
15-414 Lecture 11 1

Instructor: Matt Fredrikson TA: Ryan Wagner

Induction and Semantics in Dafny

Encoding the syntax of Imp

Recall the abstract syntax of Imp:

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2
b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c ∈ Com ::= skip | x := a | c1; c2

| if b then c1 else c2
| while b do c

We can encode this in Dafny using inductive datatypes. Intuitively, values of inductive datatypes
can be seen as finite trees, where nodes correspond to constructors with zero or more arguments.
Constructors can take parameters, and when the type of a parameter is the inductive datatype
itself, the corresponding node is internal.

We begin by declaring types for variables and values, which we will represent using strings and
integers, respectively. The remaining definition defines inductive datatypes for AExp, BExp, and
Com.

1 type Var = string

2 type Val = int

3

4 datatype AExp = N(Val)

5 | V(Var)

6 | Plus(AExp , AExp)

7 datatype BExp = B(bool)

8 | Less(AExp , AExp)

9 | Eq(AExp , AExp)

10 | Not(BExp)

11 | And(BExp)

12 datatype Com = Skip

13 | Assign(Var , AExp)

14 | Seq(Com , Com)

15 | If(BExp , Com , Com)

16 | While(BExp , Com)

To see how we might use these types, consider the expression (5 + x) < y:

1 var b := Less(Plus(N(5), V("x")), V("y"));

1

15-414 Lecture 11 2

To encode a simple program:

while (5 + x) < y do x := x+ 1

We would construct the type:

1 var b := Less(Plus(N(5), V("x")), V("y"));

2 var c := While(b, Assign("x", Plus(V("x"), N(1))));

Inference Rules

Now let’s implement the big-step semantics. Recall that our semantics defined an environment as a
mapping from variables to their values, and a configuration as a pair consisting of a command and
an environment. Additionally, we discussed derivations, which we can model as a finite sequence
of configurations.

1 type Env = map <Var , Val >

2 type Config = (Com , Env)

3 type Derivation = seq <Config >

Let’s start implementing the inference rules themselves by covering the rules for the expressions.

Const
〈n, σ〉 ⇓a n

Var
〈x, σ〉 ⇓a σ(x)

Add
〈a1, σ〉 ⇓a n1 〈a2, σ〉 ⇓a n2
〈a1 + a2, σ〉 ⇓a n1 +Z n2

We know that evaluating expressions always terminates, so we can model these rules with a single
function. We’ll use a match expression to split into rules based on the abstract syntax of the
expression passed in.

1 function bigstep_aexp(a: AExp , s: Env): Val

2 {

3 match(a) {

4 case N(n) => n

5 case V(x) => if x in s then s[x] else 0

6 case Plus(a0, a1) => bigstep_aexp(a0, s) + bigstep_aexp(a1, s)

7 }

8 }

The only aspect of this function that may be unexpected is the rule for variable evaluation. Previ-
ously, we’ve assumed that the environment will have a mapping for every possible variable, but we
made no assumptions about what the mapping could be. Here we first check to see that the refer-
enced variable is in the environment, and if it isn’t, the function returns zero. This introduces an
additional assumption that we haven’t made before, which is that all variables start off initialized
to zero. Alternatively, we could have written the function with a precondition that requires any
environment passed in to contain all mappings for all variables mentioned in the expression:

2

15-414 Lecture 11 3

1 function bigstep_aexp(a: AExp , s: Env): Val

2 requires forall v: Var :: v in free_vars(a) ==> v in s

3 {

4 match(a) {

5 case N(n) => n

6 case V(x) => if x in s then s[x] else 0

7 case Plus(a0, a1) => bigstep_aexp(a0, s) + bigstep_aexp(a1, s)

8 }

9 }

We would then need to define a function free vars, and whenever we called bigstep aexp, we’d
need to make sure that this precondition were met. To simplify things today, we’ll use the former
approach, and assume everything starts out initialized to zero.

Moving on to the rules for BExp, we have the following rules.

True
〈true, σ〉 ⇓b true

False
〈false, σ〉 ⇓b false

Eq
〈a1, σ〉 ⇓a n1 〈a2, σ〉 ⇓a n2
〈a1 = a2, σ〉 ⇓a n1 =Z n2

Less
〈a1, σ〉 ⇓a n1 〈a2, σ〉 ⇓a n2
〈a1 < a2, σ〉 ⇓a n1 <Z n2

NotTrue
〈b, σ〉 ⇓b true
〈¬b, σ〉 ⇓b false

NotFalse
〈b, σ〉 ⇓b false
〈¬b, σ〉 ⇓b true

And
〈b1, σ〉 ⇓b v1 〈b2, σ〉 ⇓b v2
〈b1 ∧ b2, σ〉 ⇓b v1 ∧ v2

Using the same reasoning we did for the arithmetic expressions, we arrive at the following function.
There are no surprises here, we use the same approach as before.

1 function bigstep_bexp(b: BExp , s: Env): bool

2 {

3 match(b) {

4 case B(v) => v

5 case Less(a0, a1) => bigstep_aexp(a0, s) < bigstep_aexp(a1, s)

6 case Eq(a0, a1) => bigstep_aexp(a0, s) == bigstep_aexp(a1, s)

7 case Not(op) => !bigstep_bexp(op, s)

8 case And(b0, b1) => bigstep_bexp(b0, s) && bigstep_bexp(b1, s)

9 }

10 }

3

15-414 Lecture 11 4

Recall the rules for big-step evaluation of commands:

Asgn
〈a, σ〉 ⇓a n

〈x := a, σ〉 ⇓ σ[x 7→ n]
Skip

〈skip, σ〉 ⇓ σ
Seq

〈c1, σ1〉 ⇓ σ′1 〈c2, σ′1〉 ⇓ σ2
〈c1; c2, σ1〉 ⇓ σ2

IfTrue
〈b, σ〉 ⇓b true 〈c1, σ〉 ⇓ σ2
〈if b then c1 else c2, σ〉 ⇓ σ2

IfFalse
〈b, σ〉 ⇓b false 〈c2, σ〉 ⇓ σ2
〈if b then c1 else c2, σ〉 ⇓ σ2

WhileFalse
〈b, σ〉 ⇓b false

〈while b do c, σ〉 ⇓ σ

WhileTrue
〈b, σ〉 ⇓b true 〈c, σ〉 ⇓ σ′ 〈while b do c, σ′〉 ⇓ σ′′

〈while b do c, σ〉 ⇓ σ′′

If we were to implement these in the same way that we did for expressions, we would run into
trouble with termination. Unlike expressions, commands need not terminate, so the function that
we wrote would not be defined on certain inputs. Instead, we’ll define the semantics for commands
using a predicate, which you’ll recall is just a Boolean-valued function. The predicate will take as
arguments a command c, environments s and s’, and a natural number k. We want the predicate
to return true whenever evaluating c starting in s reduces to s’ with a derivation containing at
most k steps.

1 predicate bigstep(c: Com , s: Env , s’: Env , k: nat)

2 decreases c,k

3 {

4 match(c) {

5 case Skip =>

6 k == 1 && s == s’

7 case Assign(v, a) =>

8 k == 1 && s[v := bigstep_aexp(a, s)] == s’

9 case Seq(c1, c2) =>

10 exists k’: nat , s’’: Env ::

11 0 < k’ < k &&

12 bigstep(c1 , s, s’’, k’) &&

13 bigstep(c2 , s’’, s’, k-k’)

14 case If(b, c1, c2) =>

15 if(bigstep_bexp(b, s)) then

16 bigstep(c1 , s, s’, k)

17 else

18 bigstep(c2 , s, s’, k)

19 case While(b, c’) =>

20 if(bigstep_bexp(b, s)) then

21 exists s’’: Env , k’: nat :: 0 < k’ < k &&

22 bigstep(c’, s, s’’, k’) &&

23 bigstep(c, s’’, s’, k-k’)

24 else

25 k == 1 && s == s’

26 }

27 }

Unlike our functions expression semantics, this function does not have a case for each rule. Instead,
it has a case for each syntactic form of Com, and composes recursive calls in a way that faithfully

4

15-414 Lecture 11 5

accounts for each rule. Notice that our termination metric refers to two variables, c and k. This
is necessary because some cases only reduce the size of the expression (e.g., if), and some only
reduce the size of the derivation (e.g., while) when they recursively call the semantics.

Using the semantics

Proving facts about specific programs

Now that we have an implementation of the semantics, we can get started applying them to reason
about Imp programs. First we’ll take a look at proving things about specific programs given as Com
types.

Suppose that we’re given the program:

while 0 < x do x := x− 1

and we’d like to show that staring out in an environment σ = [x 7→ 2] leads to a final environment
σ′ = [x 7→ 0]. Although this might be obvious to us by simple inspection of the program, to prove
that this is the case, we’ll need to make use of the semantics. Formally, we’d like to show that,

〈while 0 < x do x := x− 1, [x 7→ 2]〉 ⇓ [x 7→ 0]

Before seeing how to do this using Dafny, let’s review how to do it “on paper” first. Recall that we
can prove specific derivations by finding a proof tree that applies the relevant inference rules for
our judgement. In this case, we know that the last rule applied in such a tree will be WhileTrue,
because the command is a while loop and in the environment σ = [x 7→ 2], 〈0 < x, σ〉 ⇓b true. To
the root of the proof tree will look as follows:

WhileTrue
T1 T2 T3

〈while 0 < x do x := x− 1, [x 7→ 2]〉 ⇓ [x 7→ 0]

By inspecting the rule WhileTrue, we know that T1 will need to end with the conclusion 〈0 <
x, [x 7→ 2]〉 ⇓b true, T2 will need to end with the conclusion 〈x := x − 1, [x 7→ 2]〉 ⇓ σ′, and T3
will need to end with 〈while 0 < x do x := x − 1, σ′〉 ⇓ [x 7→ 0]. To finish the proof, we need to
construct T1, T2, T3.

We now need to derive the tree T1, which is an inequality comparison. We see that:

Less

Const
〈0, [x 7→ 2]〉 ⇓a 0

Var
〈x, [x 7→ 2]〉 ⇓a 2

〈0 < x, [x 7→ 2]〉 ⇓b true

Moving on to T2, which is an assignment, we need to apply Asgn. By inspecting the command and
inital environment, we know that σ′, the final environment, must be equal to [x 7→ 1]. We justify
this as follows:

Asgn

Plus

Var
〈x, [x 7→ 2]〉 ⇓a 2

Const
〈−1, [x 7→ 2]〉 ⇓a −1

〈x− 1, [x 7→ 2]〉 ⇓a 1

〈x := x− 1, [x 7→ 2]〉 ⇓ [x 7→ 1]

5

15-414 Lecture 11 6

Moving on to T3, we now know that σ′ = [x 7→ 1]. Again, we’re looking at a loop, and we know
that 〈0 < x, [x 7→ 1]〉 ⇓b true, so T3 will be rooted by WhileTrue.

WhileTrue
T4 T5 T6

〈while 0 < x do x := x− 1, [x 7→ 1]〉 ⇓ [x 7→ 0]

We’re going to re-use much of our work from T1, T2, and T3, keeping in mind that the initial
environment has changed to [x 7→ 1]. Starting with T4:

Less

Const
〈0, [x 7→ 1]〉 ⇓a 0

Var
〈x, [x 7→ 1]〉 ⇓a 1

〈0 < x, [x 7→ 1]〉 ⇓b true

Continuing with T5, we find that the next environment is [x 7→ 0]:

Asgn

Plus

Var
〈x, [x 7→ 1]〉 ⇓a 1

Const
〈−1, [x 7→ 1]〉 ⇓a −1

〈x− 1, [x 7→ 1]〉 ⇓a 0

〈x := x− 1, [x 7→ 1]〉 ⇓ [x 7→ 0]

Now that we get to T6, we have to re-consider the while loop. We won’t apply WhileTrue this
time, because the initial environment maps x to 0. Now we can apply WhileFalse:

Asgn

Less

Const
〈0, [x 7→ 0]〉 ⇓a 0

Var
〈0, [x 7→ 0]〉 ⇓a 0

〈0 < x, [x 7→ 0]〉 ⇓b false
〈while 0 < x do x := x− 1, [x 7→ 0]〉 ⇓ [x 7→ 0]

This completes the proof, because there are no further assumptions that need to be discharged.

Now we’ll see how to do this in Dafny. We prove things about functions and predicates in Dafny
using lemmas. You can think of lemmas as methods that are not meant to be compiled, so their
utility draws from the specifications that we give them. Dafny lemmas can be later invoked to
prove to the verifier that a particular property holds for some objects. For the present example,
recall that we want to show that,

〈while 0 < x do x := x− 1, [x 7→ 2]〉 ⇓ [x 7→ 0]

In our implementation, bigstep represents the ⇓ relation, and we represent environments as maps,
so [x 7→ 2] is represented by map["x" := 2] and [x 7→ 0] by map["x" := 0]. The program that
we’re reasoning about is a value of type Com, which we can write as:

1 While(Less(N(0), V("x")), Assign("x", Plus(V("x"), N(-1))))

Additionally, from our earlier proof, we know that this program evaluates on its initial environment
in three steps (including the “exit” from the loop). Putting this together, our lemma will start out
with:

6

15-414 Lecture 11 7

1 lemma loop_to_zero ()

2 ensures bigstep(While(Less(N(0), V("x")), Assign("x", Plus(V("x"), N(-1)))),

3 map["x" := 2],

4 map["x" := 0],

5 3)

Notice that we use the postcondition of the lemma, specified using the ensures syntax, to state the
property that we’re trying to prove. If we had any assumptions or premises to work with, i.e., if
we were proving a statement of the form F → G, then we could have used a requires annotation
to specify this in our lemma.

We’ll now write the proof of this property in the body of the lemma, much as we’d write a method.
But we’ll start out by defining some variables as shorthand for the main components of our property:

1 var c := While(Less(N(0), V("x")), Assign("x", Plus(V("x"), N(-1))));

2 var b := Less(N(0), V("x"));

3 var body := Assign("x", Plus(V("x"), N(-1)));

4 var a := Plus(V("x"), N(-1));

5 var s := map["x" := 2];

6 var s’ := map["x" := 0];

We’re now ready to begin proving the lemma. To prove this property, we need to show that the
rules, which we encoded in the predicate bigstep, give us a way to reach our desired conclusion.
Our lemma has no requires annotations, so we don’t have any premises to start out with other
than true. This means we we need to show that:

true → (〈while 0 < x do x := x− 1, [x 7→ 2]〉 ⇓ [x 7→ 0])

To do this, we’ll use a calculational proof. You’ve seen these before, but probably not named as
such: starting from an initial premise (in our case, true), we’ll provide a chain of implications that
leads to the desired conclusion. You’ve probably written proofs of the form:

P → F1
...
→ Q

Dafny has a special syntax for calculational proofs, which looks like the following:

1 calc ==> {

2 P;

3 { justification }

4 F1;

5 { justification }

6 ...

7 { justification }

8 Q;

9 }

The symbol ==> tells Dafny that we’re going to show a sequence of right-implications. The justifi-
cations are optional when Dafny is able to prove that each step follows from its predecessor, but if
this is not the case, then you may need to fill these in with appropriate assert statements or call
existing lemmas to help Dafny prove your claim.

Calculational proofs in Dafny are somewhat generic, so we could have also used the symbol <==,
which would reverse the chain using left-implications to work from the conclusion back to the

7

15-414 Lecture 11 8

premise:

1 calc <== {

2 Q

3 { justification }

4 Fn

5 { justification }

6 ...

7 { justification }

8 P

9 }

When we worked out the proof for the current example by hand, we actually proceeded backwards
from the conclusion to applications of axioms. We’ll follow that example when we work this in
Dafny, making use of calc <== to do so.

Starting with the conclusion bigstep(c, s, s’, 3), which corresponds to the root of our proof
tree from before, we know that 〈x, [x 7→ 2]〉 ⇓ 2, so the head of the loop (0 < x) evaluates to true.
We also know that to reach this conclusion, we’ll need to look at the part of the semantics that
deals with while loops:

1 case While(b, c’) =>

2 if(bigstep_bexp(b, s)) then

3 exists s’’: Env , k’: nat :: 0 < k’ < k &&

4 bigstep(c’, s, s’’, k’) &&

5 bigstep(c, s’’, s’, k-k’)

6 else

7 k == 1 && s == s’

In particular, the branch of the if expression corresponding to the positive evaluation of the guard
b. This says that to show big-step evaluation from s to s’ in 3 steps, we need to show the existence
of an intermediate state s’’ and natural number k’ that takes the body from s to s’’ in k’ steps,
and then takes the rest of the loop from s’’ to s’ in k-k’ steps. Because the body subtracts 1
from x, and x takes the value 2 in s, we know that the intermediate state must be s["x" := 1].
Furthermore, the rule for assignment consumes 1 step, so we know that k’ must be 1. This lets us
write:

1 calc <== {

2 bigstep(c, s, s’, 3);

3 // def. of while

4 bigstep_bexp(b, s) &&

5 bigstep(body , s, s["x" := 1], 1) &&

6 bigstep(c, s["x" := 1], s’, 2);

7 }

Although Dafny doesn’t complain about any of the steps in our calculation, we’re not done yet,
as Dafny still doesn’t agree that the lemma’s postcondition is satisfied. This means that we need
to justify the last line of our calculation. In particular, we need to show that evaluating the loop
body starting in s leads to a new state where x takes the value 1, and why it’s safe to assume that
executing c in that new state leads to s’ in 2 steps. We get the former from the semantics of the
plus operator (which, recall, is implemented in bigstep aexp), and the latter we’ll need to justify
in subsequent steps:

8

15-414 Lecture 11 9

1 calc <== {

2 bigstep(c, s, s’, 3);

3 // def. of while

4 bigstep_bexp(b, s) &&

5 bigstep(body , s, s["x" := 1], 1) &&

6 bigstep(c, s["x" := 1], s’, 2);

7 // def. of plus , def. of while

8 bigstep_aexp(a, s) == 1 && bigstep(c, s["x" := 1], s’, 2);

9 }

Again, we need to prove the last line, as Dafny cannot do it on its own. We’ll begin with the
second conjunct, as it is the more difficult of the two. Using reasoning similar to what we did for
the second line, we can write:

1 calc <== {

2 bigstep(c, s, s’, 3);

3 // def. of while

4 bigstep_bexp(b, s) &&

5 bigstep(body , s, s["x" := 1], 1) &&

6 bigstep(c, s["x" := 1], s’, 2);

7 // def. of plus , def. of while

8 bigstep_aexp(a, s) == 1 && bigstep(c, s["x" := 1], s’, 2);

9 // def. of while

10 bigstep_bexp(b, s["x" := 1]) &&

11 bigstep(body , s["x" := 1], s’, 1) &&

12 bigstep(c, s’, s’, 1);

13 }

Again, we used the true case of the definition of semantics for while to derive this step. We
know that executing the body x := x − 1 in the environment [x 7→ 1] leads to [x 7→ 0], which is
the environment s’ mentioned in our goal. Notice that Dafny accepts this line in the calculational
proof without asking for justification of the conjunct bigstep aexp(a, s) == 1. This means that
we don’t need to prove it—Dafny can do so on its own, in contrast to our by-hand proof, where
completeness required a worked-out justification.

Continuing just as before, Dafny isn’t able to prove that evaluating the body results in the post-
environment s’. Previously, we dealt with this by telling Dafny that bigstep aexp(a, s) == 1.
In this case, we point out that bigstep aexp(a, s["x" := 1]) == 0:

9

15-414 Lecture 11 10

1 calc <== {

2 bigstep(c, s, s’, 3);

3 // def. of while

4 bigstep_bexp(b, s) &&

5 bigstep(body , s, s["x" := 1], 1) &&

6 bigstep(c, s["x" := 1], s’, 2);

7 { assert bigstep_aexp(a, s) == 1; }

8 // def. of plus , def. of while

9 bigstep_aexp(a, s) == 1 && bigstep(c, s["x" := 1], s’, 2);

10 // def. of while

11 bigstep_bexp(b, s["x" := 1]) &&

12 bigstep(body , s["x" := 1], s’, 1) &&

13 bigstep(c, s’, s’, 1);

14 // def. of assign , seq

15 bigstep_aexp(a, s["x" := 1]) == 0;

16 }

At this point, it seems like we’ve given Dafny everything it needs to know, but it still thinks we’re not
done, as it tells us that the lemma postcondition might not hold. Let c = while 0 < x do x := x−1.
Looking at the body of the lemma, we’ve just shown that:

〈x− 1, [x 7→ 1]〉 ⇓a 0
→ 〈0 < x, [x 7→ 1]〉 ⇓b true ∧ 〈x := x− 1, [x 7→ 1]〉 ⇓ [x 7→ 0] ∧ 〈c, [x 7→ 0]〉 ⇓a [x 7→ 0]
→ 〈c, [x 7→ 1]〉 ⇓ [x 7→ 0]
→ 〈0 < x, [x 7→ 2]〉 ⇓b true ∧ 〈x := x− 1, [x 7→ 2]〉 ⇓ [x 7→ 1] ∧ 〈c, [x 7→ 1]〉 ⇓a [x 7→ 0]
→ 〈c, [x 7→ 2]〉 ⇓ [x 7→ 0]

The conclusion of this calculation corresponds to the postcondition of our lemma. However, Dafny
can only use it to conclude that the postcondition holds if it believes that the premise is true. We
can point this out by adding a corresponding assertion after the calculation:

1 calc <== {

2 bigstep(c, s, s’, 3);

3 // def. of while

4 bigstep_bexp(b, s) &&

5 bigstep(body , s, s["x" := 1], 1) &&

6 bigstep(c, s["x" := 1], s’, 2);

7 { assert bigstep_aexp(a, s) == 1; }

8 // def. of plus , def. of while

9 bigstep_aexp(a, s) == 1 && bigstep(c, s["x" := 1], s’, 2);

10 // def. of while

11 bigstep_bexp(b, s["x" := 1]) &&

12 bigstep(body , s["x" := 1], s’, 1) &&

13 bigstep(c, s’, s’, 1);

14 // def. of assign , seq

15 bigstep_aexp(a, s["x" := 1]) == 0;

16 }

17 assert bigstep_aexp(a, s["x" := 1]) == 0;

Alternatively, we could add another line to the calculation that Dafny will certainly believe to be
true, i.e., true. This should force it to attempt a proof that the first “real” line of the calculation
is valid. Putting all of this together, the full lemma becomes:

10

15-414 Lecture 11 11

1 lemma loop_to_zero ()

2 ensures bigstep(While(Less(N(0), V("x")), Assign("x", Plus(V("x"), N(-1)))),

3 map["x" := 2],

4 map["x" := 0],

5 3)

6 {

7 var c := While(Less(N(0), V("x")), Assign("x", Plus(V("x"), N(-1))));

8 var b := Less(N(0), V("x"));

9 var body := Assign("x", Plus(V("x"), N(-1)));

10 var a := Plus(V("x"), N(-1));

11 var s := map["x" := 2];

12 var s’ := map["x" := 0];

13

14 calc <== {

15 bigstep(c, s, s’, 3);

16 // def. of while

17 bigstep_bexp(b, s) &&

18 bigstep(body , s, s["x" := 1], 1) &&

19 bigstep(c, s["x" := 1], s’, 2);

20 { assert bigstep_aexp(a, s) == 1; }

21 // def. of plus , def. of while

22 bigstep_aexp(a, s) == 1 && bigstep(c, s["x" := 1], s’, 2);

23 // def. of while

24 bigstep_bexp(b, s["x" := 1]) &&

25 bigstep(body , s["x" := 1], s’, 1) &&

26 bigstep(c, s’, s’, 1);

27 // def. of assign , seq

28 bigstep_aexp(a, s["x" := 1]) == 0;

29 true;

30 }

31 }

Proving semantic properties

Now let’s return to the fact that the big-step semantics for Imp are deterministic, which we discussed
in lecture. Recall that we proved the property:

∀σ, σ1, σ2, c.(〈c, σ〉 ⇓ σ1 ∧ 〈c, σ〉 ⇓ σ2)→ σ1 = σ2

In other words, for a given command, if we begin evaluating in any environment, then the environ-
ment we end with (if any) is unique. We proved this by induction on derivations, because induction
on syntax is not well-founded. To prove this using our Dafny semantics, we’ll begin by writing the
lemma:

1 lemma bigstep_determ(c: Com , s0: Env , s1: Env , s1 ’: Env , k1: nat , k2: nat)

2 requires bigstep(c, s0, s1, k1)

3 requires bigstep(c, s0, s1’, k2)

4 ensures s1 == s1 ’

5 ensures k1 == k2

There are several differences between this lemma from the previous one. First of all, bigstep determ

takes arguments. In particular, a subset of its arguments correspond to the universally-quantified
variables σ, σ1, σ2, and c from the statement we’re trying to prove. When lemmas take arguments

11

15-414 Lecture 11 12

that are mentioned in their postconditions, they have to prove that the postcondition holds for
whatever values are passed in as long as they satisfy the lemma’s preconditions, which is like mak-
ing a universal statement. Second, bigstep determ has two requires annotations, which together
correspond to the antecedent of our proof goal.

The last two arguments to bigstep determ correspond to the length of the derivations that we
assume to exist. As we will see, including these as arguments gives us a well-founded induction
later on. Alternatively, we could have defined a predicate:

1 predicate bigstep_deriv(c: Com , d: Derivation)

We could define bigstep deriv to return true whenever d is a valid derivation of c under the
big-step semantics, i.e.,

1 d[0].0 == c &&

2 forall i :: 0 <= i < |d|-1 ==> bigstep(d[i].0, d[i].1, d[i+1].1, |d|-i)

We might then have written the lemma:

1 lemma bigstep_determ(c: Com , d: Derivation , d’: Derivation)

2 requires 0 < |d| && 0 < |d’|

3 requires c == d[0].0 && c == d ’[0].0

4 requires bigstep_deriv(c, d)

5 requires bigstep_deriv(c, d’)

6 ensures d[|d|-1].1 == d’[|d’| -1].1

7 ensures |d| == |d’|

However, to avoid introducing new predicates and functions, we’ll continue with the proof using
our existing definitions.

We’ll proceed by induction, using a match on c to guide our coverage of the possible derivations.
Starting with the base case corresponding to skip:

1 match(c) {

2 case Skip =>

3 assert s0 == s1 == s1 ’;

Moving to assignment, we add the case:

1 case Assign(v, a) =>

2 assert s0[v := bigstep_aexp(a, s0)] == s1 == s1 ’;

Notice that Dafny accepts this assertion. In lecture, we needed to prove that evaluation of expres-
sions is deterministic. Dafny can deduce this automatically, which you can check by writing the
lemma that verifies without assistance:

1 lemma aexp_determ(a: AExp , s: Env , n1: Val , n2: Val)

2 requires bigstep_aexp(a, s) == n1

3 requires bigstep_aexp(a, s) == n2

4 ensures n1 == n2

5 {}

The case for Seq is a bit more involved. Because we can assume that 〈c1; c2, σ0〉 ⇓ σ1, there must

12

15-414 Lecture 11 13

be a derivation that looks like:

Seq

T1

〈c1, σ0〉 ⇓ σ′0

T2

〈c2, σ′0〉 ⇓ σ1
〈c1; c2, σ0〉 ⇓ σ1

Similarly for the second evaluation:

Seq

T3

〈c1, σ0〉 ⇓ σ′′0

T4

〈c2, σ′′0〉 ⇓ σ′1
〈c1; c2, σ0〉 ⇓ σ′1

We can apply the inductive hypothesis on T1, T2, T3, and T4 to conclude that σ′0 = σ′′0 and thus
σ1 = σ′1. To write this in Dafny, we say the following:

1 case Seq(c1, c2) =>

2 var s0 ’, k1 ’ :| 0 < k1 ’ < k1 &&

3 bigstep(c1 , s0 , s0 ’, k1 ’) &&

4 bigstep(c2 , s0 ’, s1 , k1 -k1 ’);

5 var s0 ’’, k2 ’ :| 0 < k2 ’ < k2 &&

6 bigstep(c1 , s0 , s0 ’’, k2 ’) &&

7 bigstep(c2 , s0 ’’, s1 ’, k2 -k2 ’);

8 bigstep_determ(c1, s0, s0’, s0’’, k1’, k2 ’);

9 assert s0’ == s0 ’’;

10 bigstep_determ(c2, s0’, s1, s1’, k1-k1’, k2-k2 ’);

11 assert s1 == s1 ’;

We use some new syntax here, namely the assign-such-that statement:

1 var x :| p(x)

If p is a predicate, then you should think of this statement as returning an arbitrary value for x, such
that it satisfies p(x). We use this to reason about the intermediate environments s0’ (corresponding
to σ′0) and s0’’ (corresponding to σ′′0), as well as the step indices k1’ and k2’ needed by bigstep.
In order to use the assign-such-that statement, Dafny must be able to determine that at least one
value satisfying the right hand side exists. In this case, we know that such values exist because we
know that bigstep(c,s0,s1,k1) and bigstep(c,s0,s1’,k2) are true, and the semantic definition
for Seq is:

1 case Seq(c1, c2) =>

2 exists k’: nat , s’’: Env ::

3 0 < k’ < k && bigstep(c1 , s, s’’, k’) && bigstep(c2 , s’’, s’, k-k’)

The next part of the proof for Seq also uses a new concept. Namely, it calls the lemma recursively:

1 bigstep_determ(c1, s0, s0’, s0’’, k1’, k2 ’);

Important: This is how we apply the inductive hypothesis in Dafny. Notice that we’re applying
this to smaller derivations than the ones our current preconditions give us: we know that 0 < k1’

< k1 and 0 < k2’ < k2. By making this call on smaller arguments, the postcondition given by the
lemma is now available to Dafny as an assertion would be. The following line that asserts s0’ ==

s0’’ points this out for the reader’s benefit, but is not strictly necessary; however, it is considered

13

15-414 Lecture 11 14

good form in this course to make your proofs explicit and easy to follow. We close out the case for
Seq by making another inductive call on the second evaluation.

The next case covers if commands. Like the previous case, it makes an inductive call for each
branch of the statment:

1 case If(b, c1, c2) =>

2 if(bigstep_bexp(b, s0)) {

3 bigstep_determ(c1, s0, s1, s1’, k1, k2);

4 assert s1 == s1 ’;

5 } else {

6 bigstep_determ(c2, s0, s1, s1’, k1, k2);

7 assert s1 == s1 ’;

8 }

Finally, we come to while. As we’ve discussed in lecture, semantically a while loop is like an if
command composed with a seq. In lecture we said that in this case we could reason as follows. If
the guard evaluates to true, then we can assume derivations:

WhileTrue

T1

〈b, σ0〉 ⇓b true
T2

〈c, σ0〉 ⇓ σ′0

T3

〈while b do c, σ′0〉 ⇓ σ1
〈while b do c, σ0〉 ⇓ σ1

WhileTrue

T4

〈b, σ0〉 ⇓b true
T5

〈c, σ0〉 ⇓ σ′′0

T6

〈while b do c, σ′′0〉 ⇓ σ′1
〈while b do c, σ0〉 ⇓ σ2

Applying the inductive hypothesis twice leads us to conclude that σ′0 = σ′′0 and σ1 = σ′1. As this is
very similar to the case for Seq, our proof in Dafny follows form:

1 case While(b, c’) =>

2 if(bigstep_bexp(b, s0)) {

3 var s0 ’, k1 ’ :| 0 < k1 ’ < k1 &&

4 bigstep(c’, s0 , s0 ’, k1 ’) &&

5 bigstep(c, s0 ’, s1 , k1 -k1 ’);

6 var s0 ’’, k2 ’ :| 0 < k2 ’ < k2 &&

7 bigstep(c’, s0 , s0 ’’, k2 ’) &&

8 bigstep(c, s0 ’’, s1 ’, k2 -k2 ’);

9 bigstep_determ(c’, s0, s0’, s0’’, k1’, k2 ’);

10 assert s0’ == s0 ’’;

11 bigstep_determ(c, s0’, s1, s1’, k1-k1’, k2-k2 ’);

12 assert s1 == s1 ’;

We use assign-such-that, with a such-that condition coming directly from the big-step definition
of while, to obtain intermediate states s0’, s0’’ and step indices k1’, k2’. We then apply
the inductive hypothesis twice by making two recursive calls to the lemma, and conclude the
WhileTrue case. WhileFalse is straigtforward, as it has the same semantics as skip.

1 } else {

2 assert s0 == s1 == s1 ’;

3 }

Although we’ve completed all of the relevant cases, Dafny does not accept our proof. The problem is
well-foundedness, which requires providing a termination metric that the verifier will understand.

14

15-414 Lecture 11 15

For this proof, we need a compound termination metric, as one case fails to decrease the step
indices k1, k2 (namely, the case for If), and another fails to decrease the command (i.e., While).
We combine all three for our termination metric, on which Dafny will impose a lexicographic
ordering. Putting all this together, we have the following lemma with proof:

1 lemma bigstep_determ(c: Com , s0: Env , s1: Env , s1 ’: Env , k1: nat , k2: nat)

2 decreases c, k1 , k2

3 requires bigstep(c, s0, s1, k1)

4 requires bigstep(c, s0, s1’, k2)

5 ensures s1 == s1 ’

6 ensures k1 == k2

7 {

8 match(c) {

9 case Skip =>

10 assert s0 == s1 == s1 ’;

11 case Assign(v, a) =>

12 assert s0[v := bigstep_aexp(a, s0)] == s1 == s1 ’;

13 case Seq(c1, c2) =>

14 var s0 ’, k1 ’ :| 0 < k1 ’ < k1 &&

15 bigstep(c1 , s0 , s0 ’, k1 ’) &&

16 bigstep(c2 , s0 ’, s1 , k1 -k1 ’);

17 var s0 ’’, k2 ’ :| 0 < k2 ’ < k2 &&

18 bigstep(c1 , s0 , s0 ’’, k2 ’) &&

19 bigstep(c2 , s0 ’’, s1 ’, k2 -k2 ’);

20 bigstep_determ(c1, s0, s0’, s0’’, k1’, k2 ’);

21 assert s0’ == s0 ’’;

22 bigstep_determ(c2, s0’, s1, s1’, k1-k1’, k2-k2 ’);

23 assert s1 == s1 ’;

24 case If(b, c1, c2) =>

25 if(bigstep_bexp(b, s0)) {

26 bigstep_determ(c1, s0, s1, s1’, k1, k2);

27 assert s1 == s1 ’;

28 } else {

29 bigstep_determ(c2, s0, s1, s1’, k1, k2);

30 assert s1 == s1 ’;

31 }

32 case While(b, c’) =>

33 if(bigstep_bexp(b, s0)) {

34 var s0 ’, k1 ’ :| 0 < k1 ’ < k1 &&

35 bigstep(c’, s0 , s0 ’, k1 ’) &&

36 bigstep(c, s0 ’, s1 , k1 -k1 ’);

37 var s0 ’’, k2 ’ :| 0 < k2 ’ < k2 &&

38 bigstep(c’, s0 , s0 ’’, k2 ’) &&

39 bigstep(c, s0 ’’, s1 ’, k2 -k2 ’);

40 bigstep_determ(c’, s0, s0’, s0’’, k1’, k2 ’);

41 assert s0’ == s0 ’’;

42 bigstep_determ(c, s0’, s1, s1’, k1-k1’, k2-k2 ’);

43 assert s1 == s1 ’;

44 } else {

45 assert s0 == s1 == s1 ’;

46 }

47 }

48 }

15

