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Today’s Lecture

▶ See how to reason about programs mathematically

▶ Formalize meaning of programs: operational
semantics

▶ Review inductive principles, see how to generalize to semantics

▶ Prove properties about programs
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Lanugage Semantics

Language semantics specify what happens when programs evaluate

▶ Does the program terminate?
▶ Does an invariant hold on every execution?
▶ Is the language deterministic?
▶ Are two programs equivalent?

Think of a mathematical definition of the language
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Approaches

How might we do this?

▶ Why not write a compiler? Lots
of
irrelevant
details. Which
way does the stack grow? How are registers allocated? Which
instructions do we use?

▶ Why not write natural language docs? Written
language
is
ambiguous. Easy to miss cases, difficult to make sure it’s been
done right.

Well-constructed semantics give us a way to specify meaning with
assurances:

▶ Execution won’t get “stuck” where it shouldn’t
▶ Programs don’t exhibit unexplained behavior
▶ Specifications mean what we intend
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Operational Semantics

Today we’ll look at operational
semantics

▶ Define an abstract “machine” to execute programs on
▶ Describe how values are computed from machine states
▶ Describe how statements change machine states

Together, these elements define the meaning of programs
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Imp: Syntax

We will examine an imperative language Imp

Before talking about semantics, we need to define syntax

▶ Concrete
syntax: rules for expressing programs as sequences
of characters

▶ Abstract
syntax: simplified rules that ignore tokens without
semantic meaning

Concrete syntax is important in practice for parsing, readability, etc.

When talking about semantics, we’ll use abstract syntax
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Imp: Syntactic Entities

The syntax of Imp has three categories

▶ Arithmetic
expressions AExp denoted by a, a1, a2, . . .

▶ Boolean
expressions BExp denoted by b, b1, b2, . . .

▶ Commands Com denoted by c, c1, c2, . . .

Arithmetic expressions take values n, n1, n2, . . . in Z

Boolean expressions take values in {true, false}

Imp programs are always commands

We draw variables x, x1, x2, . . . from a set Var
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Imp: Abstract Syntax

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Note: AExp and BExp can be syntactic
constants 0, 1, . . . , true, false

These are in one-to-one correspondence with Z and {true, false}
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Program States

Programs in Imp operate over integers

Their variables have values stored in the environment

We model the environment as a map σ : Var 7→ Z

For Imp, we always assume that σ is total

To completely specify program state, we define a configuration

Configuration
A configuration is a pair ⟨c, σ⟩, where c ∈ Com is a command and σ is
an environment. A configuration represents a moment
in
time during
the computation of a program, where σ is the current assignment to
variables and c is the next command to be executed.
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Imp in Dafny

type Var = string
datatype AExp = N(n: int)

| V(x: Var)
| Plus(0: AExp, 1: AExp)

datatype BExp = B(v: bool)
| Less(a0: AExp, a1: AExp)
| Not(op: BExp)
| And(0: BExp, 1: BExp)

datatype Com = Skip
| Assign(vname, aexp)
| Seq(com, com)
| If(bexp, com, com)
| While(bexp, com)

type Env = map<Var, int>
type Config = Com * Env
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Small-Step Operational Semantics

Idea: Specify operations one
step
at
a
time

▶ Formalize semantics as transition
relation
over
configurations
▶ For each syntactic element, provide inference
rules
▶ Apply transition rules until final
configuration ⟨skip, σ⟩
▶ If the program reaches ⟨skip, σ⟩, we say that it terminates

We need to define three transition relations:
▶ →a: (AExp × Env) 7→ Z for evaluating arithmetic expressions
▶ →b: (BExp × Env) 7→ {true, false} for Boolean expressions
▶ →: (Com × Env) 7→ (Com × Env) for commands
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Imp: Small-step AExp (1)

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

Let’s start by defining the relation for →a

To evaluate a variable expression:

Var
⟨x, σ⟩ →a ⟨n, σ⟩

where n = σ(x)

Why no rule for constants?

Constants are irreducable

No rules on irreducable entities, so no further computation

Matt Fredrikson Semantics 12 / 46



Imp: Small-step AExp (2)

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

Now let’s move on to the arithmetic operators

Add
⟨n1 + n2, σ⟩ →a ⟨n3, σ⟩

where n3 is the sum of n1, n2

LAdd
⟨a1, σ⟩ →a a′1

⟨a1 + a2, σ⟩ →a ⟨a′1 + a2, σ⟩
RAdd

⟨a2, σ⟩ →a a′2
⟨n + a2, σ⟩ →a ⟨n + a′2, σ⟩

The rules specify the order in which computations are performed

In this case, evaluate the left operand before the right
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Imp: Small-step BExp (1)

b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

We can define semantics for Boolean expressions similarly

EqTrue
⟨n1 = n2, σ⟩ →b ⟨true, σ⟩ if n1 equals n2

EqFalse
⟨n1 = n2, σ⟩ →b ⟨false, σ⟩ if n1 not equals n2

EqLeft
⟨a1, σ⟩ →a a′1

⟨a1 = a2, σ⟩ →b ⟨a′1 = a2, σ⟩
EqRight

⟨a2, σ⟩ →a a′2
⟨n = a2, σ⟩ →b ⟨n = a′2, σ⟩

The inequality operator is defined by replacing = with ≤
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Imp: Small-step BExp (2)

b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

For Boolean connectives:

NotTrue
⟨¬true, σ⟩ →b ⟨false, σ⟩ NotFalse

⟨¬false, σ⟩ →b ⟨true, σ⟩

Not
⟨b, σ⟩ →b ⟨b′, σ⟩

⟨¬b, σ⟩ →b ⟨¬b′, σ⟩

For ∧, we need four rules:
▶ AndLeft, AndRight to evaluate the operands in order
▶ AndTrue, AndFalse to reduce ∧ over Boolean values
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Example

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

Start by applying MulLeft:

MulLeft
⟨x + 2, σ⟩ →a ⟨3, σ⟩

⟨(x + 2)× y, σ⟩ →a ⟨3× y, σ⟩

Now we must show that the premise ⟨x + 2, σ⟩ →a ⟨3, σ⟩ holds

We apply AddLeft:

AddLeft
⟨x, σ⟩ →a ⟨1, σ⟩

⟨x + 2, σ⟩ →a ⟨1 + 2, σ⟩
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Example Contd.

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

Now we need to show the premise ⟨x, σ⟩ →a ⟨1, σ⟩

We apply Var:

Var
⟨x, σ⟩ →a ⟨1, σ⟩

because σ(x) = 1

Now we have ⟨x + 2, σ⟩ →a ⟨1 + 2, σ⟩

Apply Add:

Add
⟨1 + 2, σ⟩ →a ⟨3, σ⟩
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Example Contd.

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

Now we’ve justified application of the rule:

MulLeft
⟨x + 2, σ⟩ →a ⟨3, σ⟩

⟨(x + 2)× y, σ⟩ →a ⟨3× y, σ⟩

We did this by deriving a proof using rules from the semantics

We can summarize our reasoning with the proof
tree:

MulLeft
AddLeft

Var
⟨x, σ⟩ →a ⟨1, σ⟩

⟨x + 2, σ⟩ →a ⟨1 + 2, σ⟩
Add

⟨1 + 2, σ⟩ →a ⟨3, σ⟩
⟨(x + 2)× y, σ⟩ →a ⟨3× y, σ⟩
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Example Contd.

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

But, we’re not done:
⟨3× y, σ⟩ is reducible

Next steps:
1. Apply MulRight to evaluate y in 3× y
2. Apply Var to evaluate y alone
3. From 3× 3, apply Mul to derive 9

4. Now, 9 is irreducible
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Imp: Small-step commands (1)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Now let’s assign semantics to the commands

Unlike expressions, commands can change the environment

skip has no rule

Assignment:

Asgn1
⟨a, σ⟩ →a ⟨a′, σ⟩

⟨x := a, σ⟩ → ⟨x := a′, σ⟩
Asgn2

⟨x := n, σ⟩ → ⟨skip, σ[x 7→ n]⟩
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Imp: Small-step commands (2)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Composition c1; c2 requires two rules:

Seq1
⟨c1, σ⟩ → ⟨c′1, σ′⟩

⟨c1; c2, σ⟩ → ⟨c′1; c2, σ′⟩
Seq2

⟨skip; c, σ⟩ → ⟨c, σ⟩

Notice: in Seq1, the environment σ changes to σ′

Evaluating c1 might have updated a variable, we account for this
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Imp: Small-step commands (3)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

if commands introduce branching:

If
⟨b, σ⟩ → ⟨b′, σ⟩

⟨if b then c1 else c2, σ⟩ → ⟨if b′ then c1 else c2, σ⟩

IfTrue
⟨if true then c1 else c2, σ⟩ → ⟨c1, σ⟩

IfFalse
⟨if false then c1 else c2, σ⟩ → ⟨c2, σ⟩
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Imp: Small-step commands (4)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

while command fits in a single rule!

While
⟨while b do c, σ⟩ → ⟨if b then (c; while b do c) else skip, σ⟩

Unroll a while loop one iteration

Only break when the if command evaluates false
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Big-step operational semantics

Now we’ve defined a full semantics for Imp

We can talk about evaluations using →∗, the transitive closure of →

If ⟨c, σ⟩ is an initial configuration, we derive a sequence of
intermediate configurations to reach ⟨skip, σ′⟩

We could have defined the semantics to directly give the result σ′

This is called big-step
operational
semantics, or natural semantics

Here, we define inference rules that give us judgements of the form:
⟨c, σ⟩ ⇓ σ′
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Imp: Big-step AExp

BigConst
⟨n, σ⟩ ⇓ n

BigVar
⟨x, σ⟩ ⇓a n

where n = σ(x)

BigAdd
⟨a1, σ⟩ ⇓a n1 ⟨a2, σ⟩ ⇓a n2

⟨a1 + a2, σ⟩ ⇓a n
where n is the sum of n1, n2

BigMul
⟨a1, σ⟩ ⇓a n1 ⟨a2, σ⟩ ⇓a n2

⟨a1 × a2, σ⟩ ⇓a n
where n is the product of n1, n2

The rules for defining Boolean expression are similar
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Imp: Big-step commands

BigAsgn
⟨a, σ⟩ ⇓a n

⟨x := a, σ⟩ ⇓ σ[x 7→ n]
BigSkip

⟨skip, σ⟩ ⇓ σ

BigSeq
⟨c1, σ1⟩ ⇓ σ′

1 ⟨c2, σ′
1⟩ ⇓ σ2

⟨c1; c2, σ1⟩ ⇓ σ2

BigIfT
⟨b, σ⟩ ⇓b true ⟨c1, σ⟩ ⇓ σ2

⟨if b then c1 else c2, σ⟩ ⇓ σ2

BigIfF
⟨b, σ⟩ ⇓b false ⟨c2, σ⟩ ⇓ σ2

⟨if b then c1 else c2, σ⟩ ⇓ σ2

BigWhileFalse
⟨b, σ⟩ ⇓b false

⟨while b do c, σ⟩ ⇓ σ

BigWhileTrue
⟨b, σ⟩ ⇓b true ⟨c, σ⟩ ⇓ σ′ ⟨while b do c, σ′⟩ ⇓ σ′′

⟨while b do c, σ⟩ ⇓ σ′′
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Big-step vs. Small-step Semantics

Now we have two ways to assign meaning to Imp programs

Why have both?
▶ Big-step semantics are more natural in the sense that they

model the recursive definition of the language
▶ Fewer rules in big-step semantics makes proving things easier;

no need to worry about order of evaluation
▶ However, there are no intermediate states to speak of in big-step
▶ To the point, all non-terminating executions look the same—no

derivable judgement!
▶ Small-step semantics can model properties of non-terminating

executions
▶ They can also model things like concurrency and run-time errors
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Example: Program Equialence (1)

We can prove program equivalence using the semantics

Let’s try using big-step. What is the property?
c0 ∼ c1 iff ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇔ ⟨c1, σ⟩ ⇓ σ′

The programs we’ll prove:
c0 = while b do c c1 = if b then c; (while b do c) else skip

We need to show both directions of ⇔

First we prove: ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇒ ⟨c1, σ⟩ ⇓ σ′
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Example: Program Equialence (2)

First we prove: ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇒ ⟨c1, σ⟩ ⇓ σ′

Assuming ⟨while b do c, σ⟩ ⇓ σ′

One of two cases holds regarding b. Either:
▶ b is true, so the last rule was BigWhileTrue.
▶ b is false, so the last rule was BigWhileFalse.

Suppose the former case, so BigWhileTrue.

Then there must be some derivation that takes the shape:

BigWhileTrue

T1

⟨b, σ⟩ ⇓ true
T2

⟨c, σ⟩ ⇓ σ′′
T3

⟨while b do c, σ′′⟩ ⇓ σ′

⟨while b do c, σ⟩ ⇓ σ′
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Example: Program Equialence (3)

BigWhileTrue

T1

⟨b, σ⟩ ⇓ true
T2

⟨c, σ⟩ ⇓ σ′′
T3

⟨while b do c, σ′′⟩ ⇓ σ′

⟨while b do c, σ⟩ ⇓ σ′

Recall, our goal is to show that:
⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ′

We can use T3 and T3 with BigSeq to show:

BigSeq
T2 T3

⟨c; (while b do c), σ⟩ ⇓ σ′

Then T1 and BigIfTrue to show:

BigIfT
T1

BigSeq
T2 T2

⟨c; (while b do c), σ⟩ ⇓ σ′

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ′
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Example: Program Equialence (4)

This does it for the case where b is true.

Now for b is false.

In this case the derivation tree ends with:

BigWhileF

T4

⟨b, σ⟩ ⇓ false
⟨while b do c, σ⟩ ⇓ σ

We can use T4 with BigSkip and BigIfF:

BigIfF
T4

BigSkip
⟨skip, σ⟩ ⇓ σ

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ

This concludes the direction ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇒ ⟨c1, σ⟩ ⇓ σ′
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Example: Program Equialence (5)

Now for the direction ∀σ, σ′.⟨c1, σ⟩ ⇓ σ′ ⇒ ⟨c0, σ⟩ ⇓ σ′

The last rule in the derivation is either BigIfT or BigIfF

Suppose that BigIfT:

BigIfT

T1

⟨b, σ⟩ ⇓ true
BigSeq

T2

⟨c, σ⟩ ⇓ σ′′
T3

⟨while b do c, σ′′⟩ ⇓ σ′

⟨c; while b do c, σ⟩ ⇓ σ′

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ′

Now we can use BigWhileTrue with T1, T2, T3:

BigWhileTrue
T1 T2 T3

⟨while b do c, σ⟩ ⇓ σ′
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Example: Program Equialence (6)

Now we move on to BigIfF:

BigIfF

T4

⟨b, σ⟩ ⇓ false
BigSkip

⟨skip, σ⟩ ⇓ σ

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ

Now we can use BigWhileFalse with T4:

BigWhileFalse
T4

⟨while b do c, σ⟩ ⇓ σ

This completes the proof.
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Semantic Properties

We can also prove important properties about the semantics
▶ Determinism: For any σ1, σ2, σ and command c, if ⟨c, σ⟩ ⇓ σ1

and ⟨c, σ⟩ ⇓ σ2, then σ1 = σ2:
∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

▶ Expression
termination: For any σ and arithmetic (Boolean)
expression e ∈ AExp (e ∈ BExp), there is a value v such that
⟨e, σ⟩ ⇓ v:

∀σ, e.∃v.⟨e, σ⟩ ⇓ v

To prove statements like these, we’ll need to use induction
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Induction

Recall our inductive axiom from TPA

(F [0] ∧ (∀x.F [x] → F [x + 1])) → ∀x.F [x]

The goal is to prove ∀x.F [x], i.e., F holds for all numbers
1. We begin by proving that F [0] holds
2. We then prove that if F [x] holds, then F [x + 1] holds

F [0] is the basis of the induction

The assumption F [x] is the inductive
hypothesis

Establishing F [x] → F [x + 1] is the inductive
step
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Inductive Sets

An inductive
set is constructed using axioms and inference rules

For example, the syntax of Imp defines an inductive set:

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

n ∈ AExp n ∈ Z
x ∈ AExp x ∈ Var

a1 ∈ AExp a2 ∈ AExp
a1 + a2 ∈ AExp

Recall that rules without antecedents are called axioms

The semantic relations →,→∗,⇓ are also inductive sets

As the name suggests, we can prove facts about these sets using
inductive reasoning
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Structural Induction

Structural
Induction generalizes inductive reasoning to these sets

To prove that some property F holds on an inductively-defined set S:

1. Basis: Prove the base case for each axiom defining S. In other
words, for each rule

s ∈ S

prove F [s]

2. Inductive
step: Unlike “traditional” induction, there are several
inductive steps. For each inference rule:

s1 ∈ S · · · sn ∈ S

s ∈ S

prove that (s1 ∈ S ∧ · · · ∧ sn ∈ S) → s ∈ S. Note the inductive
hypotheses come from the antecedents of the rules.
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Proving Semantic Properties

There are two primary ways to apply structural induction:

▶ On
program
syntax: Use the inductive set defined by Imp
syntax rules, and induce on all possible syntactic constructions.

▶ On
semantic
derivations: Use the inductive set defined by
either → or ⇓. This is often called induction
on
derivations.

Let’s apply this to proving determinism of Imp:
∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

This will be an induction on derivations for commands, structural
induction for expressions
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Proving Determinism of Imp (1)

∀σ, a, n1, n2.(⟨a, σ⟩ ⇓ n1 ∧ ⟨a, σ⟩ ⇓ n2) → n1 = n2

First the expressions. We’ll do AExp.

The base cases:

BigConst
⟨n, σ⟩ ⇓ n

BigVar
⟨x, σ⟩ ⇓a n

where n = σ(x)

▶ If the expression is a constant, there is only one rule (BigConst).
We have that for all σ, n1 = n2.

▶ If the expression is a variable, then we have BigVar. Because σ
is the same in both evaluations, we have n1 = n2.

Matt Fredrikson Semantics 39 / 46



Proving Determinism of Imp (2)

∀σ, a, n, n′.(⟨a, σ⟩ ⇓ n ∧ ⟨a, σ⟩ ⇓ n′) → n = n′

Now the inductive case:

BigAdd
⟨a1, σ⟩ ⇓a n1 ⟨a2, σ⟩ ⇓a n2

⟨a1 + a2, σ⟩ ⇓a n
where n is the sum of n1, n2

If the expression is a sum, then the rule BigAdd applies.

We take as our inductive hypothesis that a1 and a2 are deterministic.
▶ Any derivation ⟨a, σ⟩ ⇓ n must have ⟨a1, σ⟩ ⇓ n1 and ⟨a1, σ⟩ ⇓ n2

as premises.
▶ Any derivation ⟨a, σ⟩ ⇓ n′ must have ⟨a1, σ⟩ ⇓ n′

1 and ⟨a1, σ⟩ ⇓ n′
2

as premises.
▶ By the inductive hypothesis n1 + n2 = n′

1 + n′
2 = n = n′
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Proving Determinism of Imp (3)

∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

We said induction on derivations. Why not induction on syntax?

One of the cases will be for while b do c

Recall the rule BigWhileTrue:

BigWhileTrue
⟨b, σ⟩ ⇓b true ⟨c, σ⟩ ⇓ σ′ ⟨while b do c, σ′⟩ ⇓ σ′′

⟨while b do c, σ⟩ ⇓ σ′′

One of the inductive hypotheses is not a proper sub-component of
the original program!

This is not a well-founded induction.
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Proving Determinism of Imp (4)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

Instead, we’ll show that if

T1

⟨c, σ⟩ ⇓ σ1

T2

⟨c, σ⟩ ⇓ σ2

then σ1 = σ2

Our inductive hypothesis will be that T1 and T2 satisfy F

For the inductive step, we need to consider each operational
semantics rule
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Proving Determinism of Imp (5)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

Begin with BigAsgn:

BigAsgn
⟨a, σ⟩ ⇓a n′

⟨x := a, σ⟩ ⇓ σ[x 7→ n]

So we have:

BigAsgn

T1

⟨a, σ⟩ ⇓a n

⟨x := a, σ⟩ ⇓ σ[x 7→ n]
BigAsgn

T2

⟨a, σ⟩ ⇓a n′

⟨x := a, σ⟩ ⇓ σ[x 7→ n′]

Because expressions are deterministic, we have n = n′, so
σ[x 7→ n] = σ[x 7→ n′]
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Proving Determinism of Imp (6)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

We’ll jump to BigWhileTrue:

BigWhileTrue
⟨b, σ⟩ ⇓b true ⟨c, σ⟩ ⇓ σ′ ⟨while b do c, σ′⟩ ⇓ σ′′

⟨while b do c, σ⟩ ⇓ σ′′

So we have:

BigWhileTrue

T1

⟨b, σ⟩ ⇓b true
T2

⟨c, σ⟩ ⇓ σ′
1

T3

⟨while b do c, σ′
1⟩ ⇓ σ1

⟨while b do c, σ⟩ ⇓ σ1

BigWhileTrue

T4

⟨b, σ⟩ ⇓b true
T5

⟨c, σ⟩ ⇓ σ′
2

T6

⟨while b do c, σ′
2⟩ ⇓ σ2

⟨while b do c, σ⟩ ⇓ σ2
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Proving Determinism of Imp (7)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

BigWhileTrue

T1

⟨b, σ⟩ ⇓b true
T2

⟨c, σ⟩ ⇓ σ′
1

T3

⟨while b do c, σ′
1⟩ ⇓ σ1

⟨while b do c, σ⟩ ⇓ σ1

BigWhileTrue

T4

⟨b, σ⟩ ⇓b true
T5

⟨c, σ⟩ ⇓ σ′
2

T6

⟨while b do c, σ′
2⟩ ⇓ σ2

⟨while b do c, σ⟩ ⇓ σ2

By ind. hypothesis on T2, T5, we have σ′
1 = σ′

2

So we can apply ind. hyp. on T3, T6 giving σ1 = σ2.
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Next Lecture

We’ll leave the remaining cases as an exercise

Next lecture, we’ll see how to automate some of this with Dafny

We’ll move on to specifications of correctness
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