, Part 2

Matt Fredrikson
mfredrik@cs.cmu.edu

October 18, 2016

Matt Fredrikson Deductive Verification 1 / 35

VC Generation (Review)

Given an assertion Q and program c, we’ll describe a function:
▶ That is a predicate
transformer: produces another assertion
▶ Assertion for the corresponding precondition P for c
▶ P guaranteed to be the weakest such assertion

This is the weakest
precondition predicate transformer wp(c,Q)

The weakest precondition satisfies the following conditions:
1. The triple [wp(c,Q)] c [Q] is valid
2. For any P where [P] c [Q] is valid, P ⇒ wp(c,Q)

For partial correctness, use weakest
liberal
precondition wlp(c,Q)

Matt Fredrikson Deductive Verification 2 / 35

Weakest Liberal Precondition (Review)

wlp(x := a,Q) = Q[a/x]
wlp(x[a1] := a2, Q) = Q[a⟨a1 ◁ a2⟩/x]
wlp(c1; c2, Q) = wlp(c1,wlp(c2, Q))
wlp(if b then c1 else c2, Q) = (b → wlp(c1, Q)) ∧ (¬b → wlp(c2, Q))

Matt Fredrikson Deductive Verification 3 / 35

Approximate Weakest Precondition (Review)

In general, we can’t always compute wlp for loops

Instead, we’ll approximate it with help from annotations

Now we’ll assume loops have the syntax:
while b do {I} c

I is a loop invariant provided by the programmer

The approximate wlp for while will still be a valid precondition

But it may not be the weakest precondition: even if
{P} while b do c {Q}

is valid, it might not be that:
P ⇒ wlp(while {I} b do c,Q)

Matt Fredrikson Deductive Verification 4 / 35

Verification Conditions: While Loop (Review)

If we define
wlp(while {I} b do c,Q) = I

Then we still need to show that
▶ I ∧ ¬b establishes Q

▶ I is a loop invariant

Defining the set of verification conditions,

vc(while {I} b do c,Q) =
{

I ∧ ¬b ⇒ Q
I ∧ b ⇒ wlp(c,Q)

}
To summarize, for Q to hold after executing a loop:

1. Each formula in vc(while {I} b do c,Q) must be valid
2. wlp(while {I} b do c,Q) = I must be valid

Matt Fredrikson Deductive Verification 5 / 35

Propagating Verification Conditions (Review)

while is the only command that introduces new conditions

But other statements might contain loops

Need to define vc for them as well:
▶ vc(x := a,Q) = ∅
▶ vc(c1; c2, Q) = vc(c1,wlp(c2, Q)) ∪ vc(c2, Q)

▶ vc(if b then c1 else c2, Q) = vc(c1, Q) ∪ vc(c2, Q)

In short, compound statements collect conditions from constituents

Matt Fredrikson Deductive Verification 6 / 35

Verification Using wlp

Bringing all of this together, we can verify
{P} c {Q}

for an annotated program c

1. Compute P ′ = wlp(c,Q)

2. Compute vc(c,Q)

3. Check validity of P → P ′

4. Check validity of each F ∈ vc(c,Q)

If (3) and (4) pass, then {P} c {Q} is valid

If {P} c {Q} is valid, then will (3) and (4) pass?
No. Loop invariants might be too weak!

Matt Fredrikson Deductive Verification 7 / 35

Example

Let’s verify the example from last lecture:
{true}
r := x; q := 0;
while y ≤ r do
r := r − y; q := q + 1

{r < y ∧ x = r + (q × y)}

Recall our loop invariant:
{true}
r := x; q := 0;
while y ≤ r do
{x = r + (q × y)}
r := r − y; q := q + 1

{r < y ∧ x = r + (q × y)}

Matt Fredrikson Deductive Verification 8 / 35

Example

Define the following shorthand:
▶ c1 : r := x

▶ c2 : q := 0

▶ c3 : r := r − y

▶ c4 : q := q + 1

▶ c5 : while y ≤ r do c3; c4

{true}
c1; c2;
while y ≤ r do
{x = r + (q × y)}
c3; c4

{r < y ∧ x = r + (q × y)}

We need to show these are valid:
true ⇒ wlp(c1; c2; c5, r < y ∧ x = r + (q × y))
vc(c1; c2; c5, r < y ∧ x = r + (q × y))

We’ll start with true ⇒ wlp(c1; c2; c5, r < y ∧ x = r + (q × y))

Matt Fredrikson Deductive Verification 9 / 35

Example

true ⇒ wlp(c1; c2; c5, r < y ∧ x = r + (q × y))

Let’s use Q : r < y ∧ x = r + (q × y), I : x = r + (q × y)

We begin by applying the rule for composition twice:
wlp(c1; c2; c5, Q) = wlp(c1,wlp(c2,wlp(c5, Q)))

This brings us to wlp(c5, Q):
wlp(while y ≤ r do {I} c3; c4, Q) = I

We also have verification conditions:
vc(c5, Q) = {I ∧ ¬b ⇒ Q, I ∧ b ⇒ wlp(c3; c4, Q)}

Matt Fredrikson Deductive Verification 10 / 35

Example

Let’s work out the VC I ∧ b ⇒ wlp(c3; c4, Q)

We have that:
wlp(r := r − y; q := q + 1, Q) = wlp(r := r − y,wlp(q := q + 1, Q))

= wlp(r := r − y,Q[q/q + 1])
= wlp(r := r − y, r < y ∧ x = r + ((q + 1)× y))
= (x = (r − y) + ((q + 1)× y))

So, we have:
vc(c5, Q) = {I ∧ ¬b ⇒ Q, I ∧ b ⇒ (x = (r − y) + ((q + 1)× y))}

Matt Fredrikson Deductive Verification 11 / 35

Example

Recalling that wlp(c5, Q) = I, we now need wlp(c2, I):
wlp(q := 0, x = r + (q × y)) = (x = r + (0× y))

= x = r

Moving on, our final step is wlp(c1, x = r):
wlp(r := x, x = r) = (x = x)

Popping back to our top-level procedure:
1. Compute P ′ = wlp(c,Q)

P ′ = (x = x)

2. Compute vc(c,Q)
vc(c,Q) = {I ∧ ¬b ⇒ Q, I ∧ b ⇒ (x = (r − y) + ((q + 1)× y))}

3. Check validity of P → P ′

Clearly, true ⇒ (x = x)

4. Check validity of each F ∈ vc(c,Q)

Matt Fredrikson Deductive Verification 12 / 35

Example

Check validity of each F ∈ vc(c,Q):

vc(c,Q) =
{

x = r + (q × y) ∧ ¬(y ≤ r) ⇒ r < y ∧ x = r + (q × y)
x = r + (q × y) ∧ y ≤ r ⇒ (x = (r − y) + ((q + 1)× y))

}
The first is true because ¬(y ≤ r) ⇔ r < y

The second we get by algebraic calculation

Therefore, the triple is valid
{true}
r := x; q := 0;
while y ≤ r do
r := r − y; q := q + 1

{r < y ∧ x = r + (q × y)}

Matt Fredrikson Deductive Verification 13 / 35

Imp: New Features

Now we’ll add two new featues to our language:
▶ Assertion annotations
▶ Procedure

Assertion annotations take the form:
{P}

Semantically, treat them like runtime assertions

Execution halts if the expression isn’t true in current environment

Think of assertions as formal
comments

Matt Fredrikson Deductive Verification 14 / 35

Imp: Procedures

proc LinearSearch(a : array, l : int, u : int, e : int)
requires 0 ≤ l ∧ u < |a|
ensures (rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)

We’ll consider programs with annotated procedures
▶ Precondition annotated with requires
▶ Postcondition annotated with ensures
▶ Free variables in the pre- and postconditions can be formal

parameters
▶ Postcondition can also include special variable rv
▶ rv stands for the return value

Matt Fredrikson Deductive Verification 15 / 35

Proving Partial Correctness

Now, a program is partially correct if for each procedure P :
1. Whenever P ’s preconditions are satisfied on entry
2. P ’s postconditions are satisfied on exit

We’ll extend the approach we’ve talked about so far
1. Reduce the annotated program to a set of verification conditions
2. If all VCs are valid, then the program is correct

Our approach will be different:
▶ Use annotations to decompose the program into simpler parts
▶ Generate VC for each part in isolation, assuming each

annotation holds
▶ Make sure that correctness of the whole follows from

correctness of each part

Matt Fredrikson Deductive Verification 16 / 35

Basic Paths

A basic
path is a sequence of instructions that:
▶ Begins at procedure precondition or loop invariant
▶ Ends at a loop invariant, assertion, or procedure postcondition
▶ Doesn’t cross loops: invariants only at beginning or end of path

Basic paths correspond to straight-line segments of code

Think of a Hoare triple over a sequence command:
{P} c1; c2; ...; cn {Q}

P,Q are pre-/postconditions, loop invariants, or assertion guards

Matt Fredrikson Deductive Verification 17 / 35

Basic Paths: Example

proc LinearSearch(a : array, l, u, e)
pre 0 ≤ l ∧ u < |a|
post (rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)

{
i := l;
while(i ≤ u)
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}

{
if(a[i] = e) return 1;
i := i + 1;

}
return 0; }

First basic path:
{0 ≤ l ∧ u < |a|}
i := l
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}

Second basic path:
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
while(i ≤ u);
if(a[i] = e);
rv := 1;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Matt Fredrikson Deductive Verification 18 / 35

assume statement

{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
while(i ≤ u);
if(a[i] = e);
rv := 1;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
assume i ≤ u;
assume a[i] = e;
rv := 1; {(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Guarded statements introduce assumptions about environment

We write these in basic paths using an assume statement

assume b means:
1. Rest of path executed only if b is true in current environment
2. When reasoning about rest of path, we can assume b holds

Matt Fredrikson Deductive Verification 19 / 35

assume: Path Splitting

Each guarded statement introduces two assumptions

One where assume b holds, one where assume ¬b does

Continuing with our previous basic path, this gives us the next:
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
assume i ≤ u;
assume a[i] = e;
rv := 1;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
assume i ≤ u;
assume a[i] ̸= e;
i := i + 1;
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}

And one final path:
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
assume i > u;
rv := 0;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Matt Fredrikson Deductive Verification 20 / 35

Enumerating Basic Paths

When we enumerate basic paths, we’ll follow a convention

Proceed depth-first through the program

When we encounter a guarded command:
1. Assume that it holds first, then generate the ensuing paths
2. Then assume it doesn’t hold, proceed as before

Matt Fredrikson Deductive Verification 21 / 35

Basic Paths: Procedure Calls

Recall the postcondition summarizes the relationships between:
▶ The procedure’s formal parameters
▶ The return value (special variable rv)

We replace procedure calls with postcondition assertions

But postcondition only holds when precondition is satisfied on entry

Introduce another basic path to ensure that the precondition holds

Replace formals in pre/postconditions with actuals appearing in call

Matt Fredrikson Deductive Verification 22 / 35

Example: Procedure Calls

proc BinarySearch(a : array, l, u, e)
pre 0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)
post (rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)

{
if(l > u) return 0;
else {
m := (l + u)/2;
if(a[m] = e) return 1;
else if(a[m] < e) {
return BinarySearch(a,m + 1, u, e);

} else {
return BinarySearch(a, l,m− 1, e);

}
}

Matt Fredrikson Deductive Verification 23 / 35

Example: Procedure Calls

First basic path:
{0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)}
assume l > u;
rv := 0;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Second basic path:
{0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)}
assume l ≤ u;
m := (l + u)/2;
assume a[m] = e;
rv := 1;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Third basic path:
{0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)}
assume l ≤ u;
m := (l + u)/2;
assume a[m] ̸= e;
assume a[m] < e;
{0 ≤ m + 1 ∧ u < |a| ∧ sorted(a,m + 1, u)}

Matt Fredrikson Deductive Verification 24 / 35

Example: Procedure Calls

Fourth basic path:
{0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)}
assume l ≤ u;
m := (l + u)/2;
assume a[m] ̸= e;
assume a[m] < e;
assume (v1 = 1) ↔ (∃i.m + 1 ≤ i ≤ u ∧ a[i] = e);
rv := v1;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Fifth basic path:
{0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)}
assume l ≤ u;
m := (l + u)/2;
assume a[m] ̸= e;
assume a[m] ≥ e;
{0 ≤ l ∧m− 1 < |a| ∧ sorted(a, l,m− 1)}

Matt Fredrikson Deductive Verification 25 / 35

Example: Procedure Calls

Sixth basic path:
{0 ≤ l ∧ u < |a| ∧ sorted(a, l, u)}
assume l ≤ u;
m := (l + u)/2;
assume a[m] ̸= e;
assume a[m] ≥ e;
assume (v2 = 1) ↔ (∃i.l ≤ i ≤ m− 1 ∧ a[i] = e);
rv := v2;
{(rv = 1) ↔ (∃i.l ≤ i ≤ u ∧ a[i] = e)}

Matt Fredrikson Deductive Verification 26 / 35

Summary: Procedure Calls

Given a procedure f with prototype
proc f(x1, . . . , xn)
pre P [x1, . . . , xn]
post Q[x1, . . . , xn, rv]

When f is called in context w := f(e1, . . . , en);

Augment the calling context with an assertion:
{P [e1, . . . , en]};
w := f(e1/x1, . . . , en/xn);

In paths that pass through the call,
1. Create fresh variable v to hold the return value
2. Replace call with an assumption of the postcondition:

assume G[e1/x1, . . . , en/xn, v/rv]

Matt Fredrikson Deductive Verification 27 / 35

VC Generation

As we enumerate basic paths, we generate verification conditions

Notice: We only need to generate VCs for three command types
1. Assignment: we do this exactly as we did before
2. Sequence: same as before
3. assume. Recall, with assume we said that only paths satisfying

the expression proceed past the command.
wlp(assume b,Q) = b → Q

If b → Q holds before, then satisfying b ensures that Q holds
afterward

What about the “side conditions” we had for loops?

Matt Fredrikson Deductive Verification 28 / 35

VC Generation: Loops

proc f(x1, . . . , xn)
pre P
post Q

{
while(b) {I} {
c;

}
}

{P}
skip;
{I}

{I}
assume b;
c;
{I}

{I}
assume ¬b;
{Q}

Matt Fredrikson Deductive Verification 29 / 35

VC Generation: Loops

{P}
skip;
{I}

P → I

{I}
assume b;
c;
{I}

I → wlp(assume b,wlp(c, I))
⇔
(I ∧ b) → wlp(c, I)

{I}
assume b;
{Q}

I → wlp(assume ¬b,Q)
⇔
(I ∧ ¬b) → Q

These are same conditions as before!

Matt Fredrikson Deductive Verification 30 / 35

Example: Linear Search (1)

Recall the first basic path:
{0 ≤ l ∧ u < |a|}
i := l
{l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}

The VC for this is:
0 ≤ l ∧ u < |a| → wlp(i := l, l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e)

We have that:
wlp(i := l, l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e)

⇔ l ≤ l ∧ ∀j.l ≤ j < l → a[j] ̸= e
⇔ true ∧ ∀j.false → a[j] ̸= e
⇔ true

Our final condition is valid:
0 ≤ l ∧ u < |a| ⇒ true

Matt Fredrikson Deductive Verification 31 / 35

Example: Linear Search (2)
Recall the second basic path:

{P : l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
c1 : assume i ≤ u;
c2 : assume a[i] = e;
c3 : rv := 1;
{Q : (rv = 1) ↔ ∃j.l ≤ j ≤ u ∧ a[j] = e}

The VC for this is:
P → wlp(c1; c2; c3, Q) ⇔ P → wlp(c1,wlp(c2,wlp(c3, Q)))

We have that:
wlp(rv := 1, (rv = 1) ↔ ∃j.l ≤ j ≤ u ∧ a[j] = e)

⇔ (1 = 1) ↔ ∃j.l ≤ j ≤ u ∧ a[j] = e
⇔ ∃j.l ≤ j ≤ u ∧ a[j] = e

Our final condition is:
0 ≤ l ∧ u < |a| ⇒ true

Matt Fredrikson Deductive Verification 32 / 35

Example: Linear Search (3)
Recall the second basic path:

{P : l ≤ i ∧ ∀j.l ≤ j < i → a[j] ̸= e}
c1 : assume i ≤ u;
c2 : assume a[i] = e;
c3 : rv := 1;
{Q : (rv = 1) ↔ ∃j.l ≤ j ≤ u ∧ a[j] = e}

The VC for this is:
P → wlp(c1; c2; c3, Q) ⇔ P → wlp(c1,wlp(c2,wlp(c3, Q)))

Moving on,
wlp(c1,wlp(assume a[i] = e, ∃j.l ≤ j ≤ u ∧ a[j] = e))

⇔ wlp(c1, a[i] = e → ∃j.l ≤ j ≤ u ∧ a[j] = e)
⇔ wlp(assume i ≤ u, a[i] = e → ∃j.l ≤ j ≤ u ∧ a[j] = e)
⇔ i ≤ u → (a[i] = e → ∃j.l ≤ j ≤ u ∧ a[j] = e)

Our final condition is:
0 ≤ l ∧ u < |a| ⇒ true

Matt Fredrikson Deductive Verification 33 / 35

Example: Linear Search (4)

Our final condition is:
(l ≤ i ≤ u ∧ ∀j.l ≤ j < i → a[j] ̸= e) → (a[i] = e → ∃j.l ≤ j ≤ u ∧ a[j] = e)

⇔ (l ≤ i ≤ u ∧ a[i] = e ∧ ∀j.l ≤ j < i → a[j] ̸= e) → ∃j.l ≤ j ≤ u ∧ a[j] = e

Notice that:
l ≤ i ≤ u ∧ a[i] = e → ∃j.l ≤ j ≤ u ∧ a[j] = e

is valid

So, the condition is valid, and the corresponding triple is as well

Matt Fredrikson Deductive Verification 34 / 35

Next Class

▶ Mid-term on Thursday
▶ Check out mid-term guide posted on Blackboard
▶ Come to office hours with questions

Matt Fredrikson Deductive Verification 35 / 35

