
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 3:
Practical SAT Solving

Matt Fredrikson
mfredrik@cs.cmu.edu

October 17, 2016

Matt Fredrikson SAT Solving 1 / 36



Review: Propositional Semantics

Goal: Give meaning to propositional formulas

Assign Boolean truth values to (formula, interpretation) pairs

Formula F + Interpretation I = Truth
Value (true, false)

Note: we often abbreviate true by 1 and false by 0

Interpretation
An interpretation I for propositional formula F maps every
propositional variable appearing in F to a truth value, i.e.:

I = {P 7→ true, Q 7→ false, R 7→ false, . . .}

Matt Fredrikson SAT Solving 2 / 36



Review: Interpretations

Satisfying Interpretation
I is a satisfying
interpretation of a propositional formula F if F is true
under I. We denote this with the notation:

I |= F

Falsifying Interpretation
I is a falsifying
interpretation of a propositional formula F if F is false
under I. We denote this with the notation:

I ̸|= F

Matt Fredrikson SAT Solving 3 / 36



Review: Conjunctive Normal Form (CNF)

Take the form: ∧
i

∨
j

Pij

To convert to CNF:
1. Convert to NNF
2. Distribute ∨ over ∧

Naive approach has exponential blowup

Tseitin’s transformation: linear increase in
formula size

⟨atom⟩ ::=⊤ | ⊥ | P,Q, . . .

⟨literal⟩ ::= ⟨atom⟩ | ¬⟨atom⟩

⟨clause⟩ ::= ⟨literal⟩
|⟨literal⟩ ∨ ⟨clause⟩

⟨formula⟩::= ⟨clause⟩
|⟨clause⟩ ∧ ⟨formula⟩

Matt Fredrikson SAT Solving 4 / 36



Satisfiability Problem

SAT Problem
Given a propositional formula F , decide whether there exists an
interpretation I such that I |= F .

3SAT was the first established NP-Complete problem (Cook, 1971)

Most important logical problems can be reduced to SAT
▶ Validity
▶ Entailment
▶ Equivalence

Matt Fredrikson SAT Solving 5 / 36



CNF Notation

All of the algorithms we talk about assume that formulas are in CNF

We’ll refer to a formula as a set of clauses F = {C1, . . . , Cn}

Likewise, clauses as sets of literals
(P ∨Q) ∧ (Q→ ¬P ) {{P,Q}, {¬Q,¬P}}

Some convenient notation:
▶ Ci{P 7→ F}: Ci with F substituted for P
▶ Ci[P ]: P appears positive in Ci, i.e., Ci = {. . . , P, . . .}
▶ Ci[¬P ]: P appears negated in Ci, i.e., Ci = {. . . ,¬P, . . .}
▶ Ci ∨ Cj : union of Ci and Cj , Ci ∪ Cj

▶ Fi ∧ Fj : union of Fi and Fj , Fi ∪ Fj

Matt Fredrikson SAT Solving 6 / 36



Resolution

Single inference rule:
C1[P ] C2[¬P ]

C1{P 7→ ⊥} ∨ C2{¬P 7→ ⊥}

Given two clauses that share variable P but disagree on its value:
1. If P is true, then some other literal in C2 must be true
2. If P is false, then some other literal in C1 must be true
3. Therefore, resolve on P in both clauses by removing it
4. C1{P 7→ ⊥} ∨ C2{¬P 7→ ⊥} is called the resolvent

If C1{P 7→ ⊥} ∨ C2{¬P 7→ ⊥} = ⊥ ∨⊥ = ⊥:
1. Then C1 ∧ C2 is unsatisfiable
2. Any CNF containing {C1, C2} is unsatisfiable

Matt Fredrikson SAT Solving 7 / 36



Resolution Procedure

function Resolution(F )
F ′ = ∅
repeat

F ← F ∪ F ′

for
all Ci, Cj ∈ F do
C ′ = Resolve(Ci, Cj)
if C ′ = ⊥ then

return unsat
end if
F ′ ← F ′ ∪ {C ′}

end for
until F ′ ⊆ F
return sat

end function

1. For each round, compute all
possible resolvents

2. F ′ holds set of all resolvents
3. At each round, update F to

contain past resolvents
4. Repeat resolution on updated

F

5. Terminate when:
▶ Encounter ⊥ resolvent
▶ Don’t find anything new to

add to F

Matt Fredrikson SAT Solving 8 / 36



Resolution: Example

(P ∨Q) ∧ (P → R) ∧ (Q→ R) ∧ ¬R

(P ∨Q)︸ ︷︷ ︸
C1

∧ (¬P ∨R)︸ ︷︷ ︸
C2

∧ (¬Q ∨R)︸ ︷︷ ︸
C3

∧ ¬R︸︷︷︸
C4

1 P ∨Q
2 ¬P ∨R
3 ¬Q ∨R
4 ¬R
5 Q ∨R 1 & 2
7 ¬P 2 & 4
8 ¬Q 3 & 4

9 R 3 &5
10 Q 4 &5
11 P 1 &8
12 ⊥ 4 &9

Matt Fredrikson SAT Solving 9 / 36



Resolution: Properties

Why is resolution particularly bad for large problems?

Hint: What does this technique build along the way?

Space complexity: exp(O(N))

Example: m pigeons won’t go into n holes when m > n

▶ pi,j : pigeon i goes in hole j

▶ pi,1 ∨ pi,2 ∨ · · · ∨ pi,n: every pigeon i gets a hole
▶ ¬pi,j ∨ ¬pi′,j : no hole j gets two pigeons i ̸= i′

▶ Resolution proof size: exp(Ω(N))

Matt Fredrikson SAT Solving 10 / 36



Partial Interpretations

Starting from an empty interpretation:
▶ Extend for each variable
▶ No direct modifications to literals in formula

More flexibility in implementation strategy (more on this later)

If I is a partial interpretation, literals ℓ can be true, false, undef:
▶ true (satisfied): I |= ℓ

▶ false (conflicting): I ̸|= ℓ

▶ undef: var(ℓ) ̸∈ I

Given a clause C and interpretation I:
▶ C is true under I iff I |= C

▶ C is false under I iff I ̸|= C

▶ C is unit under I iff C = C ′ ∨ ℓ, I ̸|= C, ℓ is undef
▶ Otherwise it is undef

Matt Fredrikson SAT Solving 11 / 36



Example

I = {P1 7→ 1, P2 7→ 0, P4 7→ 1}

P1 ∨ P3 ∨ ¬P4 satisfied
¬P1 ∨ P2 conflicting
¬P1 ∨ ¬P4 ∨ P3 unit
¬P1 ∨ P3 ∨ P5 undef

Matt Fredrikson SAT Solving 12 / 36



Decision Procedure as a Transition System

Transition system is a binary relation over states

Transitions are induced by guarded transition rules

Procedure State
The possible states are:

▶ sat
▶ unsat
▶ [I] ∥ F

Where [I] is an ordered
interpretation, F is a CNF.

Initial state: [∅] ∥ F

Final states: sat, unsat

Ex. intermediate states:
▶ [∅] ∥ F1, C: empty

interpretation, F = F1 ∧ C

▶ [I1, P , I2] ∥ F : interp. assigns
I1 first, then P 7→ 0, then I2

Matt Fredrikson SAT Solving 13 / 36



Basic Search

Decision Rule

[I] ∥ F ↪→ [I, P ◦] ∥ F if
{

P occurs in F
P unassigned in I

Backtrack Rule

[I1, P
◦, I2] ∥ F ↪→ [I1, P ] ∥ F if

{
[I1, P, I2] ̸|= F
P last decision in interp.

Sat Rule

[I] ∥ F ↪→ sat if [I] |= F

Unsat Rule

[I] ∥ F ↪→ unsat if
{

[I] ̸|= F
No decisions in I

Matt Fredrikson SAT Solving 14 / 36



Example

F := C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4 C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7 C6 = ¬P1 ∨ P5 ∨ P7

I Rule
P ◦
2 Decide

P ◦
2 , P

◦
4 Decide

P ◦
2 , P

◦
4 , P

◦
5 Decide

P ◦
2 , P

◦
4 , P

◦
5 , P

◦
6 Decide

P ◦
2 , P

◦
4 , P

◦
5 , P6 Backtrack

P ◦
2 , P

◦
4 , P5 Backtrack

P ◦
2 , P

◦
4 , P5, P

◦
7 Decide

P ◦
2 , P

◦
4 , P5, P

◦
7 Sat

Matt Fredrikson SAT Solving 15 / 36



Unit Propagation

Recall unit clauses. For an interpretation I and clause C,
▶ I does not satisfy C

▶ All but one literals in C are assigned

I implies an assignment for the unassigned literal

Unit Propagation Rule

[I] ∥ F,C ∨ (¬)P ↪→ [I, P (or P )] ∥ F,C ∨ (¬)P if
{

[I] ̸|= C
P undefined in I

This is a restricted form of resolution

Matt Fredrikson SAT Solving 16 / 36



Example Revisited

F := C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4 C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7 C6 = ¬P1 ∨ P5 ∨ ¬P7

I Rule
P ◦
1 Decide

P ◦
1 , P2 Propagate

P ◦
1 , P2, P

◦
3 Decide

P ◦
1 , P2, P

◦
3 , P4 Propagate

P ◦
1 , P2, P

◦
3 , P4, P

◦
5 Decide

P ◦
1 , P2, P

◦
3 , P4, P

◦
5 , P6 Propagate

P ◦
1 , P2, P

◦
3 , P4, P5 Backtrack

P ◦
1 , P2, P

◦
3 , P4, P5, P7 Propagate

I Rule
P ◦
1 , P2, P3 Backtrack

P ◦
1 , P2, P3, P

◦
5 Decide

P ◦
1 , P2, P3, P

◦
5 , P6 Propagate

P ◦
1 , P2, P3, P5 Backtrack

P ◦
1 , P2, P3, P5, P7 Propagate

P1 Backtrack
· · ·
P1, P

◦
2 , P

◦
3 , P4, P5, P7 Sat

Matt Fredrikson SAT Solving 17 / 36



Example

F := C1 = ¬P1 ∨ P2 C2 = ¬P2 ∨ P3 C3 = ¬P3 ∨ P4

C4 = ¬P4 ∨ P5 C5 = ¬P5 ∨ ¬P1 C6 = P1 ∨ P2 ∨ P3 ∨ P4 ∨ ¬P5

I Rule
P ◦
1 Decide

P ◦
1 , P2 Propagate

P ◦
1 , P2, P3 Propagate

P ◦
1 , P2, P3, P4 Propagate

P ◦
1 , P2, P3, P4, P5 Propagate

P1 Backtrack
P1, P

◦
2 Decide

P1, P
◦
2 , P3 Propagate

· · · (Several propagations)
P1, P

◦
2 , P3, P4, P5 Sat

Matt Fredrikson SAT Solving 18 / 36



Non-Chronological Backtracking & Clause Learning

The backtracking rule seems short-sighted
▶ It always jumps to the most recent decision
▶ It does not keep information about the conflict

Backjump Rule

[I1, P
◦, I2] ∥ F ↪→ [I1, ℓ] ∥ F,C if



[I1, P
◦, I2] ̸|= F

Exists C s.t. :
F ⇒ (C → ℓ)
I1 |= C
var(ℓ) undef. in I1
var(ℓ) appears in F

C is called a conflict
clause
Will help us prevent similar conflicts in the future

Matt Fredrikson SAT Solving 19 / 36



Example Revisited (again)

F := C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4 C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7 C6 = ¬P1 ∨ P5 ∨ ¬P7

C7 = ¬P1 ∨ ¬P5

I Rule
P ◦
1 Decide

P ◦
1 , P2 Propagate

P ◦
1 , P2, P

◦
3 Decide

P ◦
1 , P2, P

◦
3 , P4 Propagate

P ◦
1 , P2, P

◦
3 , P4, P

◦
5 Decide

P ◦
1 , P2, P

◦
3 , P4, P

◦
5 , P6 Propagate

P ◦
1 , P2, P5 Backjump, P1 → ¬P5

P ◦
1 , P2, P5, P7 Propagate

P1 Backjump, true→ ¬P1

· · ·

Matt Fredrikson SAT Solving 20 / 36



Finding a Conflict Clause

The Backjump rule requires a conflict clause

To find one, we construct an implication
graph G = (V,E)

▶ V has a node for each decision literal in I, labeled with the
literal’s value and its decision level.

▶ For each clause C = ℓ1 ∨ · · · ∨ ℓn ∨ ℓ where ℓ1, . . . , ℓn are
assigned false,

1. Add a node for ℓ with the decision level in which it entered I
2. Add edges (ℓi, ℓ) for 1 ≤ i ≤ n to E

▶ Add a special conflict
node Λ. For any conflict
variable with
nodes labeled P and ¬P , add edges from these nodes to Λ in E.

▶ Label each edge with the clause that caused the implication.

The implication graph contains sufficient information to generate a
conflict clause

Matt Fredrikson SAT Solving 21 / 36



Implication Graph

F := C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4 C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7 C6 = ¬P1 ∨ P5 ∨ ¬P7

I = [P ◦
1 , P2, P

◦
3 , P4, P

◦
5 , P6]

P1@1 P2@1

P3@2 P4@2

P5@3

P6@3

¬P6@3

Λ

C1
C3

C2

C4

C3

C4

C3

Matt Fredrikson SAT Solving 22 / 36



Conflict Graph

Implication graph where:
▶ Exactly one conflict variable
▶ All nodes have a path to Λ

C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4

C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7

C6 = ¬P1 ∨ P5 ∨ ¬P7

I = [P ◦
1 , P2, P

◦
3 , P4, P

◦
5 , P6]

P1@1 P2@1

P5@3

P6@3

¬P6@3

Λ

C1
C3

C4

C3

C4

C3

Matt Fredrikson SAT Solving 23 / 36



Generating Conflict Clauses

Consider a conflict graph G

1. Pick a cut in G such that:
▶ All of the decision nodes are on one side (the “reason” side)
▶ At least one conflict literal is on the other (the “conflict” side)

2. Pick all nodes K on the reason side with an edge crossing the
cut

3. The nodes in K form a cause of the conflict
4. The negations of the corresponding literal form the conflict

clause

Matt Fredrikson SAT Solving 24 / 36



Generating Conflict Clauses

C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4

C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7

C6 = ¬P1 ∨ P5 ∨ ¬P7

I = [P ◦
1 , P2, P

◦
3 , P4, P

◦
5 , P6]

P1@1 P2@1

P5@3

P6@3

¬P6@3

Λ

C1
C3

C4

C3

C4

C3

Conflict clause: ¬P1 ∨ ¬P5

Matt Fredrikson SAT Solving 25 / 36



Generating Conflict Clauses

C1 = ¬P1 ∨ P2 C2 = ¬P2 ∨ P3

C3 = ¬P3 ∨ P4 C4 = ¬P4 ∨ P5

C5 = ¬P5 ∨ ¬P1

C6 = P1 ∨ P2 ∨ P3 ∨ P4 ∨ ¬P5

I = [P ◦
1 , P2, P3, P4, P5]

Conflict clause: P1 → ¬P2

Any others?

Does order matter?

P1@1

P2@1

P3@1

P4@1

¬P5@1

P5@1

Λ

C1

C5

C2

C3

C4

C5

C4

Matt Fredrikson SAT Solving 26 / 36



Generating Conflict Clauses

This corresponds to resolution:
1. Let C be the conflicted clause
2. Pick most recently implied

literal in conflict graph G

3. Let C ′ be the clause that
implied it

4. Let C ← resolve(C,C ′)

5. Repeat step 2 while
applicable

C1 = ¬P1 ∨ P2 C2 = ¬P3 ∨ P4

C3 = ¬P6 ∨ ¬P5 ∨ ¬P2

C4 = ¬P5 ∨ P6 C5 = P5 ∨ P7

C6 = ¬P1 ∨ P5 ∨ ¬P7

I = [P ◦
1 , P2, P

◦
3 , P4, P

◦
5 , P6]

1. C = ¬P5 ∨ P6

2. Pick P6

3. C ′ = ¬P6 ∨ ¬P5 ∨ ¬P2

4. C = ¬P5 ∨ ¬P2

5. Pick P2

6. C ′ = ¬P1 ∨ P2

7. C = ¬P1 ∨ ¬P5

Matt Fredrikson SAT Solving 27 / 36



Generating Conflict Clauses

The textbook doesn’t cover this at all

For more information, see:
▶ http://www.cs.cmu.edu/afs/cs/project/jair/pub/

volume22/beame04a-html/, Sections 3.4 and 3.5
▶ Decision
Procedures by Kroening and Strichman. Download a

copy from the library by visiting:
http://vufind.library.cmu.edu/vufind/Record/1607216

Matt Fredrikson SAT Solving 28 / 36

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume22/beame04a-html/
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume22/beame04a-html/
http://vufind.library.cmu.edu/vufind/Record/1607216


DPLL and CDCL

Original DPLL used:

Decide, Sat/Unsat, Propagate,
Backtrack

Modern DPLL replaces:

Backtrack with Backjump

These are called Conflict
Driven
Clause
Learning (CDCL) solvers

In addition, most use:
▶ “Forgetting”: periodically

forget learned clauses
▶ Restart: reset interpretation,

but keep learned clauses

while(1) {
while(exists_unit(I, F))

I, F = propagate(I, F);
I, F = decide(I, F);
if(conflict(I, F)) {

if(has_decision(I))
I, F = backjump(I, F);

else
return unsat;

} else if(sat(I, F))
return sat;

}

Matt Fredrikson SAT Solving 29 / 36



Correctness of DPLL

Soundness
For every execution starting with [∅] ∥ F and ending with [I] ∥ sat
(resp. [I] ∥ unsat), F is satisfiable (resp. unsatisfiable).

Completeness
If F is satisfiable (resp. unsatisfiable), then every execution starting
with [∅] ∥ F ends with [I] ∥ sat (resp. [I] ∥ unsat).

Note: Termination not obvious with Backjump. Define a metric that
decreases:

▶ When adding a decision level (Decide)
▶ When adding literal to the current decision level (Propagate)
▶ When adding literal to previous decision level (Backjump)

Matt Fredrikson SAT Solving 30 / 36



Practical Considerations

Conflict-Driven Clause Learning (CDCL) made large-scale SAT
practical

▶ GRASP solver, 1996
▶ From hundreds and low-thousands to thousands and millions of

variables
▶ Focus shifted towards better heuristics, implementation

Several considerations proved effective:
▶ Make resolution more efficient: keep # memory accesses per

iteration low
▶ Simple, low-overhead decision guidance
▶ Strategies for forgetting learned clauses

Matt Fredrikson SAT Solving 31 / 36



Watch Pointers

Idea: Watch two unassigned literals in each non-satisfied clause.
Ignore the rest.

Maintain two lists for each variable P

▶ The first, LP , contains watching clauses with P

▶ The second, LP , contains watching clauses with ¬P

Each time an assignment to is made to P :
1. For clauses in LP,P , find another literal in the clause to watch
2. If (1) is not possible, the clause is unit

Advantages:
1. When P assigned, only examine clauses in the appropriate list
2. No overhead when backtracking

Matt Fredrikson SAT Solving 32 / 36



Dynamic Largest Individual Sum (DLIS)

Decision heuristic: choose variable that satisfies the most clauses

How do we implement this?
▶ Maintain sat counters for every variable
▶ When clauses are satisfied, update counters
▶ Must touch every clause containing literal set to 1
▶ Need to reverse process when backtracking

More overhead than unit propagation...

Probably not worth it

Matt Fredrikson SAT Solving 33 / 36



Variable State Independent Decaying Sum (VSIDS)

Rank variables by literal count in the initial database
▶ Only increment when clauses are learned
▶ Periodically divide all counts by 2

Main idea: bias towards literals from recent conflicts
▶ Conflict adds 1 to each literal in conflict clause
▶ More time passed→ more divisions by 2
▶ Effectively solves conflicts before moving onto new clauses

Use heap structure to find unassigned variable with the highest
ranking

Matt Fredrikson SAT Solving 34 / 36



Other Approaches

There are other good SAT-solving approaches

Randomized approaches (GSAT, WSAT)
▶ Hill-climbing, local search algorithms
▶ State: full interpretation, Cost: # non-satisfied clauses
▶ Move: flip one assignment

Binary decision diagrams
▶ Efficiently represent formula as a DAG
▶ Manipulate formula by changing graph structure

Stalmarck’s algorithm
▶ Breadth-first search: try both branches at once
▶ Also branch on variable relationships

Matt Fredrikson SAT Solving 35 / 36



Next Lecture

Install Dafny on your machine

See the Assignments section on course webpage for a guide

Matt Fredrikson SAT Solving 36 / 36


