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Propositional Formulas: Syntax

An atom is an assertion that is either true or false
A literal is an atom or its negation

Propositional formulas are built from literals and logical connectives
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More Syntax: Well-Formed Formulas

We obtain well-formed formulas using the grammar below:

(atom) =T (true)| L (false)| P, Q, ... (propositional variables)
(literal) ::= (atom) | —(atom) (negation)
(formula)::= (literal)

|-(formula) (negation)

|(formula) A (formula) (conjunction)

|(formula) v (formula) (disjunction)

|(formula) — (formula) (implication)

|(formula) <+ (formula) (equivalence)

Matt Fredrikson Propositional Logic 3/33



Propositional Formulas: Semantics

Goal: Give meaning to propositional formulas

Assign Boolean truth values to (formula, interpretation) pairs

Formula F' + Interpretation I = Truth Value (true, false)
Note: we often abbreviate frue by 1 and false by 0

Interpretation

An interpretation I for propositional formula F' maps every
propositional variable appearing in F' to a truth value, i.e.:

I={P s true,Q > false, R s false, ...}
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Interpretations

Satisfying Interpretation

1 is a satisfying interpretation of a propositional formula F' if F' is true
under I. We denote this with the notation:

IEF

Falsifying Interpretation

1 is a falsifying interpretation of a propositional formula F' if F' is false
under I. We denote this with the notation:

I¥F
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Semantics: Inductive Definition

Define meaning of atoms first

Assuming these definitions, define each logical connective

Base Case: Inductive Case:

IET IkE-F iff I £ F

T L IERANF, iflEFand]kEF
I'EP iff I[P]=true ITERVF, (flEFRolEFR
I¢# P iff I[P]=false IEFR —»F iffI¢EForlEF,

IEFR < F ifflIEFand] E F, or
I#FlandI#Fg
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What’s with —?

IEP—QIff IEPorTEQ |

If P is false, then P — @ is always true—can this be right?

PlQ|P—=Q (P A Q) — P should always be true
0|0 1 )
0| 1 ’ Two cases:
110 0 » PANQistrue: TE1A1— 1
11 1 » PAQ is false:
ITE1IANO—1
TEOAL—=O

P — @ should not always be equalto Q — P
IE1—-0
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Inductive Semantics: Example

‘P/\Q—>P\/ﬂQ \

I:{P w~ true,Q — false}

Step Reason
1. IEP I[P] = true
2. THQ I[Q] = false
3. ITE-Q (2) and —
4. TEPAQ (2) and A
5. TEPANQ—PV—-Q (4)and—

Which steps are unnecessary?
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Satisfiability & Validity

Satisfiable Formula

A formula F is satisfiable if and only if there exists an interpretation
suchthat I E F.

Valid Formula

A formula F'is valid if and only if for all interpretations I, it is the case
that I E F.

Note: Satisfiability and Validity are dual notions.

‘F is valid if and only if —F is unsatisfiable
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Proving Satisfiability & Validity

Note: duality lets us prove either property, translate into dual result

We’ll assume we’re proving validity

There are two basic approaches for proving these properties

Search Deduction
1. Enumerate all interpretations 1. Define proof rules from the

2. Check that each is satisfying semantics
2. Apply rules to reach desired

conclusion
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Proof by Search: Truth Tables

[F:PAQ—PV-Q|

Goal: Determine whether F is valid.

P Q| PAQ|PV-Q]| F First, fill out the truth table.

0 O 0 1 1

0o 1 0 0 1 Fis valid < all rows are true

1 0 0 1 1

1 1 1 1 1 Fis unsat. < all rows are false
Fis valid
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Proving Satisfiability & Validity

There are two basic approaches for proving these properties

Note: duality lets us prove either property, translate into dual result

Search Deduction
1. Enumerate all interpretations 1. Define proof rules from the
2. Check that each is satisfying semantics
2. Apply rules to reach desired
Brute-force approach conclusion

Runtime: 2/vars|
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Proof by Deduction: Semantic Argument

Several techniques for proving validity by deduction

We’'ll focus on the semantic argument method
1. Assume F is not valid: there exists I such that I £ F'
2. Apply proof rules (more on this shortly)

3. If: no contradiction, no applicable rules, conclude that F' is
invalid

4. If: every branch reaches contradiction, conclude that F is valid
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Semantic Argument: Proof Rules (Negation)

According to the semantics for negation:

» From I  —F we can deduce I §¢ F:
I E~F
TEF

» From I }# —F, deduce I E F=
I -F
IEF
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Semantic Argument: Proof Rules (Conjunction)

According to the semantics for conjunction:

» From I £ F AG:
IEFAG
IEF TEG
Note that there are two simultaneous conclusions in this rule
» From I £ F AG:
IEFAG
I¢RF | IKEG

The bar denotes “or”, so this introduces two cases into the proof
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Semantic Argument: Proof Rules (Disjunction)

According to the semantics for disjunction:

» From I £ FV G:
IEFVG
IEF | IEG

» From I £ FV G:
IT¥FVG
I¢F ITEG
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Semantic Argument: Proof Rules (Implication)

According to the semantics for implication:

» FromI E F — G:
IEF—>G
IKF | IEG

» From I £ F — G:
IFF—G
IEF IEG
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Semantic Argument: Proof Rules (Equivalence)

According to the semantics for equivalence:

» FromI E F + G:

IEF <G
IEFAG | IE-FA-G
» From I £ F < G:
IFF+G

IEFAN-G \ IE-FAG
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Semantic Argument: Proof Rules

IE-F IE-F ITEFANG ITEFANG
TEF IEF IEF ITEG IRF | 1KG
IEFVG IEFVGE IEF—-G
IEF | IEG IEF IEG IgF | 1EG

IEF—G ITEF+G
IEF TEG TEFAG | ITE-FA-G
IEF <G

ITEFA-G |
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Semantic Argument: Example

1 ITEPAQ
2 TP
3 | THEQ

(assumption)
(1 and A, case a)

(1 and A, case b)

No more rules to apply, no contradiction

IE-F I ¥ ~F
I¢F IEF
TEFAG
IEF TEG
TEFAG
IEF | IRG

Therefore, F is invalid, and I is a falsifying interpretation
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Semantic Argument: Example

1 I¢F

2 T}:P/\Q
3 I¢PV-Q
4 IEP

5 IEP

6 1

Matt Fredrikson

[F:PAQ—PV-Q |

assum.)
1and —)
1and —)
2 and A)
3 and V)
4 and 5)

Py

[E-F
I

F
T¥FAG

1§ -F
IEF

IEFAG
IEF I1EG

TEFVG

TEF | 1EG IEF | IEG

I¥FVGE
I¥F  TEG

IEF -G
I¢F \ IEG

IEF—G
IEF 1KG

Found a contradiction, so F is valid
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Semantic Judgements

. Important: F; < F5
Equivalence of Formulas and F, — F, are not

Propositional formulas F; and F; are propositional formulas.
equivalent, written F; < Fy, if and only if the
propositional formula F; < F, is valid. Equivalence and

implication let us relate

Implication the semantics of
formulas

Propositional formula F; implies F5, written

Fy = Fy, if and only if the propositional We can decide these

formula F, — F3 is valid. judgements by solving
for validity, and thus,
satisfiability.

Matt Fredrikson Propositional Logic 22/33



Normal Forms

Normal Form

A normal form of a logic:
» Restricts the syntax of formulas
» Has equivalent representation for any formula in the logic

Think of an intermediate representation for logic...
Three major propositional normal forms

Negation (NNF) | Disjunctive (DNF) | Conjunctive (CNF)

AV, = Disjunction of Conjunction of
= only on literals conjunctions disjunctions
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Negation Normal Form (NNF)

Apply equivalences to convert to NNF:

-—F < F (atom) =T |L|PQ,...
T L (literal)  ::= (atom) | —~(atom)
-1 & T
~(FLAF) & —FV-k (formula)::= (literal)
|{(formula) A (formula)
~(F1VE) & —FiA-F |(formula) v (formula)
Fy —F, & -FVE
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NNF Conversion

[-(P=~(PrQ))]

-—F
1. =(P = =~(PAQ)) -T
2. =(=PV (P AQ)) -l
3. —PA(PAQ) —(F) A Fy)
4. PAPAQ (1 V Fy)

i — Fs
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Disjunctive Normal Form (DNF)

Take the form:
\_//_\PU (atom) ==T|Ll|PQ,...
g
literal) ::= (at —(at
To convert to DNF: {iiteral) {atom) | ~(atom)
1. Convert to NNF (clause) ::= (literal)
2. Distribute A over v |(literal) A (clause)

Distributive equivalences: (formula)::= (clause)

|(clause) v {formula)
F1 A (FQ V F3) = (Fl A FQ) \Y (Fl N F3)
(Fl \Y FQ) A F3 < (Fl A\ Fg) V (F2 N F3)
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Converting to DNF: Example

FyV Fy) A (—F5 — Fy)
YA (F3V Fy) Deciding SAT for

DNF formulas
is trivial

F V Fy) A (F3 V Fy)
FyA(F3V Fy))V (Fy A (F3 V Fy))
FyAF)V (FL AF)V (B AFs)V (Fa A Fy)

2N

But! May cause exponential blowup in formula size.
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Conjunctive Normal Form (CNF)

Take the form:

Ay

To convert to CNF:
1. Convert to NNF
2. Distribute v over A (clause) ::

(atom) =T |L|PQ,...
(literal) ::= (atom) | —(atom)

= (literal)

|(literal) v {clause)
Will we run into the same problem as _(
(

DNF? (formula)::= (clause)

|(clause) A {formula)
Deciding SAT for CNF is not trivial

But most solvers take this as input...
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Equisatisfiability

If F'and G are equisatisfiable, are
they equivalent?

Equisatisfiability Example:

Formulas F' and G are > FVG
equisatisfiable when F is » (FVH)A(GV—H)
satisfiable |f apd only if G is [={F1,G0,H 1)
satisfiable.

Equisatisfiability is weaker than
equivalence

Idea: Find a short equisatisfiable CNF to give to SAT solver
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Tseitin’s Tranformation

Key Idea: Insert new variables to represent subformulas

v

Introduce a new representative variable Pg for every subformula
G of the original formula F'

» E.g., for ' = G1 A G2, we have representatives Pg,, Pa,.

v

For each subformula G = G o G», assert: Pg <> Pg, o Pg,
Convert each Pg <+ Pg, o P, to CNF
Finally, construct the top-level CNF:

Pp A /\ CNF(Pg ¢ Pg, o Pg,)
G=(G10G2)eSE

v

v
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Tseitin’s Tranformation: By Example

P— (QAR)
1. Introduce a fresh
variable for every T, < PT
non-atomic ! ?
subformula T; < QAR

2. Convert each
equivalence into CNF
3. Assert the conjunction

of T1 and the Ty ANFy A F,y
CNF-converted

equivalences

Fy:(ThVP)AN(ThV -To) A (=T VPV Ty)
Fy :(—\TQ V Q) A\ (_‘TQ V R) A\ (T2 \Y —‘Q V —|R)
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Tseitin’s Tranformation: Formula Size

PeA /\  CNF(Pg ¢ Pg, o Pg,)
G=(G10G2)ESF

v

Each Pg < Pg, o Pg, contains at most three variables and two
connectives

Each term in the big conjunction has constant-bounded CNF
representation size

|Sr| is bounded by the number of connectives in F'
Thus, the transformation causes a linear increase in formula size

v

v

v
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First Homework

v

Goes out today

» Shorter assignment
» Reason about validity, normal forms, modeling computations

v

Due next Thursday (Sept. 8) before class starts
Available on course webpage and Blackboard

Hand in using Blackboard
» We’re working on a better system for future assignments...

v

v

v

For next class, finish reading chapter 1 of Bradley & Manna.
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