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Partial Correctness (Review)

Partial correctness refers to a program’s terminating behavior

We specify partial correctness using Hoare triples

{P} c{Q}

» cis aprogram

v

P and @ are assertions in a first-order theory

v

Free variables in P, () can range over program variables

v

P is the precondition and ( is the postcondition
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Hoare Triples: Meaning (Review)

The meaning of {P} ¢ {Q} is as follows:

» If we begin executing c in an environment satisfying P,
» and if ¢ terminates,

» then its final environment will satisfy @

The specification says nothing about:

» Executions that do not terminate (i.e., diverge)

» Executions that do not begin in P

Notice: {P} ¢ {Q} is a predicate

Goal of verification: prove that it holds, i.e., is a valid Hoare triple
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Hoare Triples: Total Correctness (Review)

Partial correctness doesn’t require termination
Total correctness is a stronger statement, written:
[P] c[Q]
The meaning of [P] ¢ [Q)] is:
» If we begin executing c in an environment satisfying P,

» then c terminates,

» and its final environment will satisfy @

Total correctness introduces another obligation for verification

4/38
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Hoare Logic Inference Rules

Asgn

Skip 1P} skip {P} {Qla/z]} z = a{Q}

P=P F{P}c{Q} Q=Q
{P}c{Q}

{Pyci {P'}  {P}ec{Q}
{P} c1;02{Q}

¢ PAb e {Q)  {PA-b) e {Q)
{P} if b then ¢, else c,{Q}

Conseq

Seq

{PAbYc{P}

Whil
"® TPy while b do ¢ {P A b}
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Soundness of Hoare Logic

The proof rules we’ve just covered are sound for partial correctness:

If H{P}c{Q}, then E{P} c{Q}
If we can derive a triple using the rules, then it is valid
To prove this, we use the operational semantics
Show equivalence between proof rules and reductions

Need to use induction on derivations
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Completeness of Hoare Logic

Completness of Hoare logic is stated as:

If k£ {P} ¢ {Q}, then F {P} ¢ {Q}
If {P} ¢ {Q} is valid, then we can derive it using the rules
Is this true?

For strengthening, we need to prove statements of the form:
P=qQ

This requires proving a universal implication in Peano arithmetic

Recall that Tp,4 is undecidable!
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Relative Completeness of Hoare Logic

So, we know there can’t be a proof system that derives all valid
triples

The Hoare logic has relative completeness
If we assume an oracle for deciding P = @
Then we can derive any valid Hoare triple for Imp

However, for more complex languages, this isn’t always the case
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Mechanics of Verification

Working in Hoare logic is nicer than working directly with semantics
But still isn’t “fun”, and not quite trivial

» How to decompose the program?
» When to apply the rule of consequence, and how?

» Lots of tedious details, e.g., discharging
(=r+(gxy)hy<r)=z=(r—y)+((g+1) xy)
» Even for short programs, the proofs can be long (and boring)

Now we’ll take steps towards mechanizing this process
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Basic Approach

Given a program ¢ annotated with a specification:

{P} c{Q}
To prove the triple, we’ll generate a set of verification conditions

» VC’s are a function of the code, specification, and loop invariants
» Each VC is a first-order formula in some theory
» If all VC’s are valid, then so is { P} ¢ {Q}
Program verifiers consist of two main components:
1. Verification condition generator producing T-formulas

2. Decision procedure for first-order theory T'

Intuitively, VC gen. “compiles” a verification problem into a math
problem
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This is the approach taken by tools like Dafny
As you know, it doesn’t prove things automatically

You often need to provide:
1. Loop invariants
Termination metrics
Extra assertions
Different (but possibly equivalent) contracts
Moral support and encouragement

ok~ owbd

These are all the subject of active research (except 5)
» (1), (2) addressed by static analysis, but unsolvable in general
» (3), (4) are improved by more powerful decision procedures
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VC Generation

Given an assertion @ and program ¢, we’ll describe a function:
» That is a predicate transformer: produces another assertion
» Assertion for the corresponding precondition P for ¢
» P guaranteed to be the weakest such assertion

This is the weakest precondition predicate transformer wp(c, Q)

The weakest precondition satisfies the following conditions:
1. The triple [wp(c, Q)] ¢ [Q] is valid
2. For any P where [P] ¢ [Q] is valid, P = wp(c, Q)

For partial correctness, use weakest liberal precondition wip(c, Q)
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“Backwards” VC Generation

Intuitively, wlp allows us to:
1. Start with a desired postcondition

2. Work backwards to a precondition that must hold
3. Verify that P = wlp(c, Q)
4. Or just use wlp(c, Q) to write a contract

There is also a “forward” transformer: strongest postcondition
1. Written sp(c, P)
2. The triple [P] ¢ [sp(c, P)] is valid
3. For any @ where [P] ¢ [Q] is valid, sp(¢, P) = @

What does sp(c, true) characterize?

For the rest of today (and most of the semester), we'll focus on wlp
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Language Extension: Arrays

But first, let’s add arrays to Imp
a € AEXp 1= neZ|xeVar|al+ax|a X ay|xal

b € BExp

true|fa|se|a1=a2|a1 §a2|—\b|b1/\b2

c € Com skip |z :=a | c1;ca | z[a1] == aq

| if b then ¢; else ¢,
| while b do ¢

Allow array lookup, assignment to array indices
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Array Semantics

The environment can map to array values (i.e., from T'4)

(a,0) I n o(x) is an array

ALookup (zfa], o) I o(z)[n]

(a1, 0) I ny (ag, o) I no

AWrite (zfay] := as,0) |} oz = o(x)(ng <no)]

Assignment produces a new array using the array update term

Matt Fredrikson Deductive Verification 15/38



Defining wip(c, Q): Assignment

We’ll use Hoare triples to define wlp
Recall the rule for assignment:

Asgn

{Qla/a]} = := a{Q}

The corresponding transformer is:

wlp(z = a, Q) = Qa/x]
This will produce valid preconditions. Is it weak enough?

If P % Q[a/x], then {P} ¢ {Q} won’t hold
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Whatiswlp(y :=z+1,(Vzx <z—oz<y)—z+1<y)?

Applying the definition of wlp for assignment,
VMrx<z—oaz<z+l)—oz+l<z+l

Is this right?

No. When we substituted y with z + 1 in
Vex<z—oxz<y)
the variable x was captured

Recall: zisboundinVz.z <a —x <y

Outside the scope of this V, we’re referring to a different
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Capture-avoiding substitution

When performing substitution, we need to be careful about scoping

When we expand out P|a/z], we need to:
» Only substitute free occurrences of x

» Rename bound variables appearing in a to avoid capture
Renaming bound variables is called a-substitution
For a substitution P[F/G], let
Viree = Ufree(F) U free(G)

To expand P[F/G]:

» For each quantified variable x in P such that x € Ve, rename
to a fresh variable to produce P’

» Apply the substitution directly to P’
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Consider the formula:
F: (Vo.p(z,y)) — q(f(y), )

Suppose we want Fly/ f(z),q(f(y), x)/(3z.h(z,y))]

First, we find all the free variables:
free(y) U free(f(z)) Ufree(q(f(y),x)) U free(3x.h(z,y))
}m} Li{w} Ufy} U{z} U{z,y} U{y}

T,y

F has one quantified variable x, which is in this set. So:
F: (V2 p(a',y) = a(f(y), )
Applying the substitution:
(Vo' .p(2’, f(2))) = Fz.h(x,y)
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F' - (Va'p(2',y) — q(f(y), )

Applying the first substitution ¢(f(y), )/ (3x.h(x,y)):
F': (V2' p(2',y)) — Jz.h(z,y)

Now we apply the second substitution: y/ f(z)

We need to rename bound variables that occur in Viee:
F": (V' .p(2',y)) — 32" .h(2',y)

Which brings us to:
F" (V2! p(a/, f(2))) = Fz".h(2', f(z))
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Defining wlp(c, @Q): Array Assignment

Array assignment gives the rule

AsgnArr

{Qlz({ar qag)/x]} xlar] := a2 {Q}

The corresponding transformer is:

wip(z[ai1] := a2, Q) = Qlaar <az)/x]
This is no different than normal assignment

In this case, we’re working with array values rather than integers
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Let’s compute:
wlp(b[i] := 5,b[i] = 5)

Proceeding with the substitution,
wlp(b[i] := 5,b[i] = 5)
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Let’s compute:
wlp(b[n] == z,Vi.1 <i<n— b[i] <bli+1])

Proceeding with the substitution,
wlp(b[n] := ,Vi.1 <i < n — b

=Vi.l <i<n— (b{n<x))[i]

= (bn<z))n— 1] < (b{n a2
AVil <i<n— (bnax))i] < (b{n<azx))fi+1]

=bn—1]<zAVil<i<n-—1-—b[i] <b[i+1]

bli +1])

<
< (b{n<x))i+1]
]
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Defining wip(c, Q): Sequencing

q Lta (P} {P}ea{Q}

Se (P} ere2{Q)

The corresponding transformer is:
Wlp(cl7 C2, Q) = Wlp(clv Wlp(c27 Q))

Compose the transformer, working backwards from c,
The precondition for co becomes the postcondition for ¢y

Note: we don’t need to use consequence to “glue” these together
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Defining wlp(c, @): Conditional

APAV QY {PAb) e (Q)

Py ifbthen o, else &2{Q)

wlp(if b then ¢, else c3, Q) = (b — wlp(c1,Q)) A (b — wlp(c2, Q))

If b holds, then wlp of ¢; branch must hold
Otherwise if —b, then wlp of ¢, branch must hold

Why isn’t the formula a disjunction?
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Defining wip(c, @Q): While Loop

{P Ab} ¢ {P}

Whil
"® (P} while b do ¢ {P A —b)

Recall the equivalence:
while b do ¢ = if b then ¢; while b do ¢ else skip

Let’s apply wlp for if:
wlip(if b then ¢; while b do ¢ else skip, Q)
= (b — wlp(c; while bdo ¢, Q)) A (=b — Q)
= (b — wlp(c,wlp(while bdo ¢, Q))) A (-b — Q)
= (b — wlp(c, wip(if b then c; while b do ¢ else skip,Q))) A (-b — Q)

We haven’t accomplished anything
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Approximate Weakest Precondition

In general, we can’t always compute wlp for loops
Instead, we’ll approximate it with help from annotations

Now we’ll assume loops have the syntax:
while bdo {7} ¢

I is a loop invariant provided by the programmer
The approximate wlp for while will still be a valid precondition

But it may not be the weakest precondition: even if
{P} while b do ¢ {Q}
is valid, it might not be that:
P = wlip(while {I} bdo ¢, Q)
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Approximate wlp: While Loop

Now, suppose we define:
wip(while {I} bdo ¢,Q) =T

A couple of things are missing:
» We haven’t checked that I A —b gives us @

» We don’t know that I is actually a loop invariant

We need to track additional verification conditions: vc(c, @)
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Verification Conditions: While Loop

If we define
wip(while {I} bdo ¢,Q) =1

Then we still need to show that
» I A —b establishes )

» [ is aloop invariant

Defining the set of verification conditions,

vc(while {1} bdo c,Q) = { Ty b:;v%(c, Q) }

To summarize, for @) to hold after executing a loop:
1. Each formula in vc(while {7} b do ¢, Q) must be valid
2. wip(while {I} b do ¢, @) = I must be valid
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Propagating Verification Conditions

while is the only command that introduces new conditions
But other statements might contain loops

Need to define vc for them as well:
> ve(z:=a,Q) =90
> VC(Cl; C2, Q) = Vc(cthp(CQ, Q)) U VC(CQ, Q)
» vc(if b then ¢; else ¢y, Q) = ve(er, Q) Uve(cs, Q)

In short, compound statements collect conditions from constituents
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Verification Using wlp

Bringing all of this together, we can verify

{P}c{Q}

for an annotated program ¢

1. Compute P’ = wlp(c, Q)

2. Compute vc(c, Q)

3. Check validity of P — P’

4. Check validity of each F' € vc(c, Q)
If (3) and (4) pass, then {P} ¢ {Q} is valid

If {P} ¢ {Q} is valid, then will (3) and (4) pass?
No. Loop invariants might be too weak!
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Let’s verify the example from last lecture:
{true}
ri=x;q :=0;
while y < r do
r=r—y;q:=q+1
{r<ynhz=r+(¢gxy)}

Recall our loop invariant:
{true}
r=x;q :=0;
while y < r do
{z=r+(gxy)}
ri=r—y;q:=q+1
{r<ynz=r+(gxy)}
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Define the following shorthand:

> ciri=x {true}
> o020 c1; Ca;
©2:9:= while y < r do
> GiTETTY {z=r+(axy)}
> cp:iqi=q+1 C3;C4
» c5: while y < rdocs;cy {r<ynz=r+(gxy)}

We need to show these are valid:
true = wip(cy;cose5, 7 <yAx=r+(qxy))
ve(erseoses,r <yAx=r+(qgxy))

We’'ll start with true = wlp(cy;ca;cs,7 <yAx=r+(q X y))
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true = wip(c1; 55,7 <yAz =7+ (g Xy))

Letsuse Q:r<yAz=r+(gxy),l:z=r+(q¢xy)

We begin by applying the rule for composition twice:
wlp(ci; e2; 5, Q) = wip(cr, wip(ca, wip(cs, Q)))

This brings us to wlp(cs, Q):
wip(while y < rdo {1} c3;¢4,Q) =1

We also have verification conditions:
ve(es, Q) ={IAN=b= Q,I Nb= wlp(cs;cq,Q)}
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Let’s work out the VC I A b = wlp(cs; cq, Q)

We have that:
wlp(r:=r—y;q:=q+1,Q) =wlp(r:=r —y,wlp(g:=¢+1,Q))

=wlp(r =7 —y,Q[q/q +1])
=wlp(r:=r—y,r<yAz=r+((g+1) xy))
=(@=(r-y +(¢g+1)xy))

So, we have:
ve(es, Q) ={IN-b=QINb= (z=(r—y)+((¢+1) xy))}
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Recalling that wip(cs, @) = I, we now need wlp(ca, I):

Wip(q =0,z =7+ (g x y)) = (& =1 +(0x y)

Moving on, our final step is wip(cy, z = r):

wlp(r =z, z=71)=(z =x)

Popping back to our top-level procedure:
1. Compute P’ = wlp(c, Q)
P =(z=x)
2. Compute vc(e, Q)
ve(e,Q)={IN-b=Q,INb= (z=(r—y)+((¢g+1) xy))}
3. Check validity of P — P’
Clearly, true = (x = x)
4. Check validity of each F' € vc(c, Q)
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Check validity of each F' € vc(c, Q):

Jrz=r+@xyA-(y<r)=r<yAz=r+(gxy)
VC(C’Q)‘{ z=r+(gxy) Ay<r=(z=(—y)+(qg+1)xy)) }

The first is true because —~(y <r) & r <y
The second we get by algebraic calculation

Therefore, the triple is valid
{true}
ri=x;q :=0;
while y < r do
r=r—y;q:=q+1
{r<ynz=r+(gxvy)}
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Next Lecture

v

We’ll add procedures to the language

Start on total correctness

v

Mid-term 1 week from now

v

v

We’'ll post a study guide by the weekend

v

Assignment 3 due date pushed to October 25
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