Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 13:
Deductive Verification

Matt Fredrikson
mfredrik@cs.cmu.edu

October 13, 2016

Matt Fredrikson

Partial Correctness (Review)

Partial correctness refers to a program’s terminating behavior

We specify partial correctness using Hoare triples

{P} c{Q}

» cis aprogram

v

P and @ are assertions in a first-order theory

v

Free variables in P, () can range over program variables

v

P is the precondition and (is the postcondition

Matt Fredrikson Deductive Verification 2/38

Hoare Triples: Meaning (Review)

The meaning of {P} ¢ {Q} is as follows:

» If we begin executing c in an environment satisfying P,
» and if ¢ terminates,

» then its final environment will satisfy @

The specification says nothing about:

» Executions that do not terminate (i.e., diverge)

» Executions that do not begin in P

Notice: {P} ¢ {Q} is a predicate

Goal of verification: prove that it holds, i.e., is a valid Hoare triple

Matt Fredrikson Deductive Verification 3/38

Hoare Triples: Total Correctness (Review)

Partial correctness doesn’t require termination
Total correctness is a stronger statement, written:
[P] c[Q]
The meaning of [P] ¢ [Q)] is:
» If we begin executing c in an environment satisfying P,

» then c terminates,

» and its final environment will satisfy @

Total correctness introduces another obligation for verification

4/38

Matt Fredrikson Deductive Verification

Hoare Logic Inference Rules

Asgn

Skip 1P} skip {P} {Qla/z]} z = a{Q}

P=P F{P}c{Q} Q=Q
{P}c{Q}

{Pyci {P'} {P}ec{Q}
{P} c1;02{Q}

¢ PAb e {Q) {PA-b) e {Q)
{P} if b then ¢, else c,{Q}

Conseq

Seq

{PAbYc{P}

Whil
"® TPy while b do ¢ {P A b}

Matt Fredrikson

Soundness of Hoare Logic

The proof rules we’ve just covered are sound for partial correctness:

If H{P}c{Q}, then E{P} c{Q}
If we can derive a triple using the rules, then it is valid
To prove this, we use the operational semantics
Show equivalence between proof rules and reductions

Need to use induction on derivations

Matt Fredrikson Deductive Verification 6/38

Completeness of Hoare Logic

Completness of Hoare logic is stated as:

If k£ {P} ¢ {Q}, then F {P} ¢ {Q}
If {P} ¢ {Q} is valid, then we can derive it using the rules
Is this true?

For strengthening, we need to prove statements of the form:
P=qQ

This requires proving a universal implication in Peano arithmetic

Recall that Tp,4 is undecidable!

Matt Fredrikson Deductive Verification 7/38

Relative Completeness of Hoare Logic

So, we know there can’t be a proof system that derives all valid
triples

The Hoare logic has relative completeness
If we assume an oracle for deciding P = @
Then we can derive any valid Hoare triple for Imp

However, for more complex languages, this isn’t always the case

Matt Fredrikson Deductive Verification 8/38

Mechanics of Verification

Working in Hoare logic is nicer than working directly with semantics
But still isn’t “fun”, and not quite trivial

» How to decompose the program?
» When to apply the rule of consequence, and how?

» Lots of tedious details, e.g., discharging
(=r+(gxy)hy<r)=z=(r—y)+((g+1) xy)
» Even for short programs, the proofs can be long (and boring)

Now we’ll take steps towards mechanizing this process

Matt Fredrikson Deductive Verification 9/38

Basic Approach

Given a program ¢ annotated with a specification:

{P} c{Q}
To prove the triple, we’ll generate a set of verification conditions

» VC’s are a function of the code, specification, and loop invariants
» Each VC is a first-order formula in some theory
» If all VC’s are valid, then so is { P} ¢ {Q}
Program verifiers consist of two main components:
1. Verification condition generator producing T-formulas

2. Decision procedure for first-order theory T'

Intuitively, VC gen. “compiles” a verification problem into a math
problem

Matt Fredrikson Deductive Verification 10/38

This is the approach taken by tools like Dafny
As you know, it doesn’t prove things automatically

You often need to provide:
1. Loop invariants
Termination metrics
Extra assertions
Different (but possibly equivalent) contracts
Moral support and encouragement

ok~ owbd

These are all the subject of active research (except 5)
» (1), (2) addressed by static analysis, but unsolvable in general
» (3), (4) are improved by more powerful decision procedures

Matt Fredrikson Deductive Verification 11/38

VC Generation

Given an assertion @ and program ¢, we’ll describe a function:
» That is a predicate transformer: produces another assertion
» Assertion for the corresponding precondition P for ¢
» P guaranteed to be the weakest such assertion

This is the weakest precondition predicate transformer wp(c, Q)

The weakest precondition satisfies the following conditions:
1. The triple [wp(c, Q)] ¢ [Q] is valid
2. For any P where [P] ¢ [Q] is valid, P = wp(c, Q)

For partial correctness, use weakest liberal precondition wip(c, Q)

Matt Fredrikson Deductive Verification 12/38

“Backwards” VC Generation

Intuitively, wlp allows us to:
1. Start with a desired postcondition

2. Work backwards to a precondition that must hold
3. Verify that P = wlp(c, Q)
4. Or just use wlp(c, Q) to write a contract

There is also a “forward” transformer: strongest postcondition
1. Written sp(c, P)
2. The triple [P] ¢ [sp(c, P)] is valid
3. For any @ where [P] ¢ [Q] is valid, sp(¢, P) = @

What does sp(c, true) characterize?

For the rest of today (and most of the semester), we'll focus on wlp

Matt Fredrikson Deductive Verification 13/38

Language Extension: Arrays

But first, let’s add arrays to Imp
a € AEXp 1= neZ|xeVar|al+ax|a X ay|xal

b € BExp

true|fa|se|a1=a2|a1 §a2|—\b|b1/\b2

c € Com skip |z :=a | c1;ca | z[a1] == aq

| if b then ¢; else ¢,
| while b do ¢

Allow array lookup, assignment to array indices

Matt Fredrikson Deductive Verification 14/38

Array Semantics

The environment can map to array values (i.e., from T'4)

(a,0) I n o(x) is an array

ALookup (zfa], o) I o(z)[n]

(a1, 0) I ny (ag, o) I no

AWrite (zfay] := as,0) |} oz = o(x)(ng <no)]

Assignment produces a new array using the array update term

Matt Fredrikson Deductive Verification 15/38

Defining wip(c, Q): Assignment

We’ll use Hoare triples to define wlp
Recall the rule for assignment:

Asgn

{Qla/a]} = := a{Q}

The corresponding transformer is:

wlp(z = a, Q) = Qa/x]
This will produce valid preconditions. Is it weak enough?

If P % Q[a/x], then {P} ¢ {Q} won’t hold

Matt Fredrikson Deductive Verification 16/38

Whatiswlp(y :=z+1,(Vzx <z—oz<y)—z+1<y)?

Applying the definition of wlp for assignment,
VMrx<z—oaz<z+l)—oz+l<z+l

Is this right?

No. When we substituted y with z + 1 in
Vex<z—oxz<y)
the variable x was captured

Recall: zisboundinVz.z <a —x <y

Outside the scope of this V, we’re referring to a different

Matt Fredrikson Deductive Verification 17/38

Capture-avoiding substitution

When performing substitution, we need to be careful about scoping

When we expand out P|a/z], we need to:
» Only substitute free occurrences of x

» Rename bound variables appearing in a to avoid capture
Renaming bound variables is called a-substitution
For a substitution P[F/G], let
Viree = Ufree(F) U free(G)

To expand P[F/G]:

» For each quantified variable x in P such that x € Ve, rename
to a fresh variable to produce P’

» Apply the substitution directly to P’

Matt Fredrikson Deductive Verification 18/38

Consider the formula:
F: (Vo.p(z,y)) — q(f(y),)

Suppose we want Fly/ f(z),q(f(y), x)/(3z.h(z,y))]

First, we find all the free variables:
free(y) U free(f(z)) Ufree(q(f(y),x)) U free(3x.h(z,y))
}m} Li{w} Ufy} U{z} U{z,y} U{y}

T,y

F has one quantified variable x, which is in this set. So:
F: (V2 p(a',y) = a(f(y),)
Applying the substitution:
(Vo' .p(2’, f(2))) = Fz.h(x,y)

Matt Fredrikson Deductive Verification 19/38

F' - (Va'p(2',y) — q(f(y),)

Applying the first substitution ¢(f(y),)/ (3x.h(x,y)):
F': (V2' p(2',y)) — Jz.h(z,y)

Now we apply the second substitution: y/ f(z)

We need to rename bound variables that occur in Viee:
F": (V' .p(2',y)) — 32" .h(2',y)

Which brings us to:
F" (V2! p(a/, f(2))) = Fz".h(2', f(z))

Matt Fredrikson Deductive Verification 20/38

Defining wlp(c, @Q): Array Assignment

Array assignment gives the rule

AsgnArr

{Qlz({ar qag)/x]} xlar] := a2 {Q}

The corresponding transformer is:

wip(z[ai1] := a2, Q) = Qlaar <az)/x]
This is no different than normal assignment

In this case, we’re working with array values rather than integers

Matt Fredrikson Deductive Verification 21/38

Let’s compute:
wlp(b[i] := 5,b[i] = 5)

Proceeding with the substitution,
wlp(b[i] := 5,b[i] = 5)

Matt Fredrikson Deductive Verification 22/38

Let’s compute:
wlp(b[n] == z,Vi.1 <i<n— b[i] <bli+1])

Proceeding with the substitution,
wlp(b[n] := ,Vi.1 <i < n — b

=Vi.l <i<n— (b{n<x))[i]

= (bn<z))n— 1] < (b{n a2
AVil <i<n— (bnax))i] < (b{n<azx))fi+1]

=bn—1]<zAVil<i<n-—1-—b[i] <b[i+1]

bli +1])

<
< (b{n<x))i+1]
]

Matt Fredrikson Deductive Verification 23/38

Defining wip(c, Q): Sequencing

q Lta (P} {P}ea{Q}

Se (P} ere2{Q)

The corresponding transformer is:
Wlp(cl7 C2, Q) = Wlp(clv Wlp(c27 Q))

Compose the transformer, working backwards from c,
The precondition for co becomes the postcondition for ¢y

Note: we don’t need to use consequence to “glue” these together

Matt Fredrikson Deductive Verification 24/38

Defining wlp(c, @): Conditional

APAV QY {PAb) e (Q)

Py ifbthen o, else &2{Q)

wlp(if b then ¢, else c3, Q) = (b — wlp(c1,Q)) A (b — wlp(c2, Q))

If b holds, then wlp of ¢; branch must hold
Otherwise if —b, then wlp of ¢, branch must hold

Why isn’t the formula a disjunction?

Matt Fredrikson Deductive Verification 25/38

Defining wip(c, @Q): While Loop

{P Ab} ¢ {P}

Whil
"® (P} while b do ¢ {P A —b)

Recall the equivalence:
while b do ¢ = if b then ¢; while b do ¢ else skip

Let’s apply wlp for if:
wlip(if b then ¢; while b do ¢ else skip, Q)
= (b — wlp(c; while bdo ¢, Q)) A (=b — Q)
= (b — wlp(c,wlp(while bdo ¢, Q))) A (-b — Q)
= (b — wlp(c, wip(if b then c; while b do ¢ else skip,Q))) A (-b — Q)

We haven’t accomplished anything

Matt Fredrikson Deductive Verification 26/38

Approximate Weakest Precondition

In general, we can’t always compute wlp for loops
Instead, we’ll approximate it with help from annotations

Now we’ll assume loops have the syntax:
while bdo {7} ¢

I is a loop invariant provided by the programmer
The approximate wlp for while will still be a valid precondition

But it may not be the weakest precondition: even if
{P} while b do ¢ {Q}
is valid, it might not be that:
P = wlip(while {I} bdo ¢, Q)

Matt Fredrikson Deductive Verification 27/38

Approximate wlp: While Loop

Now, suppose we define:
wip(while {I} bdo ¢,Q) =T

A couple of things are missing:
» We haven’t checked that I A —b gives us @

» We don’t know that I is actually a loop invariant

We need to track additional verification conditions: vc(c, @)

Matt Fredrikson Deductive Verification 28/38

Verification Conditions: While Loop

If we define
wip(while {I} bdo ¢,Q) =1

Then we still need to show that
» I A —b establishes)

» [is aloop invariant

Defining the set of verification conditions,

vc(while {1} bdo c,Q) = { Ty b:;v%(c, Q) }

To summarize, for @) to hold after executing a loop:
1. Each formula in vc(while {7} b do ¢, Q) must be valid
2. wip(while {I} b do ¢, @) = I must be valid

Matt Fredrikson Deductive Verification 29/38

Propagating Verification Conditions

while is the only command that introduces new conditions
But other statements might contain loops

Need to define vc for them as well:
> ve(z:=a,Q) =90
> VC(Cl; C2, Q) = Vc(cthp(CQ, Q)) U VC(CQ, Q)
» vc(if b then ¢; else ¢y, Q) = ve(er, Q) Uve(cs, Q)

In short, compound statements collect conditions from constituents

Matt Fredrikson Deductive Verification 30/38

Verification Using wlp

Bringing all of this together, we can verify

{P}c{Q}

for an annotated program ¢

1. Compute P’ = wlp(c, Q)

2. Compute vc(c, Q)

3. Check validity of P — P’

4. Check validity of each F' € vc(c, Q)
If (3) and (4) pass, then {P} ¢ {Q} is valid

If {P} ¢ {Q} is valid, then will (3) and (4) pass?
No. Loop invariants might be too weak!

Matt Fredrikson Deductive Verification 31/38

Let’s verify the example from last lecture:
{true}
ri=x;q :=0;
while y < r do
r=r—y;q:=q+1
{r<ynhz=r+(¢gxy)}

Recall our loop invariant:
{true}
r=x;q :=0;
while y < r do
{z=r+(gxy)}
ri=r—y;q:=q+1
{r<ynz=r+(gxy)}

Matt Fredrikson Deductive Verification 32/38

Define the following shorthand:

> ciri=x {true}
> o020 c1; Ca;
©2:9:= while y < r do
> GiTETTY {z=r+(axy)}
> cp:iqi=q+1 C3;C4
» c5: while y < rdocs;cy {r<ynz=r+(gxy)}

We need to show these are valid:
true = wip(cy;cose5, 7 <yAx=r+(qxy))
ve(erseoses,r <yAx=r+(qgxy))

We’'ll start with true = wlp(cy;ca;cs,7 <yAx=r+(q X y))

Matt Fredrikson Deductive Verification 33/38

true = wip(c1; 55,7 <yAz =7+ (g Xy))

Letsuse Q:r<yAz=r+(gxy),l:z=r+(q¢xy)

We begin by applying the rule for composition twice:
wlp(ci; e2; 5, Q) = wip(cr, wip(ca, wip(cs, Q)))

This brings us to wlp(cs, Q):
wip(while y < rdo {1} c3;¢4,Q) =1

We also have verification conditions:
ve(es, Q) ={IAN=b= Q,I Nb= wlp(cs;cq,Q)}

Matt Fredrikson Deductive Verification 34/38

Let’s work out the VC I A b = wlp(cs; cq, Q)

We have that:
wlp(r:=r—y;q:=q+1,Q) =wlp(r:=r —y,wlp(g:=¢+1,Q))

=wlp(r =7 —y,Q[q/q +1])
=wlp(r:=r—y,r<yAz=r+((g+1) xy))
=(@=(r-y +(¢g+1)xy))

So, we have:
ve(es, Q) ={IN-b=QINb= (z=(r—y)+((¢+1) xy))}

Matt Fredrikson Deductive Verification 35/38

Recalling that wip(cs, @) = I, we now need wlp(ca, I):

Wip(q =0,z =7+ (g x y)) = (& =1 +(0x y)

Moving on, our final step is wip(cy, z = r):

wlp(r =z, z=71)=(z =x)

Popping back to our top-level procedure:
1. Compute P’ = wlp(c, Q)
P =(z=x)
2. Compute vc(e, Q)
ve(e,Q)={IN-b=Q,INb= (z=(r—y)+((¢g+1) xy))}
3. Check validity of P — P’
Clearly, true = (x = x)
4. Check validity of each F' € vc(c, Q)

Matt Fredrikson Deductive Verification 36/38

Check validity of each F' € vc(c, Q):

Jrz=r+@xyA-(y<r)=r<yAz=r+(gxy)
VC(C’Q)‘{ z=r+(gxy) Ay<r=(z=(—y)+(qg+1)xy)) }

The first is true because —~(y <r) & r <y
The second we get by algebraic calculation

Therefore, the triple is valid
{true}
ri=x;q :=0;
while y < r do
r=r—y;q:=q+1
{r<ynz=r+(gxvy)}

37/38

Matt Fredrikson Deductive Verification

Next Lecture

v

We’ll add procedures to the language

Start on total correctness

v

Mid-term 1 week from now

v

v

We’'ll post a study guide by the weekend

v

Assignment 3 due date pushed to October 25

Matt Fredrikson Deductive Verification 38/38

