Automated Program Verification and Testing 15414/15614 Fall 2016
 Lecture 10:
 Introduction to Program Semantics

Matt Fredrikson
mfredrik@cs.cmu.edu

October 4, 2016

Today's Lecture

- See how to reason about programs mathematically
- Formalize meaning of programs: operational semantics
- Review inductive principles, see how to generalize to semantics
- Prove properties about programs

Lanugage Semantics

Language semantics specify what happens when programs evaluate

- Does the program terminate?
- Does an invariant hold on every execution?
- Is the language deterministic?
- Are two programs equivalent?

Think of a mathematical definition of the language

Approaches

How might we do this?

- Why not write a compiler? Lots of irrelevant details. Which way does the stack grow? How are registers allocated? Which instructions do we use?
- Why not write natural language docs? Written language is ambiguous. Easy to miss cases, difficult to make sure it's been done right.

Well-constructed semantics give us a way to specify meaning with assurances:

- Execution won't get "stuck" where it shouldn't
- Programs don't exhibit unexplained behavior
- Specifications mean what we intend

Operational Semantics

Today we'll look at operational semantics

- Define an abstract "machine" to execute programs on
- Describe how values are computed from machine states
- Describe how statements change machine states

Together, these elements define the meaning of programs

Imp: Syntax

We will examine an imperative language Imp
Before talking about semantics, we need to define syntax

- Concrete syntax: rules for expressing programs as sequences of characters
- Abstract syntax: simplified rules that ignore tokens without semantic meaning

Concrete syntax is important in practice for parsing, readability, etc.
When talking about semantics, we'll use abstract syntax

Imp: Syntactic Entities

The syntax of Imp has three categories

- Arithmetic expressions AExp denoted by a, a_{1}, a_{2}, \ldots
- Boolean expressions BExp denoted by b, b_{1}, b_{2}, \ldots
- Commands Com denoted by c, c_{1}, c_{2}, \ldots

Arithmetic expressions take values n, n_{1}, n_{2}, \ldots in \mathbb{Z}
Boolean expressions take values in $\{$ true,false $\}$
Imp programs are always commands
We draw variables x, x_{1}, x_{2}, \ldots from a set Var

Imp: Abstract Syntax

$$
\begin{array}{ll}
a \in \text { AExp } & ::=n \in \mathbb{Z}|x \in \operatorname{Var}| a_{1}+a_{2} \mid a_{1} \times a_{2} \\
b \in \text { BExp } & ::= \\
& \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
c \in \mathbf{C o m} \quad::= & \text { skip }|x:=a| c_{1} ; c_{2} \\
& \mid \text { if } b \text { then } c_{1} \text { else } c_{2} \\
& \mid \text { while } b \text { do } c
\end{array}
$$

Note: AExp and BExp can be syntactic constants $0,1, \ldots$, true, false
These are in one-to-one correspondence with \mathbb{Z} and \{true, false \}

Program States

Programs in Imp operate over integers
Their variables have values stored in the environment
We model the environment as a map $\sigma: \operatorname{Var} \mapsto \mathbb{Z}$
For Imp, we always assume that σ is total
To completely specify program state, we define a configuration

Configuration

A configuration is a pair $\langle c, \sigma\rangle$, where $c \in$ Com is a command and σ is an environment. A configuration represents a moment in time during the computation of a program, where σ is the current assignment to variables and c is the next command to be executed.

Imp in Dafny

```
type Var = string
datatype AExp = N(n: int)
    | V(x: Var)
    | Plus(0: AExp, 1: AExp)
datatype BExp = B(v: bool)
    | Less(a0: AExp, a1: AExp)
    | Not(op: BExp)
    | And(0: BExp, 1: BExp)
datatype Com = Skip
    | Assign(vname, aexp)
    | Seq(com, com)
    | If(bexp, com, com)
    | While(bexp, com)
type Env = map<Var, int>
type Config = Com * Env
```


Small-Step Operational Semantics

Idea: Specify operations one step at a time

- Formalize semantics as transition relation over configurations
- For each syntactic element, provide inference rules
- Apply transition rules until final configuration $\langle\mathbf{s k i p}, \sigma\rangle$
- If the program reaches $\langle\mathbf{s k i p}, \sigma\rangle$, we say that it terminates

We need to define three transition relations:

- $\rightarrow_{a}:($ AExp \times Env $) \mapsto \mathbb{Z}$ for evaluating arithmetic expressions
- $\rightarrow_{b}:($ BExp \times Env $) \mapsto\{$ true, false $\}$ for Boolean expressions
- \rightarrow : (Com \times Env $) \mapsto($ Com \times Env $)$ for commands

Imp: Small-step AExp (1)

$$
a \in \mathbf{A E x p} \quad::=n \in \mathbb{Z}|x \in \operatorname{Var}| a_{1}+a_{2} \mid a_{1} \times a_{2}
$$

Let's start by defining the relation for \rightarrow_{a}

To evaluate a variable expression:

$$
\operatorname{Var} \frac{}{\langle x, \sigma\rangle \rightarrow_{a}\langle n, \sigma\rangle} \text { where } n=\sigma(x)
$$

Why no rule for constants?
Constants are irreducable
No rules on irreducable entities, so no further computation

Imp: Small-step AExp (2)

$$
a \in \operatorname{AExp} \quad::=n \in \mathbb{Z}|x \in \operatorname{Var}| a_{1}+a_{2} \mid a_{1} \times a_{2}
$$

Now let's move on to the arithmetic operators

$$
\begin{gathered}
\text { Add } \frac{\left\langle n_{1}+n_{2}, \sigma\right\rangle \rightarrow_{a}\left\langle n_{3}, \sigma\right\rangle}{} \text { where } n_{3} \text { is the sum of } n_{1}, n_{2} \\
\text { LAdd } \frac{\left\langle a_{1}, \sigma\right\rangle \rightarrow_{a} a_{1}^{\prime}}{\left\langle a_{1}+a_{2}, \sigma\right\rangle \rightarrow_{a}\left\langle a_{1}^{\prime}+a_{2}, \sigma\right\rangle} \quad \text { RAdd } \frac{\left\langle a_{2}, \sigma\right\rangle \rightarrow_{a} a_{2}^{\prime}}{\left\langle n+a_{2}, \sigma\right\rangle \rightarrow_{a}\left\langle n+a_{2}^{\prime}, \sigma\right\rangle}
\end{gathered}
$$

The rules specify the order in which computations are performed
In this case, evaluate the left operand before the right

Imp: Small-step BExp (1)

$$
b \in \operatorname{BExp} \quad::=\text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2}
$$

We can define semantics for Boolean expressions similarly

$$
\text { EqTrue } \overline{\left\langle n_{1}=n_{2}, \sigma\right\rangle \rightarrow_{b}\langle\text { true, } \sigma\rangle} \text { if } n_{1} \text { equals } n_{2}
$$

EqFalse

$$
\overline{\left\langle n_{1}=n_{2}, \sigma\right\rangle \rightarrow_{b}\langle\text { false, } \sigma\rangle} \text { if } n_{1} \text { not equals } n_{2}
$$

EqLeft $\frac{\left\langle a_{1}, \sigma\right\rangle \rightarrow_{a} a_{1}^{\prime}}{\left\langle a_{1}=a_{2}, \sigma\right\rangle \rightarrow_{b}\left\langle a_{1}^{\prime}=a_{2}, \sigma\right\rangle}$
EqRight $\frac{\left\langle a_{2}, \sigma\right\rangle \rightarrow_{a} a_{2}^{\prime}}{\left\langle n=a_{2}, \sigma\right\rangle \rightarrow_{b}\left\langle n=a_{2}^{\prime}, \sigma\right\rangle}$
The inequality operator is defined by replacing $=$ with \leq

Imp: Small-step BExp (2)

$$
b \in \operatorname{BExp} \quad::=\text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2}
$$

For Boolean connectives:

NotTrue $\overline{\langle\neg \text { true, } \sigma\rangle \rightarrow_{b}\langle\text { false }, \sigma\rangle}$

$$
\text { NotFalse } \overline{\langle\neg \text { false, } \sigma\rangle \rightarrow_{b}\langle\text { true, } \sigma\rangle}
$$

$$
\text { Not } \frac{\langle b, \sigma\rangle \rightarrow_{b}\left\langle b^{\prime}, \sigma\right\rangle}{\langle\neg b, \sigma\rangle \rightarrow_{b}\left\langle\neg b^{\prime}, \sigma\right\rangle}
$$

For \wedge, we need four rules:

- AndLeft, AndRight to evaluate the operands in order
- AndTrue, AndFalse to reduce \wedge over Boolean values

Example

Evaluate $(\mathrm{x}+2) \times y$ under $\sigma=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 3]$

Start by applying MulLeft:

$$
\text { MulLeft } \frac{\langle\mathrm{x}+2, \sigma\rangle \rightarrow_{a}\langle 3, \sigma\rangle}{\langle(\mathrm{x}+2) \times \mathrm{y}, \sigma\rangle \rightarrow_{a}\langle 3 \times \mathrm{y}, \sigma\rangle}
$$

Now we must show that the premise $\langle\mathrm{x}+2, \sigma\rangle \rightarrow_{a}\langle 3, \sigma\rangle$ holds
We apply AddLeft:

$$
\text { AddLeft } \frac{\langle\mathrm{x}, \sigma\rangle \rightarrow_{a}\langle 1, \sigma\rangle}{\langle\mathrm{x}+2, \sigma\rangle \rightarrow_{a}\langle 1+2, \sigma\rangle}
$$

Example Contd.

Evaluate $(\mathrm{x}+2) \times y$ under $\sigma=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 3]$

Now we need to show the premise $\langle\mathrm{x}, \sigma\rangle \rightarrow_{a}\langle 1, \sigma\rangle$
We apply Var:

$$
\operatorname{Var} \overline{\langle\mathrm{x}, \sigma\rangle \rightarrow_{a}\langle 1, \sigma\rangle}
$$

because $\sigma(x)=1$
Now we have $\langle\mathrm{x}+2, \sigma\rangle \rightarrow_{a}\langle 1+2, \sigma\rangle$
Apply Add:

$$
\text { Add } \overline{\langle 1+2, \sigma\rangle \rightarrow_{a}\langle 3, \sigma\rangle}
$$

Example Contd.

Evaluate $(\mathrm{x}+2) \times y$ under $\sigma=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 3]$

Now we've justified application of the rule:

$$
\text { MulLeft } \frac{\langle\mathrm{x}+2, \sigma\rangle \rightarrow_{a}\langle 3, \sigma\rangle}{\langle(\mathrm{x}+2) \times \mathrm{y}, \sigma\rangle \rightarrow_{a}\langle 3 \times \mathrm{y}, \sigma\rangle}
$$

We did this by deriving a proof using rules from the semantics
We can summarize our reasoning with the proof tree:

$$
\text { MulLeft } \frac{\text { AddLeft } \frac{\operatorname{Var} \overline{\langle\mathrm{x}, \sigma\rangle \rightarrow_{a}\langle 1, \sigma\rangle}}{\langle\mathrm{x}+2, \sigma\rangle \rightarrow_{a}\langle 1+2, \sigma\rangle} \quad \text { Add } \frac{}{\langle 1+2, \sigma\rangle \rightarrow_{a}\langle 3, \sigma\rangle}}{\langle(\mathrm{x}+2) \times \mathrm{y}, \sigma\rangle \rightarrow_{a}\langle 3 \times \mathrm{y}, \sigma\rangle}
$$

Example Contd.

Evaluate $(\mathrm{x}+2) \times y$ under $\sigma=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 3]$

But, we're not done:

$$
\langle 3 \times \mathrm{y}, \sigma\rangle \text { is reducible }
$$

Next steps:

1. Apply MulRight to evaluate y in $3 \times \mathrm{y}$
2. Apply Var to evaluate y alone
3. From 3×3, apply Mul to derive 9
4. Now, 9 is irreducible

Imp: Small-step commands (1)

$$
\begin{aligned}
c \in \text { Com } \quad::= & \text { skip }|x:=a| c_{1} ; c_{2} \\
& \mid \text { if } b \text { then } c_{1} \text { else } c_{2} \\
& \mid \text { while } b \text { do } c
\end{aligned}
$$

Now let's assign semantics to the commands
Unlike expressions, commands can change the environment
skip has no rule

Assignment:
Asgn1 $\frac{\langle a, \sigma\rangle \rightarrow_{a}\left\langle a^{\prime}, \sigma\right\rangle}{\langle x:=a, \sigma\rangle \rightarrow\left\langle x:=a^{\prime}, \sigma\right\rangle}$ Asgn2 $\overline{\langle x:=n, \sigma\rangle \rightarrow\langle\mathbf{s k i p}, \sigma[x \mapsto n]\rangle}$

Imp: Small-step commands (2)

$$
\begin{aligned}
c \in \mathbf{C o m} \quad::= & \text { skip }|x:=a| c_{1} ; c_{2} \\
& \mid \text { if } b \text { then } c_{1} \text { else } c_{2} \\
& \mid \text { while } b \text { do } c
\end{aligned}
$$

Composition $c_{1} ; c_{2}$ requires two rules:

$$
\text { Seq1 } \frac{\left\langle c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{1}^{\prime} ; c_{2}, \sigma^{\prime}\right\rangle} \quad \text { Seq2 } \frac{}{\langle\text { skip } ; c, \sigma\rangle \rightarrow\langle c, \sigma\rangle}
$$

Notice: in Seq1, the environment σ changes to σ^{\prime}
Evaluating c_{1} might have updated a variable, we account for this

Imp: Small-step commands (3)

$$
\begin{aligned}
c \in \mathbf{C o m} \quad::= & \text { skip }|x:=a| c_{1} ; c_{2} \\
& \mid \text { if } b \text { then } c_{1} \text { else } c_{2} \\
& \mid \text { while } b \text { do } c
\end{aligned}
$$

if commands introduce branching:

$$
\text { If } \frac{\langle b, \sigma\rangle \rightarrow\left\langle b^{\prime}, \sigma\right\rangle}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \rightarrow\left\langle\text { if } b^{\prime} \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle}
$$

IfTrue

$$
\overline{\left\langle\mathbf{f f} \text { true then } c_{1} \text { else } c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{1}, \sigma\right\rangle}
$$

IfFalse $\overline{\left\langle\text { if false then } c_{1} \text { else } c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{2}, \sigma\right\rangle}$

Imp: Small-step commands (4)

$$
\begin{aligned}
c \in \text { Com }::= & \text { skip }|x:=a| c_{1} ; c_{2} \\
& \mid \text { if } b \text { then } c_{1} \text { else } c_{2} \\
& \text { while } b \text { do } c
\end{aligned}
$$

while command fits in a single rule!

While $\overline{\langle\text { while } b \text { do } c, \sigma\rangle \rightarrow\langle\text { if } b \text { then }(c ; \text { while } b \text { do } c) \text { else skip, } \sigma\rangle}$
Unroll a while loop one iteration
Only break when the if command evaluates false

Big-step operational semantics

Now we've defined a full semantics for Imp
We can talk about evaluations using \rightarrow^{*}, the transitive closure of \rightarrow
If $\langle c, \sigma\rangle$ is an initial configuration, we derive a sequence of intermediate configurations to reach $\left\langle\mathbf{s k i p}, \sigma^{\prime}\right\rangle$

We could have defined the semantics to directly give the result σ^{\prime}
This is called big-step operational semantics, or natural semantics
Here, we define inference rules that give us judgements of the form:

$$
\langle c, \sigma\rangle \Downarrow \sigma^{\prime}
$$

Imp: Big-step AExp

BigConst $\overline{\langle n, \sigma\rangle \Downarrow n}$
BigVar $\overline{\langle x, \sigma\rangle \Downarrow_{a} n}$ where $n=\sigma(x)$
BigAdd $\frac{\left\langle a_{1}, \sigma\right\rangle \Downarrow_{a} n_{1} \quad\left\langle a_{2}, \sigma\right\rangle \Downarrow_{a} n_{2}}{\left\langle a_{1}+a_{2}, \sigma\right\rangle \Downarrow_{a} n}$ where n is the sum of n_{1}, n_{2}
BigMul $\frac{\left\langle a_{1}, \sigma\right\rangle \Downarrow_{a} n_{1} \quad\left\langle a_{2}, \sigma\right\rangle \Downarrow_{a} n_{2}}{\left\langle a_{1} \times a_{2}, \sigma\right\rangle \Downarrow_{a} n}$ where n is the product of n_{1}, n_{2}
The rules for defining Boolean expression are similar

Imp: Big-step commands

$$
\begin{gathered}
\text { BigAsgn } \frac{\langle a, \sigma\rangle \Downarrow a n}{\langle x:=a, \sigma\rangle \Downarrow \sigma[x \mapsto n]} \quad \text { BigSkip } \overline{\langle\text { skip }, \sigma\rangle \Downarrow \sigma} \\
\text { BigSeq } \frac{\left\langle c_{1}, \sigma_{1}\right\rangle \Downarrow \sigma_{1}^{\prime} \quad\left\langle c_{2}, \sigma_{1}^{\prime}\right\rangle \Downarrow \sigma_{2}}{\left\langle c_{1} ; c_{2}, \sigma_{1}\right\rangle \Downarrow \sigma_{2}}
\end{gathered}
$$

BiglfT $\frac{\langle b, \sigma\rangle \Downarrow_{b} \text { true } \quad\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma_{2}}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \Downarrow \sigma_{2}} \quad$ BiglfF $\frac{\langle b, \sigma\rangle \Downarrow_{b} \text { false } \quad\left\langle c_{2}, \sigma\right\rangle \Downarrow \sigma_{2}}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \Downarrow \sigma_{2}}$

$$
\text { BigWhileFalse } \frac{\langle b, \sigma\rangle \Downarrow_{b} \text { false }}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma}
$$

BigWhileTrue $\frac{\langle b, \sigma\rangle \Downarrow_{b} \text { true } \quad\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \quad\left\langle\text { while } b \text { do } c, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime \prime}}$

Big-step vs. Small-step Semantics

Now we have two ways to assign meaning to Imp programs
Why have both?

- Big-step semantics are more natural in the sense that they model the recursive definition of the language
- Fewer rules in big-step semantics makes proving things easier; no need to worry about order of evaluation
- However, there are no intermediate states to speak of in big-step
- To the point, all non-terminating executions look the same-no derivable judgement!
- Small-step semantics can model properties of non-terminating executions
- They can also model things like concurrency and run-time errors

Example: Program Equialence (1)

We can prove program equivalence using the semantics
Let's try using big-step. What is the property?

$$
c_{0} \sim c_{1} \text { iff } \forall \sigma, \sigma^{\prime} .\left\langle c_{0}, \sigma\right\rangle \Downarrow \sigma^{\prime} \Leftrightarrow\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}
$$

The programs we'll prove:

$$
c_{0}=\text { while } b \text { do } c \quad c_{1}=\text { if } b \text { then } c ;(\text { while } b \text { do } c) \text { else skip }
$$

We need to show both directions of \Leftrightarrow
First we prove: $\forall \sigma, \sigma^{\prime} .\left\langle c_{0}, \sigma\right\rangle \Downarrow \sigma^{\prime} \Rightarrow\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}$

Example: Program Equialence (2)

First we prove: $\forall \sigma, \sigma^{\prime} .\left\langle c_{0}, \sigma\right\rangle \Downarrow \sigma^{\prime} \Rightarrow\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}$
Assuming \langle while b do $c, \sigma\rangle \Downarrow \sigma^{\prime}$
One of two cases holds regarding b. Either:

- b is true, so the last rule was BigWhileTrue.
- b is false, so the last rule was BigWhileFalse.

Suppose the former case, so BigWhileTrue.
Then there must be some derivation that takes the shape:

$$
\text { BigWhileTrue } \frac{\frac{T_{1}}{\langle b, \sigma\rangle \Downarrow \text { true }}}{\frac{T_{2}}{\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime}} \quad \frac{T_{3}}{\left\langle\text { while } b \text { do } c, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}}
$$

Example: Program Equialence (3)

$$
\text { BigWhileTrue } \frac{\frac{T_{1}}{\langle b, \sigma\rangle \Downarrow \text { true }}}{\frac{T_{2}}{\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime}} \quad \frac{T_{3}}{\left\langle\text { while } b \text { do } c, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}}
$$

Recall, our goal is to show that: $\left\langle\right.$ if b then $c ;($ while b do c) else skip, $\sigma\rangle \Downarrow \sigma^{\prime}$

We can use T_{3} and T_{3} with BigSeq to show:

Then T_{1} and BiglfTrue to show:

$$
\text { BiglfT } \frac{T_{1} \quad \text { BigSeq } \frac{T_{2} \quad T_{2}}{\langle c ;(\text { while } b \text { do } c), \sigma\rangle \Downarrow \sigma^{\prime}}}{\langle\text { if } b \text { then } c ;(\text { while } b \text { do } c) \text { else skip }, \sigma\rangle \Downarrow \sigma^{\prime}}
$$

Example: Program Equialence (4)

This does it for the case where b is true.
Now for b is false.
In this case the derivation tree ends with:

$$
\text { BigWhileF } \frac{\frac{T_{4}}{\langle b, \sigma\rangle \Downarrow \text { false }}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma}
$$

We can use T_{4} with BigSkip and BiglfF:

$$
\text { BiglffF } \frac{T_{4} \quad \text { BigSkip } \overline{\langle\text { skip, } \sigma\rangle \Downarrow \sigma}}{\langle\text { if } b \text { then } c ;(\text { while } b \text { do } c) \text { else skip }, \sigma\rangle \Downarrow \sigma}
$$

This concludes the direction $\forall \sigma, \sigma^{\prime} .\left\langle c_{0}, \sigma\right\rangle \Downarrow \sigma^{\prime} \Rightarrow\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}$

Example: Program Equialence (5)

Now for the direction $\forall \sigma, \sigma^{\prime} .\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime} \Rightarrow\left\langle c_{0}, \sigma\right\rangle \Downarrow \sigma^{\prime}$
The last rule in the derivation is either BiglfT or BiglfF
Suppose that BiglfT:

$$
\begin{aligned}
& \text { BigITT } \frac{\frac{T_{1}}{\overline{\langle b, \sigma\rangle \Downarrow t r u e}} \quad \text { BigSeq } \frac{\overline{\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime}} \quad \overline{\left\langle\text { while } b \text { do } c, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}}{\langle c \text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime}}}{\langle\text { if } b \text { then } c ;(\text { while } b \text { do } c) \text { else skip, } \sigma\rangle \Downarrow \sigma^{\prime}}
\end{aligned}
$$

Now we can use BigWhileTrue with T_{1}, T_{2}, T_{3} :

$$
\text { BigWhileTrue } \frac{T_{1} \quad T_{2} \quad T_{3}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime}}
$$

Example: Program Equialence (6)

Now we move on to BiglfF:

Now we can use BigWhileFalse with T_{4} :

$$
\text { BigWhileFalse } \frac{T_{4}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma}
$$

This completes the proof.

Semantic Properties

We can also prove important properties about the semantics

- Determinism: For any $\sigma_{1}, \sigma_{2}, \sigma$ and command c, if $\langle c, \sigma\rangle \Downarrow \sigma_{1}$ and $\langle c, \sigma\rangle \Downarrow \sigma_{2}$, then $\sigma_{1}=\sigma_{2}$:

$$
\forall \sigma, \sigma_{1}, \sigma_{2}, c .\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

- Expression termination: For any σ and arithmetic (Boolean) expression $e \in \operatorname{AExp}$ ($e \in \operatorname{BExp}$), there is a value v such that $\langle e, \sigma\rangle \Downarrow v$:

$$
\forall \sigma, e . \exists v .\langle e, \sigma\rangle \Downarrow v
$$

To prove statements like these, we'll need to use induction

Induction

Recall our inductive axiom from $T_{P A}$

$$
(F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1])) \rightarrow \forall x \cdot F[x]
$$

The goal is to prove $\forall x . F[x]$, i.e., F holds for all numbers

1. We begin by proving that $F[0]$ holds
2. We then prove that if $F[x]$ holds, then $F[x+1]$ holds
$F[0]$ is the basis of the induction
The assumption $F[x]$ is the inductive hypothesis
Establishing $F[x] \rightarrow F[x+1]$ is the inductive step

Inductive Sets

An inductive set is constructed using axioms and inference rules
For example, the syntax of Imp defines an inductive set:

$$
\begin{array}{cl}
a \in \mathbf{A E x p} & ::=n \in \mathbb{Z}|x \in \operatorname{Var}| a_{1}+a_{2} \mid a_{1} \times a_{2} \\
\frac{a_{1} \in \mathrm{AExp}}{n \in \operatorname{AExp}} n \in \mathbb{Z} \quad a_{2} \in \mathrm{AExp} \\
a_{1}+a_{2} \in \mathrm{AExp}
\end{array}
$$

Recall that rules without antecedents are called axioms
The semantic relations $\rightarrow, \rightarrow^{*}, \Downarrow$ are also inductive sets
As the name suggests, we can prove facts about these sets using inductive reasoning

Structural Induction

Structural Induction generalizes inductive reasoning to these sets
To prove that some property F holds on an inductively-defined set S :

1. Basis: Prove the base case for each axiom defining S. In other words, for each rule

$$
\overline{s \in S}
$$

prove $F[s]$
2. Inductive step: Unlike "traditional" induction, there are several inductive steps. For each inference rule:

\[

\]

prove that $\left(s_{1} \in S \wedge \cdots \wedge s_{n} \in S\right) \rightarrow s \in S$. Note the inductive hypotheses come from the antecedents of the rules.

Proving Semantic Properties

There are two primary ways to apply structural induction:

- On program syntax: Use the inductive set defined by Imp syntax rules, and induce on all possible syntactic constructions.
- On semantic derivations: Use the inductive set defined by either \rightarrow or \Downarrow. This is often called induction on derivations.

Let's apply this to proving determinism of Imp:

$$
\forall \sigma, \sigma_{1}, \sigma_{2}, c .\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

This will be an induction on derivations for commands, structural induction for expressions

Proving Determinism of Imp (1)

$$
\forall \sigma, a, n_{1}, n_{2} \cdot\left(\langle a, \sigma\rangle \Downarrow n_{1} \wedge\langle a, \sigma\rangle \Downarrow n_{2}\right) \rightarrow n_{1}=n_{2}
$$

First the expressions. We'll do AExp.
The base cases:
BigConst $\overline{\langle n, \sigma\rangle \Downarrow n} \quad$ BigVar $\overline{\langle x, \sigma\rangle \Downarrow_{a} n}$ where $n=\sigma(x)$

- If the expression is a constant, there is only one rule (BigConst). We have that for all $\sigma, n_{1}=n_{2}$.
- If the expression is a variable, then we have BigVar. Because σ is the same in both evaluations, we have $n_{1}=n_{2}$.

Proving Determinism of Imp (2)

$$
\forall \sigma, a, n, n^{\prime} .\left(\langle a, \sigma\rangle \Downarrow n \wedge\langle a, \sigma\rangle \Downarrow n^{\prime}\right) \rightarrow n=n^{\prime}
$$

Now the inductive case:

BigAdd $\frac{\left\langle a_{1}, \sigma\right\rangle \Downarrow_{a} n_{1} \quad\left\langle a_{2}, \sigma\right\rangle \Downarrow_{a} n_{2}}{\left\langle a_{1}+a_{2}, \sigma\right\rangle \Downarrow_{a} n}$ where n is the sum of n_{1}, n_{2}
If the expression is a sum, then the rule BigAdd applies.
We take as our inductive hypothesis that a_{1} and a_{2} are deterministic.

- Any derivation $\langle a, \sigma\rangle \Downarrow n$ must have $\left\langle a_{1}, \sigma\right\rangle \Downarrow n_{1}$ and $\left\langle a_{1}, \sigma\right\rangle \Downarrow n_{2}$ as premises.
- Any derivation $\langle a, \sigma\rangle \Downarrow n^{\prime}$ must have $\left\langle a_{1}, \sigma\right\rangle \Downarrow n_{1}^{\prime}$ and $\left\langle a_{1}, \sigma\right\rangle \Downarrow n_{2}^{\prime}$ as premises.
- By the inductive hypothesis $n_{1}+n_{2}=n_{1}^{\prime}+n_{2}^{\prime}=n=n^{\prime}$

Proving Determinism of Imp (3)

$$
\forall \sigma, \sigma_{1}, \sigma_{2}, c \cdot\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

We said induction on derivations. Why not induction on syntax?
One of the cases will be for while b do c
Recall the rule BigWhileTrue:
BigWhileTrue $\frac{\langle b, \sigma\rangle \Downarrow_{b} \text { true } \quad\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \quad\left\langle\text { while } b \text { do } c, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime \prime}}$
One of the inductive hypotheses is not a proper sub-component of the original program!

This is not a well-founded induction.

Proving Determinism of Imp (4)

$$
F: \forall \sigma, \sigma_{1}, \sigma_{2}, c .\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

Instead, we'll show that if

$$
\frac{T_{1}}{\langle c, \sigma\rangle \Downarrow \sigma_{1}} \quad \frac{T_{2}}{\langle c, \sigma\rangle \Downarrow \sigma_{2}}
$$

then $\sigma_{1}=\sigma_{2}$
Our inductive hypothesis will be that T_{1} and T_{2} satisfy F
For the inductive step, we need to consider each operational semantics rule

Proving Determinism of Imp (5)

$$
F: \forall \sigma, \sigma_{1}, \sigma_{2}, c \cdot\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

Begin with BigAsgn:

$$
\text { BigAsgn } \frac{\langle a, \sigma\rangle \Downarrow_{a} n^{\prime}}{\langle x:=a, \sigma\rangle \Downarrow \sigma[x \mapsto n]}
$$

So we have:

$$
\operatorname{BigAsgn} \frac{T_{1}}{\langle a, \sigma\rangle \Downarrow_{a} n} \quad \text { BigAsgn } \frac{\frac{T_{2}}{\langle a, \sigma\rangle \Downarrow_{a} n^{\prime}}}{\langle x:=a, \sigma\rangle \Downarrow \sigma\left[x \mapsto n^{\prime}\right]}
$$

Because expressions are deterministic, we have $n=n^{\prime}$, so $\sigma[x \mapsto n]=\sigma\left[x \mapsto n^{\prime}\right]$

Proving Determinism of Imp (6)

$$
F: \forall \sigma, \sigma_{1}, \sigma_{2}, c \cdot\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

We'll jump to BigWhileTrue:
BigWhileTrue $\frac{\langle b, \sigma\rangle \Downarrow_{b} \text { true } \quad\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \quad\left\langle\text { while } b \text { do } c, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime}}{}$
So we have:

$$
\begin{array}{r}
\text { BigWhileTrue } \frac{\frac{T_{1}}{\langle b, \sigma\rangle \Downarrow_{b} \text { true }}}{\frac{T_{2}}{\langle c, \sigma\rangle \Downarrow \sigma_{1}^{\prime}}} \frac{\frac{T_{3}}{\left\langle\text { while } b \text { do } c, \sigma_{1}^{\prime}\right\rangle \Downarrow \sigma_{1}}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma_{1}} \\
\text { BigWhileTrue } \frac{\frac{T_{4}}{\langle b, \sigma\rangle \Downarrow_{b} \text { true }}}{} \begin{array}{l}
\frac{T_{5}}{\langle c, \sigma\rangle \Downarrow \sigma_{2}^{\prime}}
\end{array} \frac{T_{6}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma_{2}}
\end{array}
$$

Proving Determinism of Imp (7)

$$
F: \forall \sigma, \sigma_{1}, \sigma_{2}, c \cdot\left(\langle c, \sigma\rangle \Downarrow \sigma_{1} \wedge\langle c, \sigma\rangle \Downarrow \sigma_{2}\right) \rightarrow \sigma_{1}=\sigma_{2}
$$

BigWhileTrue $\frac{\frac{T_{1}}{\langle b, \sigma\rangle \Downarrow_{b} \text { true }} \quad \frac{T_{2}}{\langle c, \sigma\rangle \Downarrow \sigma_{1}^{\prime}} \quad \frac{T_{3}}{\left\langle\text { while } b \text { do } c, \sigma_{1}^{\prime}\right\rangle \Downarrow \sigma_{1}}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma_{1}}$

BigWhileTrue $\frac{\frac{T_{4}}{\langle b, \sigma\rangle \Downarrow_{b} \text { true }} \quad \frac{T_{5}}{\langle c, \sigma\rangle \Downarrow \sigma_{2}^{\prime}} \quad \frac{T_{6}}{\left\langle\text { while } b \text { do } c, \sigma_{2}^{\prime}\right\rangle \Downarrow \sigma_{2}}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma_{2}}$
By ind. hypothesis on T_{2}, T_{5}, we have $\sigma_{1}^{\prime}=\sigma_{2}^{\prime}$
So we can apply ind. hyp. on T_{3}, T_{6} giving $\sigma_{1}=\sigma_{2}$.

Next Lecture

We'll leave the remaining cases as an exercise
Next lecture, we'll see how to automate some of this with Dafny
We'll move on to specifications of correctness

