

Automated Program Verification and Testing

15414/15614 Fall 2016

Lecture 3:

Practical SAT Solving

Matt Fredrikson
mfredrik@cs.cmu.edu

October 17, 2016

Review: Propositional Semantics

Goal: Give meaning to propositional formulas

Assign Boolean truth values to (formula, interpretation) pairs

Formula F + Interpretation I = Truth Value (true, false)

Note: we often abbreviate *true* by 1 and *false* by 0

Interpretation

An interpretation I for propositional formula F maps every propositional variable appearing in F to a truth value, i.e.:

$$I = \{P \mapsto \text{true}, Q \mapsto \text{false}, R \mapsto \text{false}, \dots\}$$

Review: Interpretations

Satisfying Interpretation

I is a *satisfying interpretation* of a propositional formula F if F is *true* under I . We denote this with the notation:

$$I \models F$$

Falsifying Interpretation

I is a *falsifying interpretation* of a propositional formula F if F is *false* under I . We denote this with the notation:

$$I \not\models F$$

Review: Conjunctive Normal Form (CNF)

Take the form:

$$\bigwedge_i \bigvee_j P_{ij}$$

$\langle \text{atom} \rangle ::= \top \mid \perp \mid P, Q, \dots$

To convert to CNF:

1. Convert to NNF
2. Distribute \vee over \wedge

$\langle \text{literal} \rangle ::= \langle \text{atom} \rangle \mid \neg \langle \text{atom} \rangle$

$\langle \text{clause} \rangle ::= \langle \text{literal} \rangle$
 $\mid \langle \text{literal} \rangle \vee \langle \text{clause} \rangle$

Naive approach has exponential blowup $\langle \text{formula} \rangle ::= \langle \text{clause} \rangle$

$\mid \langle \text{clause} \rangle \wedge \langle \text{formula} \rangle$

Tseitin's transformation: linear increase in formula size

Satisfiability Problem

SAT Problem

Given a propositional formula F , decide whether there exists an interpretation I such that $I \models F$.

3SAT was the first established NP-Complete problem (Cook, 1971)

Most important logical problems can be reduced to SAT

- ▶ Validity
- ▶ Entailment
- ▶ Equivalence

CNF Notation

All of the algorithms we talk about assume that formulas are in CNF

We'll refer to a formula as a set of clauses $F = \{C_1, \dots, C_n\}$

Likewise, clauses as sets of literals

$$(P \vee Q) \wedge (Q \rightarrow \neg P) \quad \{\{P, Q\}, \{\neg Q, \neg P\}\}$$

Some convenient notation:

- ▶ $C_i\{P \mapsto F\}$: C_i with F substituted for P
- ▶ $C_i[P]$: P appears positive in C_i , i.e., $C_i = \{\dots, P, \dots\}$
- ▶ $C_i[\neg P]$: P appears negated in C_i , i.e., $C_i = \{\dots, \neg P, \dots\}$
- ▶ $C_i \vee C_j$: union of C_i and C_j , $C_i \cup C_j$
- ▶ $F_i \wedge F_j$: union of F_i and F_j , $F_i \cup F_j$

Resolution

Single inference rule:

$$\frac{C_1[P] \quad C_2[\neg P]}{C_1\{P \mapsto \perp\} \vee C_2\{\neg P \mapsto \perp\}}$$

Given two clauses that share variable P but disagree on its value:

1. If P is *true*, then some other literal in C_2 must be true
2. If P is *false*, then some other literal in C_1 must be true
3. Therefore, *resolve* on P in both clauses by removing it
4. $C_1\{P \mapsto \perp\} \vee C_2\{\neg P \mapsto \perp\}$ is called the *resolvent*

If $C_1\{P \mapsto \perp\} \vee C_2\{\neg P \mapsto \perp\} = \perp \vee \perp = \perp$:

1. Then $C_1 \wedge C_2$ is unsatisfiable
2. Any CNF containing $\{C_1, C_2\}$ is unsatisfiable

Resolution Procedure

```
function Resolution( $F$ )
   $F' = \emptyset$ 
  repeat
     $F \leftarrow F \cup F'$ 
    for all  $C_i, C_j \in F$  do
       $C' = \text{Resolve}(C_i, C_j)$ 
      if  $C' = \perp$  then
        return unsat
      end if
       $F' \leftarrow F' \cup \{C'\}$ 
    end for
  until  $F' \subseteq F$ 
  return sat
end function
```

1. For each round, compute all possible resolvents
2. F' holds set of all resolvents
3. At each round, update F to contain past resolvents
4. Repeat resolution on updated F
5. Terminate when:
 - ▶ Encounter \perp resolvent
 - ▶ Don't find anything new to add to F

Resolution: Example

$$(P \vee Q) \wedge (P \rightarrow R) \wedge (Q \rightarrow R) \wedge \neg R$$

$$\underbrace{(P \vee Q)}_{C_1} \wedge \underbrace{(\neg P \vee R)}_{C_2} \wedge \underbrace{(\neg Q \vee R)}_{C_3} \wedge \underbrace{\neg R}_{C_4}$$

1	$P \vee Q$		9	R	3 & 5
2	$\neg P \vee R$		10	Q	4 & 5
3	$\neg Q \vee R$		11	P	1 & 8
4	$\neg R$		12	\perp	4 & 9
5	$Q \vee R$	1 & 2			
7	$\neg P$	2 & 4			
8	$\neg Q$	3 & 4			

Resolution: Properties

Why is resolution particularly bad for large problems?

Hint: What does this technique build along the way?

Space complexity: $\exp(O(N))$

Example: m pigeons won't go into n holes when $m > n$

- ▶ $p_{i,j}$: pigeon i goes in hole j
- ▶ $p_{i,1} \vee p_{i,2} \vee \dots \vee p_{i,n}$: every pigeon i gets a hole
- ▶ $\neg p_{i,j} \vee \neg p_{i',j}$: no hole j gets two pigeons $i \neq i'$
- ▶ Resolution proof size: $\exp(\Omega(N))$

Partial Interpretations

Starting from an empty interpretation:

- ▶ Extend for each variable
- ▶ No direct modifications to literals in formula

More flexibility in implementation strategy (more on this later)

If I is a *partial* interpretation, literals ℓ can be *true*, *false*, *undef*:

- ▶ *true* (satisfied): $I \models \ell$
- ▶ *false* (conflicting): $I \not\models \ell$
- ▶ *undef*: $\text{var}(\ell) \notin I$

Given a clause C and interpretation I :

- ▶ C is *true* under I iff $I \models C$
- ▶ C is *false* under I iff $I \not\models C$
- ▶ C is *unit* under I iff $C = C' \vee \ell$, ℓ is *undef*
- ▶ Otherwise it is *undef*

Example

$$I = \{P_1 \mapsto 1, P_2 \mapsto 0, P_4 \mapsto 1\}$$

$P_1 \vee P_3 \vee \neg P_4$	<i>satisfied</i>
$\neg P_1 \vee P_2$	<i>conflicting</i>
$\neg P_1 \vee \neg P_4 \vee P_3$	<i>unit</i>
$\neg P_1 \vee P_3 \vee P_5$	<i>undef</i>

Decision Procedure as a Transition System

Transition system is a binary relation over **states**

Transitions are induced by *guarded* transition rules

Procedure State

The possible states are:

- ▶ *sat*
- ▶ *unsat*
- ▶ $[I] \parallel F$

Where $[I]$ is an *ordered* interpretation, F is a CNF.

Initial state: $[\emptyset] \parallel F$

Final states: *sat, unsat*

Ex. intermediate states:

- ▶ $[\emptyset] \parallel F_1, C$: empty interpretation, $F = F_1 \wedge C$
- ▶ $[I_1, \overline{P}, I_2] \parallel F$: interp. assigns I_1 first, then $P \mapsto 0$, then I_2

Basic Search

Decision Rule

$$[I] \parallel F \hookrightarrow [I, P^\circ] \parallel F \text{ if } \begin{cases} P \text{ occurs in } F \\ P \text{ unassigned in } I \end{cases}$$

Backtrack Rule

$$[I_1, P^\circ, I_2] \parallel F \hookrightarrow [I_1, \overline{P}] \parallel F \text{ if } \begin{cases} [I_1, P, I_2] \not\models F \\ P \text{ last decision in interp.} \end{cases}$$

Sat Rule

$$[I] \parallel F \hookrightarrow \text{sat if } [I] \models F$$

Unsat Rule

$$[I] \parallel F \hookrightarrow \text{unsat if } \begin{cases} [I] \not\models F \\ \text{No decisions in } I \end{cases}$$

Example

$$F := \begin{array}{lll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_3 \vee P_4 & C_3 = \neg P_6 \vee \neg P_5 \vee \neg P_2 \\ C_4 = \neg P_5 \vee P_6 & C_5 = P_5 \vee P_7 & C_6 = \neg P_1 \vee P_5 \vee P_7 \end{array}$$

<i>I</i>	Rule
P_2°	Decide
P_2°, P_4°	Decide
$P_2^\circ, P_4^\circ, P_5^\circ$	Decide
$P_2^\circ, P_4^\circ, P_5^\circ, P_6^\circ$	Decide
$P_2^\circ, P_4^\circ, P_5^\circ, \overline{P_6}$	Backtrack
$P_2^\circ, P_4^\circ, \overline{P_5}$	Backtrack
$P_2^\circ, P_4^\circ, \overline{P_5}, P_7^\circ$	Decide
$P_2^\circ, P_4^\circ, \overline{P_5}, P_7^\circ$	Sat

Unit Propagation

Recall *unit* clauses. For an interpretation I and clause C ,

- ▶ I does not satisfy C
- ▶ All but one literals in C are assigned

I implies an assignment for the unassigned literal

Unit Propagation Rule

$$[I] \parallel F, C \vee (\neg)P \hookrightarrow [I, P(\text{or } \overline{P})] \parallel F, C \vee (\neg)P \text{ if } \begin{cases} [I] \not\models C \\ P \text{ undefined in } I \end{cases}$$

This is a restricted form of resolution

Example Revisited

$$F := \begin{array}{lll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_3 \vee P_4 & C_3 = \neg P_6 \vee \neg P_5 \vee \neg P_2 \\ C_4 = \neg P_5 \vee P_6 & C_5 = P_5 \vee P_7 & C_6 = \neg P_1 \vee P_5 \vee \neg P_7 \end{array}$$

I	Rule	I	Rule
P_1°	Decide	$P_1^\circ, P_2, \overline{P_3}$	Backtrack
P_1°, P_2	Propagate	$P_1^\circ, P_2, \overline{P_3}, P_5^\circ$	Decide
$P_1^\circ, P_2, P_3^\circ$	Decide	$P_1^\circ, P_2, \overline{P_3}, P_5^\circ, \overline{P_6}$	Propagate
$P_1^\circ, P_2, P_3^\circ, P_4$	Propagate	$P_1^\circ, P_2, \overline{P_3}, \overline{P_5}$	Backtrack
$P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ$	Decide	$P_1^\circ, P_2, \overline{P_3}, \overline{P_5}, P_7$	Propagate
$P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}$	Propagate	$\overline{P_1}$	Backtrack
$P_1^\circ, P_2, P_3^\circ, P_4, \overline{P_5}$	Backtrack	\dots	
$P_1^\circ, P_2, P_3^\circ, P_4, \overline{P_5}, P_7$	Propagate	$\overline{P_1}, P_2^\circ, P_3^\circ, P_4, \overline{P_5}, P_7$	Sat

Example

$$F := \begin{array}{lll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_2 \vee P_3 & C_3 = \neg P_3 \vee P_4 \\ C_4 = \neg P_4 \vee P_5 & C_5 = \neg P_5 \vee \neg P_1 & C_6 = P_1 \vee P_2 \vee P_3 \vee P_4 \vee \neg P_5 \end{array}$$

I	Rule
P_1°	Decide
P_1°, P_2	Propagate
P_1°, P_2, P_3	Propagate
P_1°, P_2, P_3, P_4	Propagate
$P_1^\circ, P_2, P_3, P_4, P_5$	Propagate
$\overline{P_1}$	Backtrack
$\overline{P_1}, P_2^\circ$	Decide
$\overline{P_1}, P_2^\circ, P_3$	Propagate
\dots	(Several propagations)
$\overline{P_1}, P_2^\circ, P_3, P_4, P_5$	Sat

Non-Chronological Backtracking & Clause Learning

The backtracking rule seems short-sighted

- ▶ It always jumps to the most recent decision
- ▶ It does not keep information about the conflict

Backjump Rule

$$[I_1, P^\circ, I_2] \parallel F \hookrightarrow [I_1, \ell] \parallel F, C \text{ if } \left\{ \begin{array}{l} [I_1, P^\circ, I_2] \not\models F \\ \text{Exists } C \text{ s.t. :} \\ F \Rightarrow (C \rightarrow \ell) \\ I_1 \models C \\ \text{var}(\ell) \text{ undef. in } I_1 \\ \text{var}(\ell) \text{ appears in } F \end{array} \right.$$

C is called a *conflict clause*

Will help us prevent similar conflicts in the future

Example Revisited (again)

$$F := \begin{array}{lll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_3 \vee P_4 & C_3 = \neg P_6 \vee \neg P_5 \vee \neg P_2 \\ C_4 = \neg P_5 \vee P_6 & C_5 = P_5 \vee P_7 & C_6 = \neg P_1 \vee P_5 \vee \neg P_7 \end{array}$$

$$C_7 = \neg P_1 \vee \neg P_5$$

I	Rule
P_1°	Decide
P_1°, P_2	Propagate
$P_1^\circ, P_2, P_3^\circ$	Decide
$P_1^\circ, P_2, P_3^\circ, P_4$	Propagate
$P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ$	Decide
$P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}$	Propagate
$P_1^\circ, P_2, \overline{P_5}$	Backjump, $P_1 \rightarrow \neg P_5$
$P_1^\circ, P_2, \overline{P_5}, P_7$	Propagate
$\overline{P_1}$	Backjump, $true \rightarrow \neg P_1$
...	

Finding a Conflict Clause

The Backjump rule requires a conflict clause

To find one, we construct an *implication graph* $G = (V, E)$

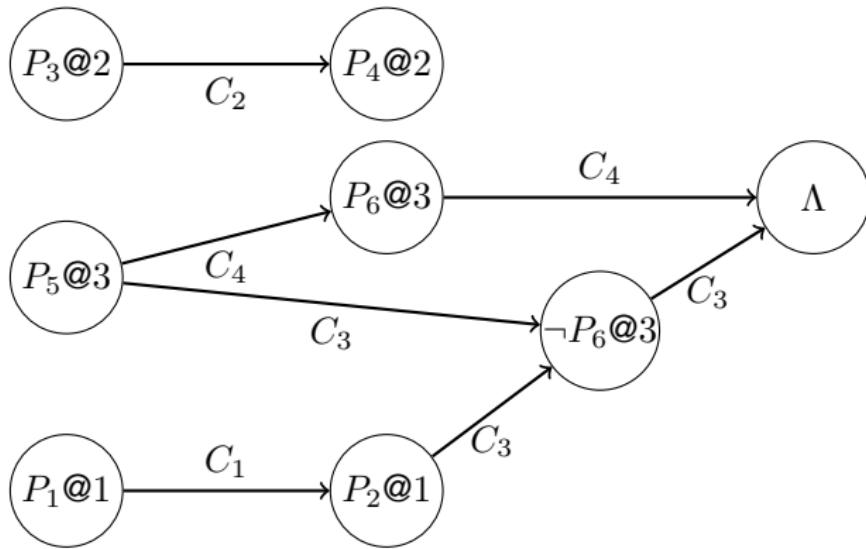
- ▶ V has a node for each decision literal in I , labeled with the literal's value and its decision level.
- ▶ For each clause $C = \ell_1 \vee \dots \vee \ell_n \vee \ell$ where ℓ_1, \dots, ℓ_n are assigned *false*,
 1. Add a node for ℓ with the decision level in which it entered I
 2. Add edges (ℓ_i, ℓ) for $1 \leq i \leq n$ to E
- ▶ Add a special *conflict node* Λ . For any *conflict variable* with nodes labeled P and $\neg P$, add edges from these nodes to Λ in E .
- ▶ Label each edge with the clause that caused the implication.

The implication graph contains sufficient information to generate a conflict clause

Implication Graph

$$F := \begin{array}{lll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_3 \vee P_4 & C_3 = \neg P_6 \vee \neg P_5 \vee \neg P_2 \\ C_4 = \neg P_5 \vee P_6 & C_5 = P_5 \vee P_7 & C_6 = \neg P_1 \vee P_5 \vee \neg P_7 \end{array}$$

$$I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}]$$



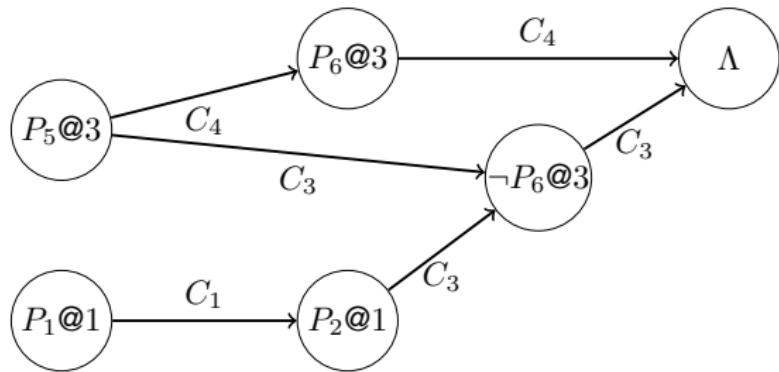
Conflict Graph

Implication graph where:

- ▶ Exactly one conflict variable
- ▶ All nodes have a path to Λ

$$\begin{aligned}C_1 &= \neg P_1 \vee P_2 & C_2 &= \neg P_3 \vee P_4 \\C_3 &= \neg P_6 \vee \neg P_5 \vee \neg P_2 & \\C_4 &= \neg P_5 \vee P_6 & C_5 &= P_5 \vee P_7 \\C_6 &= \neg P_1 \vee P_5 \vee \neg P_7\end{aligned}$$

$$I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}]$$



Generating Conflict Clauses

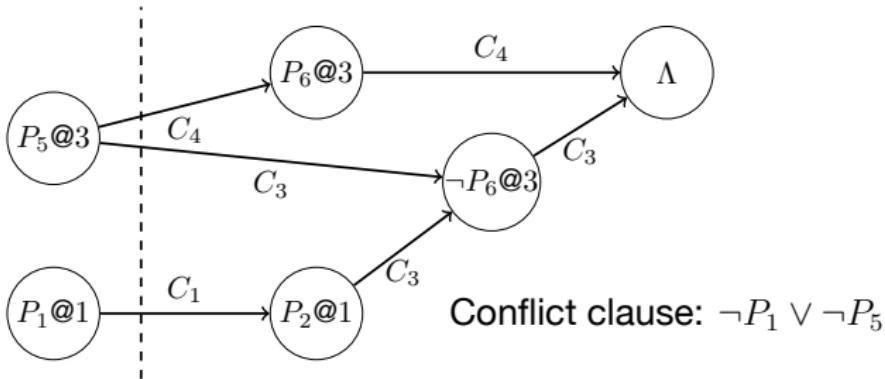
Consider a conflict graph G

1. Pick a cut in G such that:
 - ▶ All of the decision nodes are on one side (the “reason” side)
 - ▶ At least one conflict literal is on the other (the “conflict” side)
2. Pick all nodes K on the reason side with an edge crossing the cut
3. The nodes in K form a cause of the conflict
4. The negations of the corresponding literal form the conflict clause

Generating Conflict Clauses

$$\begin{aligned}C_1 &= \neg P_1 \vee P_2 & C_2 &= \neg P_3 \vee P_4 \\C_3 &= \neg P_6 \vee \neg P_5 \vee \neg P_2 \\C_4 &= \neg P_5 \vee P_6 & C_5 &= P_5 \vee P_7 \\C_6 &= \neg P_1 \vee P_5 \vee \neg P_7\end{aligned}$$

$$I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}]$$



Generating Conflict Clauses

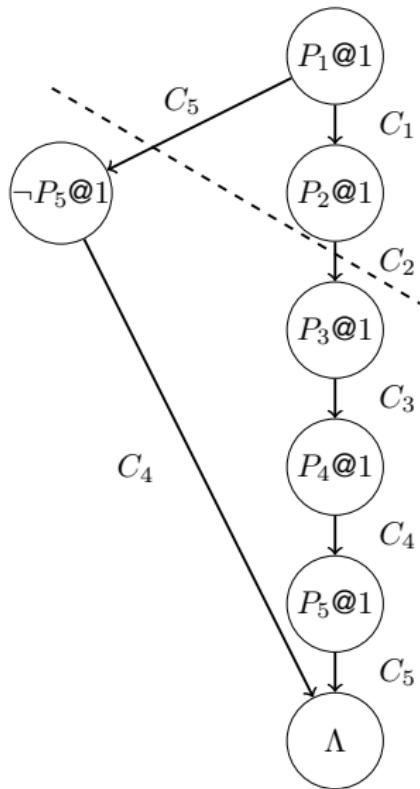
$$\begin{array}{ll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_2 \vee P_3 \\ C_3 = \neg P_3 \vee P_4 & C_4 = \neg P_4 \vee P_5 \\ C_5 = \neg P_5 \vee \neg P_1 & \\ C_6 = P_1 \vee P_2 \vee P_3 \vee P_4 \vee \neg P_5 & \end{array}$$

$$I = [P_1^\circ, P_2, P_3, P_4, P_5]$$

Conflict clause: $P_1 \rightarrow \neg P_2$

Any others?

Does order matter?



Generating Conflict Clauses

This corresponds to resolution:

1. Let C be the conflicted clause
2. Pick most recently implied literal in conflict graph G
3. Let C' be the clause that implied it
4. Let $C \leftarrow \text{resolve}(C, C')$
5. Repeat step 2 while applicable

$$\begin{array}{ll} C_1 = \neg P_1 \vee P_2 & C_2 = \neg P_3 \vee P_4 \\ C_3 = \neg P_6 \vee \neg P_5 \vee \neg P_2 & \\ C_4 = \neg P_5 \vee P_6 & C_5 = P_5 \vee P_7 \\ C_6 = \neg P_1 \vee P_5 \vee \neg P_7 & \end{array}$$

$$I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}]$$

1. $C = \neg P_5 \vee P_6$
2. Pick $\overline{P_6}$
3. $C' = \neg P_6 \vee \neg P_5 \vee \neg P_2$
4. $C = \neg P_5 \vee \neg P_2$
5. Pick P_2
6. $C' = \neg P_1 \vee P_2$
7. $C = \neg P_1 \vee \neg P_5$

Generating Conflict Clauses

The textbook doesn't cover this at all

For more information, see:

- ▶ <http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume22/beame04a-html/>, Sections 3.4 and 3.5
- ▶ *Decision Procedures* by Kroening and Strichman. Download a copy from the library by visiting:
<http://vufind.library.cmu.edu/vufind/Record/1607216>

DPLL and CDCL

Original DPLL used:

Decide, Sat/Unsat, Propagate,
Backtrack

Modern DPLL replaces:

Backtrack with Backjump

These are called *Conflict Driven Clause Learning* (CDCL) solvers

In addition, most use:

- ▶ “Forgetting”: periodically forget learned clauses
- ▶ Restart: reset interpretation, but keep learned clauses

```
while(1) {
    while(exists_unit(I, F))
        I, F = propagate(I, F);
    I, F = decide(I, F);
    if(conflict(I, F)) {
        if(has_decision(I))
            I, F = backjump(I, F);
        else
            return unsat;
    } else if(sat(I, F))
        return sat;
}
```

Correctness of DPLL

Soundness

For every execution starting with $[\emptyset] \parallel F$ and ending with $[I] \parallel \text{sat}$ (resp. $[I] \parallel \text{unsat}$), F is satisfiable (resp. unsatisfiable).

Completeness

If F is satisfiable (resp. unsatisfiable), then every execution starting with $[\emptyset] \parallel F$ ends with $[I] \parallel \text{sat}$ (resp. $[I] \parallel \text{unsat}$).

Note: Termination not obvious with Backjump. Define a metric that decreases:

- ▶ When adding a decision level (Decide)
- ▶ When adding literal to the current decision level (Propagate)
- ▶ When adding literal to *previous* decision level (Backjump)

Practical Considerations

Conflict-Driven Clause Learning (CDCL) made large-scale SAT practical

- ▶ GRASP solver, 1996
- ▶ From hundreds and low-thousands to thousands and millions of variables
- ▶ Focus shifted towards better heuristics, implementation

Several considerations proved effective:

- ▶ Make resolution more efficient: keep # memory accesses per iteration low
- ▶ Simple, low-overhead decision guidance
- ▶ Strategies for forgetting learned clauses

Watch Pointers

Idea: Watch two unassigned literals in each non-satisfied clause.
Ignore the rest.

Maintain two lists for each variable P

- ▶ The first, L_P , contains watching clauses with P
- ▶ The second, $L_{\bar{P}}$, contains watching clauses with $\neg P$

Each time an assignment to is made to P :

1. For clauses in $L_{\bar{P},P}$, find another literal in the clause to watch
2. If (1) is not possible, the clause is unit

Advantages:

1. When P assigned, only examine clauses in the appropriate list
2. No overhead when backtracking

Dynamic Largest Individual Sum (DLIS)

Decision heuristic: choose variable that satisfies the most clauses

How do we implement this?

- ▶ Maintain *sat* counters for every variable
- ▶ When clauses are satisfied, update counters
- ▶ Must touch every clause containing literal set to 1
- ▶ Need to reverse process when backtracking

More overhead than unit propagation...

Probably not worth it

Variable State Independent Decaying Sum (VSIDS)

Rank variables by literal count in the initial database

- ▶ Only increment when clauses are learned
- ▶ Periodically divide all counts by 2

Main idea: bias towards literals from recent conflicts

- ▶ Conflict adds 1 to each literal in conflict clause
- ▶ More time passed → more divisions by 2
- ▶ Effectively solves conflicts before moving onto new clauses

Use heap structure to find unassigned variable with the highest ranking

Other Approaches

There are other good SAT-solving approaches

Randomized approaches (GSAT, WSAT)

- ▶ Hill-climbing, local search algorithms
- ▶ State: full interpretation, Cost: # non-satisfied clauses
- ▶ Move: flip one assignment

Binary decision diagrams

- ▶ Efficiently represent formula as a DAG
- ▶ Manipulate formula by changing graph structure

Stalmarck's algorithm

- ▶ Breadth-first search: try both branches at once
- ▶ Also branch on variable relationships

Next Lecture

Install Dafny on your machine

See the **Assignments** section on course webpage for a guide