Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 3:
Practical SAT Solving

Matt Fredrikson
mfredrik@cs.cmu.edu

October 17, 2016

Matt Fredrikson SAT Solving

Review: Propositional Semantics

Goal: Give meaning to propositional formulas

Assign Boolean truth values to (formula, interpretation) pairs

Formula F + Interpretation I = Truth Value (true, false)

Note: we often abbreviate frue by 1 and false by 0

Interpretation

An interpretation I for propositional formula F' maps every
propositional variable appearing in F' to a truth value, i.e.:
I={P s true,Q > false, R s false, ...}

Matt Fredrikson SAT Solving 2/36

Review: Interpretations

Satisfying Interpretation

1 is a satisfying interpretation of a propositional formula F' if F' is true
under I. We denote this with the notation:
IEF

Falsifying Interpretation

1 is a falsifying interpretation of a propositional formula F' if F' is false
under I. We denote this with the notation:
IEF

Matt Fredrikson SAT Solving 3/36

Review: Conjunctive Normal Form (CNF)

Take the form:

VP

A (atom) ==T|Ll|PQ,...

To convert to CNF: (literal) ::= (atom) | —~(atom)
1. Convert to NNF

L (clause) ::= (literal)
2. Distribute v over A

|(literal) v (clause)

Naive approach has exponential blowup (formula)::= (clause)
|(clause) A {formula)
Tseitin’s transformation: linear increase in

formula size

Matt Fredrikson SAT Solving 4/36

Satisfiability Problem

SAT Problem

Given a propositional formula F', decide whether there exists an
interpretation I such that I £ F.

3SAT was the first established NP-Complete problem (Cook, 1971)

Most important logical problems can be reduced to SAT
» Validity
» Entailment
» Equivalence

Matt Fredrikson SAT Solving 5/36

CNF Notation

All of the algorithms we talk about assume that formulas are in CNF
We’'ll refer to a formula as a set of clauses F = {C4,...,C,}

Likewise, clauses as sets of literals
(PVQ)ANQ—-P) {{P,Q}{~Q,~P}}

Some convenient notation:

» C;{P — F}: C; with F substituted for P
C;[P]: P appears positive in C;,i.e.,C;={...,P,...}
C;[-P]: P appears negated in C;, i.e., C; ={...,-P,...}
C; vV Cj: union of C; and C, C; U C;
F; A Fj: union of F; and Fj, F; U Fj

v

v vy

Matt Fredrikson SAT Solving 6/36

Resolution

Single inference rule:
C4]P) Cs[~P]

Ci{P— L}V Co{-Pw— 1}

Given two clauses that share variable P but disagree on its value:
1. If P is true, then some other literal in C5 must be true
2. If P is false, then some other literal in C; must be true
3. Therefore, resolve on P in both clauses by removing it
4. C1{P+ L}V Cy{-P — L} is called the resolvent

fC{P— L}VCo{-P+— L}=1VvLIl=1:
1. Then C; A C5 is unsatisfiable
2. Any CNF containing {C4, Cy} is unsatisfiable

Matt Fredrikson SAT Solving 7/36

Resolution Procedure

function Resolution(F)
F=2
repeat
F+ FUF
forall C;,C; € F do
C’ = Resolve(C;, C;)
if C' = | then
return unsat
end if
F'+« F'u{C'}
end for
until 7/ C F
return sat
end function

Matt Fredrikson

SAT Solving

. For each round, compute all

possible resolvents

. I’ holds set of all resolvents
. At each round, update F' to

contain past resolvents

. Repeat resolution on updated

F

. Terminate when:

» Encounter L resolvent
» Don’t find anything new to
addto I

8/36

Resolution: Example

[(PVQ) AN (P=R) A (Q—R) A -R|
(PVvQ) N (-PVR) A (-QVR) AN -R
~—— —_—— —_—— ~~

ol Cs Cs Ca
1|1 PVQ 9| R 3&5
2| -PVR 10]Q 485
3| -QVR 11|P 188
4 | =R 12| L 48&9
5/ QVR 1&2
71 P 2&4
8 | -Q 38&4

Matt Fredrikson SAT Solving 9/36

Resolution: Properties

Why is resolution particularly bad for large problems?
Hint: What does this technique build along the way?
Space complexity: exp(O(N))
Example: m pigeons won’t go into n holes when m > n
> p; ;. pigeon ¢ goes in hole j
> pi1Vpia V.-V, every pigeon i gets a hole

> —p;; V —pir ;i no hole j gets two pigeons i # ¢/
» Resolution proof size: exp(2(N))

Matt Fredrikson SAT Solving 10/36

Partial Interpretations

Starting from an empty interpretation:
» Extend for each variable
» No direct modifications to literals in formula

More flexibility in implementation strategy (more on this later)

If I is a partial interpretation, literals ¢ can be true, false, undef:
» true (satisfied): I £ ¢
» false (conflicting): I }# ¢
» undef: var(¢) ¢ I

Given a clause C and interpretation I:
» Cistrueunder [iff I £ C
» (Cis false under I iff I £ C
» Clisunitunder I iff C =C'Vv ¢, I £ C, {is undef
» Otherwise it is undef

Matt Fredrikson SAT Solving 11/36

[1={Pi—1,P,0,P 1} |

PV PV Py satisfied
-PV Py conflicting
-P, V=PV Py unit
PV PV Ps undef

Matt Fredrikson SAT Solving 12/36

Decision Procedure as a Transition System

Transition system is a binary relation over states

Transitions are induced by guarded transition rules

Procedure State

Initial state: [@] || F

The possible states are: Final states: sat, unsat

> sat Ex. intermediate states:

> unsat > [2] | F1,C: empty

» [I]|| F interpretation, F = F; AC
Where [I] is an ordered » [I1, P, 5] || F: interp. assigns
interpretation, F' is a CNF. I, first, then P — 0, then I,

Matt Fredrikson SAT Solving 13/36

Decision Rule

P occursin F

U1 E = [L P Fif { P unassigned in T

Backtrack Rule

[[1,P, 5] ¢ F

1, P2,] || F— I, PL || Fif { P last decision in interp.

Sat Rule Unsat Rule

[I] || F — satif [I| E F [I] || F < unsat if { [I| ¢ F

No decisions in I

Matt Fredrikson SAT Solving 14 /36

Matt Fredrikson

SAT Solving

Fo= Ci=—PiVP Co=-P3VP C3=-PsV-P5V-DPy
- Cy=—-PsVvP Cs=PVDFEP Ce=—-PVPVP
1 Rule
Py Decide
Py, Py Decide
Py, Pp, P? Decide
Py, P2, P2, Pe Decide
Py, Py, P2, Ps Backtrack
Ps, Pg, Py Backtrack
Py, P, P5, P2 Decide
Py, Po,Ps P Sat

15/36

Unit Propagation

Recall unit clauses. For an interpretation I and clause C,
» [does not satisfy C
» All but one literals in C' are assigned

I implies an assignment for the unassigned literal

Unit Propagation Rule

1% C

|| F,CV (=)P < [I, P(or P)] | F,C'V (-)Pif { P undefined in I

This is a restricted form of resolution

Matt Fredrikson SAT Solving 16 /36

Example Revisited

F o= Ci=-P VP, Co=-P3VP (C3=-FV-PV-P
- Cy=—-PsVvVFP Cs=PVDFP Ce=—-PVEPV-P;

I Rule I Rule
Py Decide PP, Py, P3 Backtrack
PPy Propagate PP, Py, P3, PS Decide
PP, Py, P Decide PP, Py, Py, P2, Py Propagate
PP Py, PSPy Propagate PP, Py, P3, Ps Backtrack
PP, Py, P5, Py, Ps Decide PP, Py, P3, Ps, P; Propagate
PP, P, P3, Py, P9, Ps Propagate 2 Backtrack
PP, Py, P3Py, Ps Backtrack

PP, Py, P3, Py, Ps, P, Propagate Py, Py, Py, Py, Ps, P Sat

Matt Fredrikson SAT Solving 17 /36

Cl=—|P1\/P2 Cg=—|P2\/P3 032—\P3\/P4

Fi= Cy=—-PyVP Cs=—-PsVv-P Ceg=PVPVPVPV-—Ps

I Rule

Py Decide

PP Py Propagate

PP, Py, Py Propagate

PP, Py, P;, P, Propagate

Pp, P, P;, Py, Ps Propagate

P Backtrack

P, Py Decide

P, P, Ps Propagate
e (Several propagations)
E,P;,Pg,P4,P5 Sat

Matt Fredrikson SAT Solving 18/36

Non-Chronological Backtracking & Clause Learning

The backtracking rule seems short-sighted
» It always jumps to the most recent decision
» It does not keep information about the conflict

Backjump Rule

[[,,P°, L) ¢ F
Exists C' s 1. :
F=(C—Y
LEC
var(¢) undef. in I
var(¢) appears in F'

[I1, P°, o] | F — [I1,€] || F,C if

C'is called a conflict clause

Will help us prevent similar conflicts in the future

Matt Fredrikson SAT Solving 19/36

Example Revisited (again)

Fo= Cl=ﬁP1\/P2 02=ﬁP3\/P4 C3=ﬁP6VﬁP5vﬁP2
: 04:—\P5\/P6 05=P5\/P7 CGZ_\PI\/P5V_‘P7
1 Rule
Py Decide
PP, P, Propagate
PP, Py, P3 Decide
PP, Py, P3Py Propagate
P?, Py, PS, Py, PS Decide
PP, Py, P, Py, P2, Ps Propagate
Py, P27E Backjump, P, — —P;
PP, Py, Ps, P; Propagate
P Backjump, true — —P;

Py

Matt Fredrikson

SAT Solving 20/36

Finding a Conflict Clause

The Backjump rule requires a conflict clause

To find one, we construct an implication graph G = (V, E)
» V has a node for each decision literal in I, labeled with the
literal’s value and its decision level.

» Foreachclause C =4,V ---V ¥,V {where/l,..., [, are
assigned false,

1. Add a node for ¢ with the decision level in which it entered I
2. Add edges (¢;,¢)for1 <i<nto E

» Add a special conflict node A. For any conflict variable with
nodes labeled P and —P, add edges from these nodes to A in E.

» Label each edge with the clause that caused the implication.

The implication graph contains sufficient information to generate a
conflict clause

Matt Fredrikson SAT Solving 21/36

Implication Graph

Ci=—-PVP Cy=-P3VP, (C3=-FPsV-PsV-DP
Cy==-PsV P, Cs5=PsV P Cg==P,V PsV—P;

F =

I= [Pf,PQ,P§,P47P§7ﬁ6]

Matt Fredrikson SAT Solving 22/36

Conflict Graph

Ci=-P VP, Cy=-P3VP
Implication graph where: C3=-FsV PV -P

» Exactly one conflict variable Co=-PVF C;=PFPVF
» All nodes have a path to A Co=-PVIEsvVaP

I=[P107P2aP3OaP47P5O7P6]

Matt Fredrikson SAT Solving 23/36

Generating Conflict Clauses

Consider a conflict graph G
1. Pick a cut in G such that:
» All of the decision nodes are on one side (the “reason” side)
» At least one conflict literal is on the other (the “conflict” side)
2. Pick all nodes K on the reason side with an edge crossing the
cut
3. The nodes in K form a cause of the conflict
4. The negations of the corresponding literal form the conflict
clause

Matt Fredrikson SAT Solving 24 /36

Generating Conflict Clauses

Ci=-PiVP Cy=-P3VP
C3=-FPsV-PsV Py
Ci=-PsVPF Cs=PVPFP;
Cs=—-PV PsV-P;

I= [P107P27P§7P47P507?6]

Conflict clause: =P, V —=P5

Matt Fredrikson SAT Solving 25/36

Generating Conflict Clauses

Ci=—-PVvVP Cy=-P,VP;
C3=-P3VP, Cy=-PyV P
Cs==-Ps VP
Ce=P1 VP,V P3VPyV~—Ps

I =[P?, Py, Ps, Py, Ps]

Conflict clause: P, — =P,
Any others?

Does order matter?

Matt Fredrikson SAT Solving 26/36

Generating Conflict Clauses

Ci=-PiVP, Cy=-P3VP
C3=—-Ps VPV P,
Cy=-PsvVP Cs=PsV P
Cs=—-PV PsV-P;

This corresponds to resolution:
1. Let C be the conflicted clause

2. Pick most recently implied I =[P, Py, Py, Py, P2, Pg)
literal in conflict graph G

3. Let C’ be the clause that 1. C=-PVF
implied it 2. Pick Py
4. Let C + resolve(C, (") 3. C' = —PsV PV Py
5. Repeat step 2 while 4. C=—-P5V P,
applicable 5. Pick P,
6. C'=-P VP
7. C=-P VP

Matt Fredrikson SAT Solving 27/36

Generating Conflict Clauses

The textbook doesn’t cover this at all

For more information, see:

» http://www.cs.cmu.edu/afs/cs/project/jair/pub/
volume22/beame04a-html/, Sections 3.4 and 3.5

» Decision Procedures by Kroening and Strichman. Download a
copy from the library by visiting:
http://vufind.library.cmu.edu/vufind/Record/1607216

Matt Fredrikson SAT Solving 28/36

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume22/beame04a-html/
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume22/beame04a-html/
http://vufind.library.cmu.edu/vufind/Record/1607216

DPLL and CDCL

Original DPLL used:

Decide, Sat/Unsat, Propagate,
Backtrack

while (1) {
while(exists_unit(I, F))
I, F = propagate(I, F);
I, F = decide(I, F);
if (conflict (I, F)) {
if (has_decision(I))

Modern DPLL replaces:
Backtrack with Backjump

These are called Conflict Driven TR o e .
. 5 = backjump(I, F);
Clause Learning (CDCL) solvers ailee
return unsat;
In addition, most use: } else if(sat(I, F))
« . 3 . . return sat;
» “Forgetting”: periodically 3

forget learned clauses

» Restart: reset interpretation,
but keep learned clauses

Matt Fredrikson SAT Solving 29/36

Correctness of DPLL

Soundness

For every execution starting with [2] || £ and ending with [I] || sat
(resp. [I] || unsat), F is satisfiable (resp. unsatisfiable).

Completeness

If F' is satisfiable (resp. unsatisfiable), then every execution starting
with [@] || F ends with [I] || sat (resp. [I] || unsat).

Note: Termination not obvious with Backjump. Define a metric that
decreases:

» When adding a decision level (Decide)
» When adding literal to the current decision level (Propagate)
» When adding literal to previous decision level (Backjump)

Matt Fredrikson SAT Solving 30/36

Practical Considerations

Conflict-Driven Clause Learning (CDCL) made large-scale SAT
practical

» GRASP solver, 1996

» From hundreds and low-thousands to thousands and millions of
variables

» Focus shifted towards better heuristics, implementation

Several considerations proved effective:

» Make resolution more efficient: keep # memory accesses per
iteration low

» Simple, low-overhead decision guidance
» Strategies for forgetting learned clauses

Matt Fredrikson SAT Solving 31/36

Watch Pointers

Idea: Watch two unassigned literals in each non-satisfied clause.
Ignore the rest.

Maintain two lists for each variable P
» The first, Lp, contains watching clauses with P
» The second, Ly, contains watching clauses with —P

Each time an assignment to is made to P:
1. For clauses in L3 , find another literal in the clause to watch
2. If (1) is not possible, the clause is unit

Advantages:
1. When P assigned, only examine clauses in the appropriate list
2. No overhead when backtracking

Matt Fredrikson SAT Solving 32/36

Dynamic Largest Individual Sum (DLIS)

Decision heuristic: choose variable that satisfies the most clauses

How do we implement this?
» Maintain sat counters for every variable
» When clauses are satisfied, update counters
» Must touch every clause containing literal set to 1
» Need to reverse process when backtracking

More overhead than unit propagation...

Probably not worth it

Matt Fredrikson SAT Solving 33/36

Variable State Independent Decaying Sum (VSIDS)

Rank variables by literal count in the initial database
» Only increment when clauses are learned
» Periodically divide all counts by 2

Main idea: bias towards literals from recent conflicts
» Conflict adds 1 to each literal in conflict clause
» More time passed — more divisions by 2
» Effectively solves conflicts before moving onto new clauses

Use heap structure to find unassigned variable with the highest
ranking

Matt Fredrikson SAT Solving 34/36

Other Approaches

There are other good SAT-solving approaches

Randomized approaches (GSAT, WSAT)
» Hill-climbing, local search algorithms
» State: full interpretation, Cost: # non-satisfied clauses
» Move: flip one assignment

Binary decision diagrams
» Efficiently represent formula as a DAG
» Manipulate formula by changing graph structure

Stalmarck’s algorithm
» Breadth-first search: try both branches at once
» Also branch on variable relationships

Matt Fredrikson SAT Solving 35/36

Next Lecture

Install Dafny on your machine

See the Assignments section on course webpage for a guide

Matt Fredrikson SAT Solving 36/36

