
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 2:
Propositional Logic

Matt Fredrikson
mfredrik@cs.cmu.edu

October 17, 2016

Matt Fredrikson Propositional Logic 1 / 33

Propositional Formulas: Syntax

p ∨ ¬q → r

An atom is an assertion that is either true or false

A literal is an atom or its negation

Propositional
formulas are built from literals and logical
connectives

Matt Fredrikson Propositional Logic 2 / 33

More Syntax: Well-Formed Formulas

We obtain well-formed
formulas using the grammar below:

⟨atom⟩ ::= ⊤ (true) | ⊥ (false) | P,Q, . . . (propositional
variables)

⟨literal⟩ ::= ⟨atom⟩ | ¬⟨atom⟩ (negation)

⟨formula⟩::= ⟨literal⟩
|¬⟨formula⟩ (negation)
|⟨formula⟩ ∧ ⟨formula⟩ (conjunction)
|⟨formula⟩ ∨ ⟨formula⟩ (disjunction)
|⟨formula⟩ → ⟨formula⟩ (implication)
|⟨formula⟩ ↔ ⟨formula⟩ (equivalence)

Matt Fredrikson Propositional Logic 3 / 33

Propositional Formulas: Semantics

Goal: Give meaning to propositional formulas

Assign Boolean truth values to (formula, interpretation) pairs

Formula F + Interpretation I = Truth
Value (true, false)

Note: we often abbreviate true by 1 and false by 0

Interpretation
An interpretation I for propositional formula F maps every
propositional variable appearing in F to a truth value, i.e.:

I = {P 7→ true, Q 7→ false, R 7→ false, . . .}

Matt Fredrikson Propositional Logic 4 / 33

Interpretations

Satisfying Interpretation
I is a satisfying
interpretation of a propositional formula F if F is true
under I. We denote this with the notation:

I |= F

Falsifying Interpretation
I is a falsifying
interpretation of a propositional formula F if F is false
under I. We denote this with the notation:

I ̸|= F

Matt Fredrikson Propositional Logic 5 / 33

Semantics: Inductive Definition

Define meaning of atoms first

Assuming these definitions, define each logical connective

Base
Case:

I |= ⊤
I ̸|= ⊥
I |= P iff I[P] = true
I ̸|= P iff I[P] = false

Inductive
Case:

I |= ¬F iff I ̸|= F

I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff I ̸|= F1 or I |= F2

I |= F1 ↔ F2 iff I |= F1 and I |= F2, or
I ̸|= F1 and I ̸|= F2

Matt Fredrikson Propositional Logic 6 / 33

What’s with →?

I |= P → Q iff I ̸|= P or I |= Q

If P is false, then P → Q is always true—can this be right?

P Q P → Q
0 0 1
0 1 1
1 0 0
1 1 1

(P ∧Q) → P should always be true
Two cases:

▶ P ∧Q is true: I |= 1 ∧ 1 → 1

▶ P ∧Q is false:
I |= 1 ∧ 0 → 1

I |= 0 ∧ 1 → 0

P → Q should not always be equal to Q → P

I ̸|= 1 → 0

Matt Fredrikson Propositional Logic 7 / 33

Inductive Semantics: Example

P ∧Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

Step Reason
1. I |= P I[P] = true
2. I ̸|= Q I[Q] = false
3. I |= ¬Q (2) and ¬
4. I ̸|= P ∧Q (2) and ∧
5. I |= P ∧Q → P ∨ ¬Q (4) and →

Which steps are unnecessary?

Matt Fredrikson Propositional Logic 8 / 33

Satisfiability & Validity

Satisfiable Formula
A formula F is satisfiable if and only if there
exists an interpretation I
such that I |= F .

Valid Formula
A formula F is valid if and only if for
all interpretations I, it is the case
that I |= F .

Note: Satisfiability and Validity are dual notions.

F is valid if and only if ¬F is unsatisfiable

Matt Fredrikson Propositional Logic 9 / 33

Proving Satisfiability & Validity

Note: duality lets us prove either property, translate into dual result

We’ll assume we’re proving validity

There are two basic approaches for proving these properties

Search
1. Enumerate all interpretations
2. Check that each is satisfying

Deduction
1. Define proof rules from the

semantics
2. Apply rules to reach desired

conclusion

Matt Fredrikson Propositional Logic 10 / 33

Proof by Search: Truth Tables

F : P ∧Q → P ∨ ¬Q

Goal: Determine whether F is valid.

P Q P ∧Q P ∨ ¬Q F
0 0 0 1 1
0 1 0 0 1
1 0 0 1 1
1 1 1 1 1

F is valid

First, fill out the truth table.

F is valid ⇔ all rows are true

F is unsat. ⇔ all rows are false

Matt Fredrikson Propositional Logic 11 / 33

Proving Satisfiability & Validity

There are two basic approaches for proving these properties

Note: duality lets us prove either property, translate into dual result

Search
1. Enumerate all interpretations
2. Check that each is satisfying

Brute-force
approach
Runtime: 2|vars|

Deduction
1. Define proof rules from the

semantics
2. Apply rules to reach desired

conclusion

Matt Fredrikson Propositional Logic 12 / 33

Proof by Deduction: Semantic Argument

Several techniques for proving validity by deduction

We’ll focus on the semantic argument method
1. Assume F is not valid: there exists I such that I ̸|= F

2. Apply proof rules (more on this shortly)
3. If: no contradiction, no applicable rules, conclude that F is

invalid
4. If: every branch reaches contradiction, conclude that F is valid

Matt Fredrikson Propositional Logic 13 / 33

Semantic Argument: Proof Rules (Negation)

According to the semantics for negation:

▶ From I |= ¬F we can deduce I ̸|= F :
I |= ¬F
I ̸|= F

▶ From I ̸|= ¬F , deduce I |= F :
I ̸|= ¬F
I |= F

Matt Fredrikson Propositional Logic 14 / 33

Semantic Argument: Proof Rules (Conjunction)

According to the semantics for conjunction:

▶ From I |= F ∧G:
I |= F ∧G

I |= F I |= G

Note that there are two simultaneous conclusions in this rule
▶ From I ̸|= F ∧G:

I ̸|= F ∧G

I ̸|= F | I ̸|= G

The bar denotes “or”, so this introduces two cases into the proof

Matt Fredrikson Propositional Logic 15 / 33

Semantic Argument: Proof Rules (Disjunction)

According to the semantics for disjunction:

▶ From I |= F ∨G:
I |= F ∨G

I |= F | I |= G

▶ From I ̸|= F ∨G:
I ̸|= F ∨G

I ̸|= F I ̸|= G

Matt Fredrikson Propositional Logic 16 / 33

Semantic Argument: Proof Rules (Implication)

According to the semantics for implication:

▶ From I |= F → G:
I |= F → G

I ̸|= F | I |= G

▶ From I ̸|= F → G:
I ̸|= F → G

I |= F I ̸|= G

Matt Fredrikson Propositional Logic 17 / 33

Semantic Argument: Proof Rules (Equivalence)

According to the semantics for equivalence:

▶ From I |= F ↔ G:
I |= F ↔ G

I |= F ∧G | I |= ¬F ∧ ¬G

▶ From I ̸|= F ↔ G:
I ̸|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧G

Matt Fredrikson Propositional Logic 18 / 33

Semantic Argument: Proof Rules

I |= ¬F
I ̸|= F

I ̸|= ¬F
I |= F

I |= F ∧G

I |= F I |= G

I ̸|= F ∧G

I ̸|= F | I ̸|= G

I |= F ∨G

I |= F | I |= G

I ̸|= F ∨G

I ̸|= F I ̸|= G

I |= F → G

I ̸|= F | I |= G

I ̸|= F → G

I |= F I ̸|= G

I |= F ↔ G

I |= F ∧G | I |= ¬F ∧ ¬G

I ̸|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧G

Matt Fredrikson Propositional Logic 19 / 33

Semantic Argument: Example

F : P ∧Q

1 I ̸|= P ∧Q (assumption)

2 I ̸|= P (1 and ∧, case a)

3 I ̸|= Q (1 and ∧, case b)

I |= ¬F
I ̸|= F

I ̸|= ¬F
I |= F

I |= F ∧G

I |= F I |= G

I ̸|= F ∧G

I ̸|= F | I ̸|= G

No more rules to apply, no contradiction

Therefore, F is invalid, and I is a falsifying interpretation

Matt Fredrikson Propositional Logic 20 / 33

Semantic Argument: Example

F : P ∧Q → P ∨ ¬Q

1 I ̸|= F (assum.)

2 I |= P ∧Q (1 and →)

3 I ̸|= P ∨ ¬Q (1 and →)

4 I |= P (2 and ∧)

5 I ̸|= P (3 and ∨)

6 ⊥ (4 and 5)

I |= ¬F
I ̸|= F

I ̸|= ¬F
I |= F

I |= F ∧G

I |= F I |= G

I ̸|= F ∧G

I ̸|= F | I ̸|= G

I |= F ∨G

I |= F | I |= G

I ̸|= F ∨G

I ̸|= F I ̸|= G

I |= F → G

I ̸|= F | I |= G

I ̸|= F → G

I |= F I ̸|= G

Found a contradiction, so F is valid

Matt Fredrikson Propositional Logic 21 / 33

Semantic Judgements

Equivalence of Formulas
Propositional formulas F1 and F2 are
equivalent, written F1 ⇔ F2, if and only if the
propositional formula F1 ↔ F2 is valid.

Implication
Propositional formula F1 implies F2, written
F1 ⇒ F2, if and only if the propositional
formula F1 → F2 is valid.

Important: F1 ⇔ F2

and F1 ⇒ F2 are not
propositional formulas.

Equivalence and
implication let us relate
the semantics of
formulas

We can decide these
judgements by solving
for validity, and thus,
satisfiability.

Matt Fredrikson Propositional Logic 22 / 33

Normal Forms

Normal Form
A normal
form of a logic:

▶ Restricts the syntax of formulas
▶ Has equivalent representation for any formula in the logic

Think of an intermediate representation for logic...

Three major propositional normal forms

Negation
(NNF) Disjunctive
(DNF) Conjunctive
(CNF)
∧,∨,¬

¬ only on literals
Disjunction of
conjunctions

Conjunction of
disjunctions

Matt Fredrikson Propositional Logic 23 / 33

Negation Normal Form (NNF)

Apply equivalences to convert to NNF:
¬¬F ⇔ F

¬⊤ ⇔ ⊥
¬⊥ ⇔ ⊤

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

F1 → F2 ⇔ ¬F1 ∨ F2

⟨atom⟩ ::= ⊤ | ⊥ | P,Q, . . .

⟨literal⟩ ::= ⟨atom⟩ | ¬⟨atom⟩

⟨formula⟩::= ⟨literal⟩
|⟨formula⟩ ∧ ⟨formula⟩
|⟨formula⟩ ∨ ⟨formula⟩

Matt Fredrikson Propositional Logic 24 / 33

NNF Conversion

¬(P → ¬(P ∧Q))

1. ¬(P → ¬(P ∧Q))

2. ¬(¬P ∨ ¬(P ∧Q))

3. ¬¬P ∧ (P ∧Q)

4. P ∧ P ∧Q

¬¬F ⇔ F

¬⊤ ⇔ ⊥
¬⊥ ⇔ ⊤

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

F1 → F2 ⇔ ¬F1 ∨ F2

Matt Fredrikson Propositional Logic 25 / 33

Disjunctive Normal Form (DNF)

Take the form: ∨
i

∧
j

Pij

To convert to DNF:
1. Convert to NNF
2. Distribute ∧ over ∨

Distributive equivalences:
F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)
(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

⟨atom⟩ ::= ⊤ | ⊥ | P,Q, . . .

⟨literal⟩ ::= ⟨atom⟩ | ¬⟨atom⟩

⟨clause⟩ ::= ⟨literal⟩
|⟨literal⟩ ∧ ⟨clause⟩

⟨formula⟩::= ⟨clause⟩
|⟨clause⟩ ∨ ⟨formula⟩

Matt Fredrikson Propositional Logic 26 / 33

Converting to DNF: Example

(F1 ∨ F2) ∧ (¬F3 → F4)

1. (F1 ∨ F2) ∧ (¬F3 → F4)

2. (F1 ∨ F2) ∧ (¬¬F3 ∨ F4)

3. (F1 ∨ F2) ∧ (F3 ∨ F4)

4. (F1 ∨ F2) ∧ (F3 ∨ F4)

5. (F1 ∧ (F3 ∨ F4)) ∨ (F2 ∧ (F3 ∨ F4))

6. (F1 ∧ F3) ∨ (F1 ∧ F4) ∨ (F2 ∧ F3) ∨ (F2 ∧ F4)

Deciding SAT for
DNF formulas

is trivial

But! May cause exponential blowup in formula size.

Matt Fredrikson Propositional Logic 27 / 33

Conjunctive Normal Form (CNF)

Take the form: ∧
i

∨
j

Pij

To convert to CNF:
1. Convert to NNF
2. Distribute ∨ over ∧

Will we run into the same problem as
DNF?

Deciding SAT for CNF is not trivial

But most solvers take this as input...

⟨atom⟩ ::= ⊤ | ⊥ | P,Q, . . .

⟨literal⟩ ::= ⟨atom⟩ | ¬⟨atom⟩

⟨clause⟩ ::= ⟨literal⟩
|⟨literal⟩ ∨ ⟨clause⟩

⟨formula⟩::= ⟨clause⟩
|⟨clause⟩ ∧ ⟨formula⟩

Matt Fredrikson Propositional Logic 28 / 33

Equisatisfiability

Equisatisfiability
Formulas F and G are

equisatisfiable when F is
satisfiable if and only if G is

satisfiable.

If F and G are equisatisfiable, are
they equivalent?

Example:
▶ F ∨G

▶ (F ∨H) ∧ (G ∨ ¬H)

I = {F 7→ 1, G 7→ 0,H 7→ 1}

Equisatisfiability is weaker than
equivalence

Idea: Find a short equisatisfiable CNF to give to SAT solver

Matt Fredrikson Propositional Logic 29 / 33

Tseitin’s Tranformation

Key
Idea: Insert new variables to represent subformulas

▶ Introduce a new representative variable PG for every subformula
G of the original formula F

▶ E.g., for F = G1 ∧G2, we have representatives PG1 , PG2 .

▶ For each subformula G = G1 ◦G2, assert: PG ↔ PG1 ◦ PG2

▶ Convert each PG ↔ PG1 ◦ PG2 to CNF
▶ Finally, construct the top-level CNF:

PF ∧
∧

G=(G1◦G2)∈SF

CNF(PG ↔ PG1 ◦ PG2)

Matt Fredrikson Propositional Logic 30 / 33

Tseitin’s Tranformation: By Example

P → (Q ∧R)

1. Introduce a fresh
variable for every
non-atomic
subformula

2. Convert each
equivalence into CNF

3. Assert the conjunction
of T1 and the
CNF-converted
equivalences

T1 ↔ P → T2

T2 ↔ Q ∧R

F1 :(T1 ∨ P) ∧ (T1 ∨ ¬T2) ∧ (¬T1 ∨ ¬P ∨ T2)

F2 :(¬T2 ∨Q) ∧ (¬T2 ∨R) ∧ (T2 ∨ ¬Q ∨ ¬R)

T1 ∧ F1 ∧ F2

Matt Fredrikson Propositional Logic 31 / 33

Tseitin’s Tranformation: Formula Size

PF ∧
∧

G=(G1◦G2)∈SF

CNF(PG ↔ PG1 ◦ PG2)

▶ Each PG ↔ PG1 ◦ PG2 contains at most three variables and two
connectives

▶ Each term in the big conjunction has constant-bounded CNF
representation size

▶ |SF | is bounded by the number of connectives in F

▶ Thus, the transformation causes a linear increase in formula size

Matt Fredrikson Propositional Logic 32 / 33

First Homework

▶ Goes out today
▶ Shorter assignment
▶ Reason about validity, normal forms, modeling computations

▶ Due next Thursday (Sept. 8) before class starts
▶ Available on course webpage and Blackboard
▶ Hand in using Blackboard

▶ We’re working on a better system for future assignments...
▶ For next class, finish reading chapter 1 of Bradley & Manna.

Matt Fredrikson Propositional Logic 33 / 33

