
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 10:
Introduction to Program Semantics

Matt Fredrikson
mfredrik@cs.cmu.edu

October 4, 2016

Matt Fredrikson Semantics 1 / 46

Today’s Lecture

▶ See how to reason about programs mathematically

▶ Formalize meaning of programs: operational
semantics

▶ Review inductive principles, see how to generalize to semantics

▶ Prove properties about programs

Matt Fredrikson Semantics 2 / 46

Lanugage Semantics

Language semantics specify what happens when programs evaluate

▶ Does the program terminate?
▶ Does an invariant hold on every execution?
▶ Is the language deterministic?
▶ Are two programs equivalent?

Think of a mathematical definition of the language

Matt Fredrikson Semantics 3 / 46

Approaches

How might we do this?

▶ Why not write a compiler? Lots
of
irrelevant
details. Which
way does the stack grow? How are registers allocated? Which
instructions do we use?

▶ Why not write natural language docs? Written
language
is
ambiguous. Easy to miss cases, difficult to make sure it’s been
done right.

Well-constructed semantics give us a way to specify meaning with
assurances:

▶ Execution won’t get “stuck” where it shouldn’t
▶ Programs don’t exhibit unexplained behavior
▶ Specifications mean what we intend

Matt Fredrikson Semantics 4 / 46

Operational Semantics

Today we’ll look at operational
semantics

▶ Define an abstract “machine” to execute programs on
▶ Describe how values are computed from machine states
▶ Describe how statements change machine states

Together, these elements define the meaning of programs

Matt Fredrikson Semantics 5 / 46

Imp: Syntax

We will examine an imperative language Imp

Before talking about semantics, we need to define syntax

▶ Concrete
syntax: rules for expressing programs as sequences
of characters

▶ Abstract
syntax: simplified rules that ignore tokens without
semantic meaning

Concrete syntax is important in practice for parsing, readability, etc.

When talking about semantics, we’ll use abstract syntax

Matt Fredrikson Semantics 6 / 46

Imp: Syntactic Entities

The syntax of Imp has three categories

▶ Arithmetic
expressions AExp denoted by a, a1, a2, . . .

▶ Boolean
expressions BExp denoted by b, b1, b2, . . .

▶ Commands Com denoted by c, c1, c2, . . .

Arithmetic expressions take values n, n1, n2, . . . in Z

Boolean expressions take values in {true, false}

Imp programs are always commands

We draw variables x, x1, x2, . . . from a set Var

Matt Fredrikson Semantics 7 / 46

Imp: Abstract Syntax

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Note: AExp and BExp can be syntactic
constants 0, 1, . . . , true, false

These are in one-to-one correspondence with Z and {true, false}

Matt Fredrikson Semantics 8 / 46

Program States

Programs in Imp operate over integers

Their variables have values stored in the environment

We model the environment as a map σ : Var 7→ Z

For Imp, we always assume that σ is total

To completely specify program state, we define a configuration

Configuration
A configuration is a pair ⟨c, σ⟩, where c ∈ Com is a command and σ is
an environment. A configuration represents a moment
in
time during
the computation of a program, where σ is the current assignment to
variables and c is the next command to be executed.

Matt Fredrikson Semantics 9 / 46

Imp in Dafny

type Var = string
datatype AExp = N(n: int)

| V(x: Var)
| Plus(0: AExp, 1: AExp)

datatype BExp = B(v: bool)
| Less(a0: AExp, a1: AExp)
| Not(op: BExp)
| And(0: BExp, 1: BExp)

datatype Com = Skip
| Assign(vname, aexp)
| Seq(com, com)
| If(bexp, com, com)
| While(bexp, com)

type Env = map<Var, int>
type Config = Com * Env

Matt Fredrikson Semantics 10 / 46

Small-Step Operational Semantics

Idea: Specify operations one
step
at
a
time

▶ Formalize semantics as transition
relation
over
configurations
▶ For each syntactic element, provide inference
rules
▶ Apply transition rules until final
configuration ⟨skip, σ⟩
▶ If the program reaches ⟨skip, σ⟩, we say that it terminates

We need to define three transition relations:
▶ →a: (AExp × Env) 7→ Z for evaluating arithmetic expressions
▶ →b: (BExp × Env) 7→ {true, false} for Boolean expressions
▶ →: (Com × Env) 7→ (Com × Env) for commands

Matt Fredrikson Semantics 11 / 46

Imp: Small-step AExp (1)

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

Let’s start by defining the relation for →a

To evaluate a variable expression:

Var
⟨x, σ⟩ →a ⟨n, σ⟩

where n = σ(x)

Why no rule for constants?

Constants are irreducable

No rules on irreducable entities, so no further computation

Matt Fredrikson Semantics 12 / 46

Imp: Small-step AExp (2)

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

Now let’s move on to the arithmetic operators

Add
⟨n1 + n2, σ⟩ →a ⟨n3, σ⟩

where n3 is the sum of n1, n2

LAdd
⟨a1, σ⟩ →a a′1

⟨a1 + a2, σ⟩ →a ⟨a′1 + a2, σ⟩
RAdd

⟨a2, σ⟩ →a a′2
⟨n + a2, σ⟩ →a ⟨n + a′2, σ⟩

The rules specify the order in which computations are performed

In this case, evaluate the left operand before the right

Matt Fredrikson Semantics 13 / 46

Imp: Small-step BExp (1)

b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

We can define semantics for Boolean expressions similarly

EqTrue
⟨n1 = n2, σ⟩ →b ⟨true, σ⟩ if n1 equals n2

EqFalse
⟨n1 = n2, σ⟩ →b ⟨false, σ⟩ if n1 not equals n2

EqLeft
⟨a1, σ⟩ →a a′1

⟨a1 = a2, σ⟩ →b ⟨a′1 = a2, σ⟩
EqRight

⟨a2, σ⟩ →a a′2
⟨n = a2, σ⟩ →b ⟨n = a′2, σ⟩

The inequality operator is defined by replacing = with ≤

Matt Fredrikson Semantics 14 / 46

Imp: Small-step BExp (2)

b ∈ BExp ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

For Boolean connectives:

NotTrue
⟨¬true, σ⟩ →b ⟨false, σ⟩ NotFalse

⟨¬false, σ⟩ →b ⟨true, σ⟩

Not
⟨b, σ⟩ →b ⟨b′, σ⟩

⟨¬b, σ⟩ →b ⟨¬b′, σ⟩

For ∧, we need four rules:
▶ AndLeft, AndRight to evaluate the operands in order
▶ AndTrue, AndFalse to reduce ∧ over Boolean values

Matt Fredrikson Semantics 15 / 46

Example

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

Start by applying MulLeft:

MulLeft
⟨x + 2, σ⟩ →a ⟨3, σ⟩

⟨(x + 2)× y, σ⟩ →a ⟨3× y, σ⟩

Now we must show that the premise ⟨x + 2, σ⟩ →a ⟨3, σ⟩ holds

We apply AddLeft:

AddLeft
⟨x, σ⟩ →a ⟨1, σ⟩

⟨x + 2, σ⟩ →a ⟨1 + 2, σ⟩

Matt Fredrikson Semantics 16 / 46

Example Contd.

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

Now we need to show the premise ⟨x, σ⟩ →a ⟨1, σ⟩

We apply Var:

Var
⟨x, σ⟩ →a ⟨1, σ⟩

because σ(x) = 1

Now we have ⟨x + 2, σ⟩ →a ⟨1 + 2, σ⟩

Apply Add:

Add
⟨1 + 2, σ⟩ →a ⟨3, σ⟩

Matt Fredrikson Semantics 17 / 46

Example Contd.

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

Now we’ve justified application of the rule:

MulLeft
⟨x + 2, σ⟩ →a ⟨3, σ⟩

⟨(x + 2)× y, σ⟩ →a ⟨3× y, σ⟩

We did this by deriving a proof using rules from the semantics

We can summarize our reasoning with the proof
tree:

MulLeft
AddLeft

Var
⟨x, σ⟩ →a ⟨1, σ⟩

⟨x + 2, σ⟩ →a ⟨1 + 2, σ⟩
Add

⟨1 + 2, σ⟩ →a ⟨3, σ⟩
⟨(x + 2)× y, σ⟩ →a ⟨3× y, σ⟩

Matt Fredrikson Semantics 18 / 46

Example Contd.

Evaluate (x + 2)× y under σ = [x 7→ 1, y 7→ 3]

But, we’re not done:
⟨3× y, σ⟩ is reducible

Next steps:
1. Apply MulRight to evaluate y in 3× y
2. Apply Var to evaluate y alone
3. From 3× 3, apply Mul to derive 9

4. Now, 9 is irreducible

Matt Fredrikson Semantics 19 / 46

Imp: Small-step commands (1)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Now let’s assign semantics to the commands

Unlike expressions, commands can change the environment

skip has no rule

Assignment:

Asgn1
⟨a, σ⟩ →a ⟨a′, σ⟩

⟨x := a, σ⟩ → ⟨x := a′, σ⟩
Asgn2

⟨x := n, σ⟩ → ⟨skip, σ[x 7→ n]⟩

Matt Fredrikson Semantics 20 / 46

Imp: Small-step commands (2)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Composition c1; c2 requires two rules:

Seq1
⟨c1, σ⟩ → ⟨c′1, σ′⟩

⟨c1; c2, σ⟩ → ⟨c′1; c2, σ′⟩
Seq2

⟨skip; c, σ⟩ → ⟨c, σ⟩

Notice: in Seq1, the environment σ changes to σ′

Evaluating c1 might have updated a variable, we account for this

Matt Fredrikson Semantics 21 / 46

Imp: Small-step commands (3)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

if commands introduce branching:

If
⟨b, σ⟩ → ⟨b′, σ⟩

⟨if b then c1 else c2, σ⟩ → ⟨if b′ then c1 else c2, σ⟩

IfTrue
⟨if true then c1 else c2, σ⟩ → ⟨c1, σ⟩

IfFalse
⟨if false then c1 else c2, σ⟩ → ⟨c2, σ⟩

Matt Fredrikson Semantics 22 / 46

Imp: Small-step commands (4)

c ∈ Com ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

while command fits in a single rule!

While
⟨while b do c, σ⟩ → ⟨if b then (c; while b do c) else skip, σ⟩

Unroll a while loop one iteration

Only break when the if command evaluates false

Matt Fredrikson Semantics 23 / 46

Big-step operational semantics

Now we’ve defined a full semantics for Imp

We can talk about evaluations using →∗, the transitive closure of →

If ⟨c, σ⟩ is an initial configuration, we derive a sequence of
intermediate configurations to reach ⟨skip, σ′⟩

We could have defined the semantics to directly give the result σ′

This is called big-step
operational
semantics, or natural semantics

Here, we define inference rules that give us judgements of the form:
⟨c, σ⟩ ⇓ σ′

Matt Fredrikson Semantics 24 / 46

Imp: Big-step AExp

BigConst
⟨n, σ⟩ ⇓ n

BigVar
⟨x, σ⟩ ⇓a n

where n = σ(x)

BigAdd
⟨a1, σ⟩ ⇓a n1 ⟨a2, σ⟩ ⇓a n2

⟨a1 + a2, σ⟩ ⇓a n
where n is the sum of n1, n2

BigMul
⟨a1, σ⟩ ⇓a n1 ⟨a2, σ⟩ ⇓a n2

⟨a1 × a2, σ⟩ ⇓a n
where n is the product of n1, n2

The rules for defining Boolean expression are similar

Matt Fredrikson Semantics 25 / 46

Imp: Big-step commands

BigAsgn
⟨a, σ⟩ ⇓a n

⟨x := a, σ⟩ ⇓ σ[x 7→ n]
BigSkip

⟨skip, σ⟩ ⇓ σ

BigSeq
⟨c1, σ1⟩ ⇓ σ′

1 ⟨c2, σ′
1⟩ ⇓ σ2

⟨c1; c2, σ1⟩ ⇓ σ2

BigIfT
⟨b, σ⟩ ⇓b true ⟨c1, σ⟩ ⇓ σ2

⟨if b then c1 else c2, σ⟩ ⇓ σ2

BigIfF
⟨b, σ⟩ ⇓b false ⟨c2, σ⟩ ⇓ σ2

⟨if b then c1 else c2, σ⟩ ⇓ σ2

BigWhileFalse
⟨b, σ⟩ ⇓b false

⟨while b do c, σ⟩ ⇓ σ

BigWhileTrue
⟨b, σ⟩ ⇓b true ⟨c, σ⟩ ⇓ σ′ ⟨while b do c, σ′⟩ ⇓ σ′′

⟨while b do c, σ⟩ ⇓ σ′′

Matt Fredrikson Semantics 26 / 46

Big-step vs. Small-step Semantics

Now we have two ways to assign meaning to Imp programs

Why have both?
▶ Big-step semantics are more natural in the sense that they

model the recursive definition of the language
▶ Fewer rules in big-step semantics makes proving things easier;

no need to worry about order of evaluation
▶ However, there are no intermediate states to speak of in big-step
▶ To the point, all non-terminating executions look the same—no

derivable judgement!
▶ Small-step semantics can model properties of non-terminating

executions
▶ They can also model things like concurrency and run-time errors

Matt Fredrikson Semantics 27 / 46

Example: Program Equialence (1)

We can prove program equivalence using the semantics

Let’s try using big-step. What is the property?
c0 ∼ c1 iff ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇔ ⟨c1, σ⟩ ⇓ σ′

The programs we’ll prove:
c0 = while b do c c1 = if b then c; (while b do c) else skip

We need to show both directions of ⇔

First we prove: ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇒ ⟨c1, σ⟩ ⇓ σ′

Matt Fredrikson Semantics 28 / 46

Example: Program Equialence (2)

First we prove: ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇒ ⟨c1, σ⟩ ⇓ σ′

Assuming ⟨while b do c, σ⟩ ⇓ σ′

One of two cases holds regarding b. Either:
▶ b is true, so the last rule was BigWhileTrue.
▶ b is false, so the last rule was BigWhileFalse.

Suppose the former case, so BigWhileTrue.

Then there must be some derivation that takes the shape:

BigWhileTrue

T1

⟨b, σ⟩ ⇓ true
T2

⟨c, σ⟩ ⇓ σ′′
T3

⟨while b do c, σ′′⟩ ⇓ σ′

⟨while b do c, σ⟩ ⇓ σ′

Matt Fredrikson Semantics 29 / 46

Example: Program Equialence (3)

BigWhileTrue

T1

⟨b, σ⟩ ⇓ true
T2

⟨c, σ⟩ ⇓ σ′′
T3

⟨while b do c, σ′′⟩ ⇓ σ′

⟨while b do c, σ⟩ ⇓ σ′

Recall, our goal is to show that:
⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ′

We can use T3 and T3 with BigSeq to show:

BigSeq
T2 T3

⟨c; (while b do c), σ⟩ ⇓ σ′

Then T1 and BigIfTrue to show:

BigIfT
T1

BigSeq
T2 T2

⟨c; (while b do c), σ⟩ ⇓ σ′

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ′

Matt Fredrikson Semantics 30 / 46

Example: Program Equialence (4)

This does it for the case where b is true.

Now for b is false.

In this case the derivation tree ends with:

BigWhileF

T4

⟨b, σ⟩ ⇓ false
⟨while b do c, σ⟩ ⇓ σ

We can use T4 with BigSkip and BigIfF:

BigIfF
T4

BigSkip
⟨skip, σ⟩ ⇓ σ

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ

This concludes the direction ∀σ, σ′.⟨c0, σ⟩ ⇓ σ′ ⇒ ⟨c1, σ⟩ ⇓ σ′

Matt Fredrikson Semantics 31 / 46

Example: Program Equialence (5)

Now for the direction ∀σ, σ′.⟨c1, σ⟩ ⇓ σ′ ⇒ ⟨c0, σ⟩ ⇓ σ′

The last rule in the derivation is either BigIfT or BigIfF

Suppose that BigIfT:

BigIfT

T1

⟨b, σ⟩ ⇓ true
BigSeq

T2

⟨c, σ⟩ ⇓ σ′′
T3

⟨while b do c, σ′′⟩ ⇓ σ′

⟨c; while b do c, σ⟩ ⇓ σ′

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ′

Now we can use BigWhileTrue with T1, T2, T3:

BigWhileTrue
T1 T2 T3

⟨while b do c, σ⟩ ⇓ σ′

Matt Fredrikson Semantics 32 / 46

Example: Program Equialence (6)

Now we move on to BigIfF:

BigIfF

T4

⟨b, σ⟩ ⇓ false
BigSkip

⟨skip, σ⟩ ⇓ σ

⟨if b then c; (while b do c) else skip, σ⟩ ⇓ σ

Now we can use BigWhileFalse with T4:

BigWhileFalse
T4

⟨while b do c, σ⟩ ⇓ σ

This completes the proof.

Matt Fredrikson Semantics 33 / 46

Semantic Properties

We can also prove important properties about the semantics
▶ Determinism: For any σ1, σ2, σ and command c, if ⟨c, σ⟩ ⇓ σ1

and ⟨c, σ⟩ ⇓ σ2, then σ1 = σ2:
∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

▶ Expression
termination: For any σ and arithmetic (Boolean)
expression e ∈ AExp (e ∈ BExp), there is a value v such that
⟨e, σ⟩ ⇓ v:

∀σ, e.∃v.⟨e, σ⟩ ⇓ v

To prove statements like these, we’ll need to use induction

Matt Fredrikson Semantics 34 / 46

Induction

Recall our inductive axiom from TPA

(F [0] ∧ (∀x.F [x] → F [x + 1])) → ∀x.F [x]

The goal is to prove ∀x.F [x], i.e., F holds for all numbers
1. We begin by proving that F [0] holds
2. We then prove that if F [x] holds, then F [x + 1] holds

F [0] is the basis of the induction

The assumption F [x] is the inductive
hypothesis

Establishing F [x] → F [x + 1] is the inductive
step

Matt Fredrikson Semantics 35 / 46

Inductive Sets

An inductive
set is constructed using axioms and inference rules

For example, the syntax of Imp defines an inductive set:

a ∈ AExp ::= n ∈ Z | x ∈ Var | a1 + a2 | a1 × a2

n ∈ AExp n ∈ Z
x ∈ AExp x ∈ Var

a1 ∈ AExp a2 ∈ AExp
a1 + a2 ∈ AExp

Recall that rules without antecedents are called axioms

The semantic relations →,→∗,⇓ are also inductive sets

As the name suggests, we can prove facts about these sets using
inductive reasoning

Matt Fredrikson Semantics 36 / 46

Structural Induction

Structural
Induction generalizes inductive reasoning to these sets

To prove that some property F holds on an inductively-defined set S:

1. Basis: Prove the base case for each axiom defining S. In other
words, for each rule

s ∈ S

prove F [s]

2. Inductive
step: Unlike “traditional” induction, there are several
inductive steps. For each inference rule:

s1 ∈ S · · · sn ∈ S

s ∈ S

prove that (s1 ∈ S ∧ · · · ∧ sn ∈ S) → s ∈ S. Note the inductive
hypotheses come from the antecedents of the rules.

Matt Fredrikson Semantics 37 / 46

Proving Semantic Properties

There are two primary ways to apply structural induction:

▶ On
program
syntax: Use the inductive set defined by Imp
syntax rules, and induce on all possible syntactic constructions.

▶ On
semantic
derivations: Use the inductive set defined by
either → or ⇓. This is often called induction
on
derivations.

Let’s apply this to proving determinism of Imp:
∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

This will be an induction on derivations for commands, structural
induction for expressions

Matt Fredrikson Semantics 38 / 46

Proving Determinism of Imp (1)

∀σ, a, n1, n2.(⟨a, σ⟩ ⇓ n1 ∧ ⟨a, σ⟩ ⇓ n2) → n1 = n2

First the expressions. We’ll do AExp.

The base cases:

BigConst
⟨n, σ⟩ ⇓ n

BigVar
⟨x, σ⟩ ⇓a n

where n = σ(x)

▶ If the expression is a constant, there is only one rule (BigConst).
We have that for all σ, n1 = n2.

▶ If the expression is a variable, then we have BigVar. Because σ
is the same in both evaluations, we have n1 = n2.

Matt Fredrikson Semantics 39 / 46

Proving Determinism of Imp (2)

∀σ, a, n, n′.(⟨a, σ⟩ ⇓ n ∧ ⟨a, σ⟩ ⇓ n′) → n = n′

Now the inductive case:

BigAdd
⟨a1, σ⟩ ⇓a n1 ⟨a2, σ⟩ ⇓a n2

⟨a1 + a2, σ⟩ ⇓a n
where n is the sum of n1, n2

If the expression is a sum, then the rule BigAdd applies.

We take as our inductive hypothesis that a1 and a2 are deterministic.
▶ Any derivation ⟨a, σ⟩ ⇓ n must have ⟨a1, σ⟩ ⇓ n1 and ⟨a1, σ⟩ ⇓ n2

as premises.
▶ Any derivation ⟨a, σ⟩ ⇓ n′ must have ⟨a1, σ⟩ ⇓ n′

1 and ⟨a1, σ⟩ ⇓ n′
2

as premises.
▶ By the inductive hypothesis n1 + n2 = n′

1 + n′
2 = n = n′

Matt Fredrikson Semantics 40 / 46

Proving Determinism of Imp (3)

∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

We said induction on derivations. Why not induction on syntax?

One of the cases will be for while b do c

Recall the rule BigWhileTrue:

BigWhileTrue
⟨b, σ⟩ ⇓b true ⟨c, σ⟩ ⇓ σ′ ⟨while b do c, σ′⟩ ⇓ σ′′

⟨while b do c, σ⟩ ⇓ σ′′

One of the inductive hypotheses is not a proper sub-component of
the original program!

This is not a well-founded induction.

Matt Fredrikson Semantics 41 / 46

Proving Determinism of Imp (4)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

Instead, we’ll show that if

T1

⟨c, σ⟩ ⇓ σ1

T2

⟨c, σ⟩ ⇓ σ2

then σ1 = σ2

Our inductive hypothesis will be that T1 and T2 satisfy F

For the inductive step, we need to consider each operational
semantics rule

Matt Fredrikson Semantics 42 / 46

Proving Determinism of Imp (5)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

Begin with BigAsgn:

BigAsgn
⟨a, σ⟩ ⇓a n′

⟨x := a, σ⟩ ⇓ σ[x 7→ n]

So we have:

BigAsgn

T1

⟨a, σ⟩ ⇓a n

⟨x := a, σ⟩ ⇓ σ[x 7→ n]
BigAsgn

T2

⟨a, σ⟩ ⇓a n′

⟨x := a, σ⟩ ⇓ σ[x 7→ n′]

Because expressions are deterministic, we have n = n′, so
σ[x 7→ n] = σ[x 7→ n′]

Matt Fredrikson Semantics 43 / 46

Proving Determinism of Imp (6)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

We’ll jump to BigWhileTrue:

BigWhileTrue
⟨b, σ⟩ ⇓b true ⟨c, σ⟩ ⇓ σ′ ⟨while b do c, σ′⟩ ⇓ σ′′

⟨while b do c, σ⟩ ⇓ σ′′

So we have:

BigWhileTrue

T1

⟨b, σ⟩ ⇓b true
T2

⟨c, σ⟩ ⇓ σ′
1

T3

⟨while b do c, σ′
1⟩ ⇓ σ1

⟨while b do c, σ⟩ ⇓ σ1

BigWhileTrue

T4

⟨b, σ⟩ ⇓b true
T5

⟨c, σ⟩ ⇓ σ′
2

T6

⟨while b do c, σ′
2⟩ ⇓ σ2

⟨while b do c, σ⟩ ⇓ σ2

Matt Fredrikson Semantics 44 / 46

Proving Determinism of Imp (7)

F : ∀σ, σ1, σ2, c.(⟨c, σ⟩ ⇓ σ1 ∧ ⟨c, σ⟩ ⇓ σ2) → σ1 = σ2

BigWhileTrue

T1

⟨b, σ⟩ ⇓b true
T2

⟨c, σ⟩ ⇓ σ′
1

T3

⟨while b do c, σ′
1⟩ ⇓ σ1

⟨while b do c, σ⟩ ⇓ σ1

BigWhileTrue

T4

⟨b, σ⟩ ⇓b true
T5

⟨c, σ⟩ ⇓ σ′
2

T6

⟨while b do c, σ′
2⟩ ⇓ σ2

⟨while b do c, σ⟩ ⇓ σ2

By ind. hypothesis on T2, T5, we have σ′
1 = σ′

2

So we can apply ind. hyp. on T3, T6 giving σ1 = σ2.

Matt Fredrikson Semantics 45 / 46

Next Lecture

We’ll leave the remaining cases as an exercise

Next lecture, we’ll see how to automate some of this with Dafny

We’ll move on to specifications of correctness

Matt Fredrikson Semantics 46 / 46

