
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 1:
Introduction

Matt Fredrikson
mfredrik@cs.cmu.edu

August 30, 2016

Matt Fredrikson Model Checking 1 / 26

Course Staff

Matt Fredrikson
Instructor

Ryan Wagner
TA

Matt Fredrikson Model Checking 2 / 26

What This Course is About

Does
the
software
do
what
it
is
supposed
to
do?

Matt Fredrikson Model Checking 3 / 26

Does this do what it is supposed to?

1 public static int binarySearch(int[] a, int key) {
2 int low = 0;
3 int high = a.length - 1;
4

5 while (low <= high) {
6 int mid = (low + high) / 2;
7 int midVal = a[mid];
8

9 if (midVal < key)
10 low = mid + 1
11 else if (midVal > key)
12 high = mid - 1;
13 else
14 return mid; // key found
15 }
16 return -(low + 1); // key not found.
17 }

Matt Fredrikson Model Checking 4 / 26

Does this do what it is supposed to?

1 public static int binarySearch(int[] a, int key) {
2 int low = 0;
3 int high = a.length - 1;
4

5 while (low <= high) {
6 int mid = (low + high) / 2;
7 int midVal = a[mid];
8

9 if (midVal < key)
10 low = mid + 1
11 else if (midVal > key)
12 high = mid - 1;
13 else
14 return mid; // key found
15 }
16 return -(low + 1); // key not found.
17 }

Matt Fredrikson Model Checking 4 / 26

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
▶ Best case: ArrayIndexOutOfBoundsException
▶ Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...

Matt Fredrikson Model Checking 5 / 26

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
▶ Best case: ArrayIndexOutOfBoundsException
▶ Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...

Matt Fredrikson Model Checking 5 / 26

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException
▶ Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...

Matt Fredrikson Model Checking 5 / 26

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...

Matt Fredrikson Model Checking 5 / 26

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
▶ Best case: ArrayIndexOutOfBoundsException
▶ Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...

Matt Fredrikson Model Checking 5 / 26

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
▶ Best case: ArrayIndexOutOfBoundsException
▶ Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...

Matt Fredrikson Model Checking 5 / 26

Bugs make software insecure

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 6 / 26

Bugs make software insecure

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 6 / 26

Bugs make software insecure

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 6 / 26

Bugs make software insecure

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 6 / 26

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 7 / 26

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 7 / 26

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 7 / 26

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 7 / 26

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 7 / 26

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 7 / 26

Many, many bugs

1996, Ariane 5
Numerical overflow

2016, Nissan
1m recalls for buggy airbag code

2000-2010, Toyota
“Unintended acceleration” bug

2012, Knight Capital
Lost $440m in 30 minutes

Matt Fredrikson Model Checking 8 / 26

Many, many bugs

1996, Ariane 5
Numerical overflow

2016, Nissan
1m recalls for buggy airbag code

2000-2010, Toyota
“Unintended acceleration” bug

2012, Knight Capital
Lost $440m in 30 minutes

Matt Fredrikson Model Checking 8 / 26

Many, many bugs

1996, Ariane 5
Numerical overflow

2016, Nissan
1m recalls for buggy airbag code

2000-2010, Toyota
“Unintended acceleration” bug

2012, Knight Capital
Lost $440m in 30 minutes

Matt Fredrikson Model Checking 8 / 26

Many, many bugs

1996, Ariane 5
Numerical overflow

2016, Nissan
1m recalls for buggy airbag code

2000-2010, Toyota
“Unintended acceleration” bug

2012, Knight Capital
Lost $440m in 30 minutes

Matt Fredrikson Model Checking 8 / 26

Many, many bugs

1996, Ariane 5
Numerical overflow

2016, Nissan
1m recalls for buggy airbag code

2000-2010, Toyota
“Unintended acceleration” bug

2012, Knight Capital
Lost $440m in 30 minutes

Matt Fredrikson Model Checking 8 / 26

Formal Verification

All
about
proof

Specification ⇐⇒ Implementation

▶ Specifications must be unambiguous
▶ Meaning of implementation must be well-defined

When done well, gives strong indication of correctness
▶ ...but nothing is absolute
▶ Specifications and models must be validated
▶ Excellent complement to testing, other engineering practices

Matt Fredrikson Model Checking 9 / 26

Formal Verification

All
about
proof

Specification ⇐⇒ Implementation

▶ Specifications must be unambiguous
▶ Meaning of implementation must be well-defined

When done well, gives strong indication of correctness
▶ ...but nothing is absolute
▶ Specifications and models must be validated
▶ Excellent complement to testing, other engineering practices

Matt Fredrikson Model Checking 9 / 26

Formal Verification

All
about
proof

Specification ⇐⇒ Implementation

▶ Specifications must be unambiguous
▶ Meaning of implementation must be well-defined

When done well, gives strong indication of correctness
▶ ...but nothing is absolute
▶ Specifications and models must be validated
▶ Excellent complement to testing, other engineering practices

Matt Fredrikson Model Checking 9 / 26

Formal Verification

All
about
proof

Specification ⇐⇒ Implementation

▶ Specifications must be unambiguous
▶ Meaning of implementation must be well-defined

When done well, gives strong indication of correctness
▶ ...but nothing is absolute
▶ Specifications and models must be validated
▶ Excellent complement to testing, other engineering practices

Matt Fredrikson Model Checking 9 / 26

Algorithmic Approaches

Formal proofs are tedious,
error-prone

We want algorithms to:
▶ Check our work
▶ Fill in low-level details
▶ Give diagnostic info
▶ Verify the system (if possible)

This is called
algorithmic
verification

Image source: Daniel Kroening & Ofer Strichman,
Decision
Procedures: An
Algorithmic
Point
of
View

Matt Fredrikson Model Checking 10 / 26

Algorithmic Approaches

Formal proofs are tedious,
error-prone

We want algorithms to:
▶ Check our work
▶ Fill in low-level details
▶ Give diagnostic info
▶ Verify the system (if possible)

This is called
algorithmic
verification

Image source: Daniel Kroening & Ofer Strichman,
Decision
Procedures: An
Algorithmic
Point
of
View

Matt Fredrikson Model Checking 10 / 26

Algorithmic Approaches

Formal proofs are tedious,
error-prone

We want algorithms to:
▶ Check our work
▶ Fill in low-level details
▶ Give diagnostic info
▶ Verify the system (if possible)

This is called
algorithmic
verification

Image source: Daniel Kroening & Ofer Strichman,
Decision
Procedures: An
Algorithmic
Point
of
View

Matt Fredrikson Model Checking 10 / 26

Algorithmic Approaches

Formal proofs are tedious,
error-prone

We want algorithms to:
▶ Check our work
▶ Fill in low-level details
▶ Give diagnostic info
▶ Verify the system (if possible)

This is called
algorithmic
verification

Image source: Daniel Kroening & Ofer Strichman,
Decision
Procedures: An
Algorithmic
Point
of
View

Matt Fredrikson Model Checking 10 / 26

This course

Understand
the
principles
and
algorithms
behind
verification
tools

Gain
experience
using
tools
to
write
machine-checked
code

Three high-level topics:
▶ Decision procedures for automated reasoning
▶ Techniques for proving program correctness
▶ Algorithms and tools for automatic verification

Matt Fredrikson Model Checking 11 / 26

This course

Understand
the
principles
and
algorithms
behind
verification
tools

Gain
experience
using
tools
to
write
machine-checked
code

Three high-level topics:
▶ Decision procedures for automated reasoning
▶ Techniques for proving program correctness
▶ Algorithms and tools for automatic verification

Matt Fredrikson Model Checking 11 / 26

This course

Understand
the
principles
and
algorithms
behind
verification
tools

Gain
experience
using
tools
to
write
machine-checked
code

Three high-level topics:
▶ Decision procedures for automated reasoning
▶ Techniques for proving program correctness
▶ Algorithms and tools for automatic verification

Matt Fredrikson Model Checking 11 / 26

This course, in more detail

In this course, we’ll cover:
▶ Propositional and first-order logic
▶ First-order theories commonly used in software verification
▶ Satisfiability decision procedures for propositional and

first-order logic with theories
▶ Well-founded and structural induction
▶ Specifications of program correctness
▶ Hoare Logic, verification conditions, and predicate transformers
▶ Techniques for proving termination
▶ Automated inductive verification
▶ Static analysis techniques for inferring useful invariants
▶ Software model checking and temporal logic
▶ Symbolic execution for testing

Matt Fredrikson Model Checking 12 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?
▶ Is w a word in L?
▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:

▶ Is x a prime?
▶ Is w a word in L?
▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?

▶ Is w a word in L?
▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?
▶ Is w a word in L?

▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?
▶ Is w a word in L?
▶ Does M halt on every input?

▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?
▶ Is w a word in L?
▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?
▶ Is w a word in L?
▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Decision Procedures

Decision Procedure
An algorithm that, when given a

decision problem, terminates with
a yes/no answer.

Decision problems:
▶ Is x a prime?
▶ Is w a word in L?
▶ Does M halt on every input?
▶ Is ϕ satisfiable?

We will focus on satisfiability
procedures.

We’ll look at examples that are:
▶ Expressive enough to model real problems.
▶ Still decidable.

Matt Fredrikson Model Checking 13 / 26

Propositional SAT

Propositional
Logic
0 False
1 True
¬ Not
∧ And
∨ Or
→ Implies
↔ Equivalent

SAT Problem
Given a propositional formula F
over variables p1, p2, . . ., find an

assignment I = [p1 7→ ·, p2 7→ ·, . . .]
that satisfies F .

Lots
of
important
applications…
▶ Verification
▶ Program synthesis
▶ Test generation

▶ Equivalence checking
▶ Combinatorial design
▶ Cryptanalysis

Matt Fredrikson Model Checking 14 / 26

Propositional SAT

Propositional
Logic
0 False
1 True
¬ Not
∧ And
∨ Or
→ Implies
↔ Equivalent

SAT Problem
Given a propositional formula F
over variables p1, p2, . . ., find an

assignment I = [p1 7→ ·, p2 7→ ·, . . .]
that satisfies F .

Lots
of
important
applications…
▶ Verification
▶ Program synthesis
▶ Test generation

▶ Equivalence checking
▶ Combinatorial design
▶ Cryptanalysis

Matt Fredrikson Model Checking 14 / 26

Propositional SAT

Propositional
Logic
0 False
1 True
¬ Not
∧ And
∨ Or
→ Implies
↔ Equivalent

SAT Problem
Given a propositional formula F
over variables p1, p2, . . ., find an

assignment I = [p1 7→ ·, p2 7→ ·, . . .]
that satisfies F .

Lots
of
important
applications…
▶ Verification
▶ Program synthesis
▶ Test generation

▶ Equivalence checking
▶ Combinatorial design
▶ Cryptanalysis

Matt Fredrikson Model Checking 14 / 26

Isn’t SAT too hard?

3-SAT is the canonical NP-Complete problem
...but procedures routinely solve very large instances
Key: combine search and deduction for common-case efficiency

Image source: Daniel Kroening & Ofer Strichman, Decision
Procedures

Matt Fredrikson Model Checking 15 / 26

Isn’t SAT too hard?

3-SAT is the canonical NP-Complete problem

...but procedures routinely solve very large instances
Key: combine search and deduction for common-case efficiency

Image source: Daniel Kroening & Ofer Strichman, Decision
Procedures

Matt Fredrikson Model Checking 15 / 26

Isn’t SAT too hard?

3-SAT is the canonical NP-Complete problem
...but procedures routinely solve very large instances

Key: combine search and deduction for common-case efficiency

Image source: Daniel Kroening & Ofer Strichman, Decision
Procedures

Matt Fredrikson Model Checking 15 / 26

Isn’t SAT too hard?

3-SAT is the canonical NP-Complete problem
...but procedures routinely solve very large instances
Key: combine search and deduction for common-case efficiency

Image source: Daniel Kroening & Ofer Strichman, Decision
Procedures

Matt Fredrikson Model Checking 15 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:

▶ Allow predicates from
selected background
theories

▶ Combine theory-specific
reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:

▶ Allow predicates from
selected background
theories

▶ Combine theory-specific
reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:

▶ Allow predicates from
selected background
theories

▶ Combine theory-specific
reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:

▶ Allow predicates from
selected background
theories

▶ Combine theory-specific
reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:
▶ Allow predicates from

selected background
theories

▶ Combine theory-specific
reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:
▶ Allow predicates from

selected background
theories
▶ Combine theory-specific

reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to

propositional logic
2. Use latest-and-greatest SAT

solver to find a solution
3. Translate back to original

domain

SMT: Sat Modulo Theories

Richer way to model problems:
▶ Allow predicates from

selected background
theories
▶ Combine theory-specific

reasoning with approaches
from SAT

▶ Supports infinite domains

(x1 ≥ 0) ∧ (x1 ≤ 10) ∧ rd(wr(P, x2, x3), x1 + x2) = x3 + 1

Matt Fredrikson Model Checking 16 / 26

Reasoning About Programs

Functional
Correctness
▶ Specification
▶ Proof

Specify behavior with logic
▶ Declarative
▶ Precise
▶ Amenable to proof

Systematic proof techniques
▶ Based on language

semantics
▶ Well-defined proof rules
▶ Ideally, automatable

Matt Fredrikson Model Checking 17 / 26

Reasoning About Programs

Functional
Correctness
▶ Specification
▶ Proof

Specify behavior with logic
▶ Declarative
▶ Precise
▶ Amenable to proof

Systematic proof techniques
▶ Based on language

semantics
▶ Well-defined proof rules
▶ Ideally, automatable

Matt Fredrikson Model Checking 17 / 26

Reasoning About Programs

Functional
Correctness
▶ Specification
▶ Proof

Specify behavior with logic
▶ Declarative
▶ Precise
▶ Amenable to proof

Systematic proof techniques
▶ Based on language

semantics
▶ Well-defined proof rules
▶ Ideally, automatable

Matt Fredrikson Model Checking 17 / 26

Reasoning About Programs

Functional
Correctness
▶ Specification
▶ Proof

Specify behavior with logic
▶ Declarative
▶ Precise
▶ Amenable to proof

Systematic proof techniques
▶ Based on language

semantics
▶ Well-defined proof rules
▶ Ideally, automatable

Matt Fredrikson Model Checking 17 / 26

Dafny

A language
and
verifier
for
functional
correctness

▶ Pre- and postconditions,
assertions

▶ Pure mathematical functions
▶ Termination metrics

Compiler checks everything
statically!

▶ SMT solver under the hood

Used to build real systems

Matt Fredrikson Model Checking 18 / 26

Dafny

A language
and
verifier
for
functional
correctness

▶ Pre- and postconditions,
assertions

▶ Pure mathematical functions
▶ Termination metrics

Compiler checks everything
statically!

▶ SMT solver under the hood

Used to build real systems

Matt Fredrikson Model Checking 18 / 26

Dafny

A language
and
verifier
for
functional
correctness

▶ Pre- and postconditions,
assertions

▶ Pure mathematical functions
▶ Termination metrics

Compiler checks everything
statically!

▶ SMT solver under the hood

Used to build real systems

Matt Fredrikson Model Checking 18 / 26

Dafny

A language
and
verifier
for
functional
correctness

▶ Pre- and postconditions,
assertions

▶ Pure mathematical functions
▶ Termination metrics

Compiler checks everything
statically!

▶ SMT solver under the hood

Used to build real systems

Matt Fredrikson Model Checking 18 / 26

Dafny

A language
and
verifier
for
functional
correctness

▶ Pre- and postconditions,
assertions

▶ Pure mathematical functions
▶ Termination metrics

Compiler checks everything
statically!

▶ SMT solver under the hood

Used to build real systems

Matt Fredrikson Model Checking 18 / 26

Automated Verification

Algorithms
for
proving
that
programs
match
their
specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are non-trivial systems
See how to build them for:

▶ Efficiency
▶ Extensibility

Basic idea:
1. Translate programs into proof

obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 19 / 26

Automated Verification

Algorithms
for
proving
that
programs
match
their
specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are non-trivial systems
See how to build them for:

▶ Efficiency
▶ Extensibility

Basic idea:
1. Translate programs into proof

obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 19 / 26

Automated Verification

Algorithms
for
proving
that
programs
match
their
specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are non-trivial systems
See how to build them for:

▶ Efficiency
▶ Extensibility

Basic idea:
1. Translate programs into proof

obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 19 / 26

Automated Verification

Algorithms
for
proving
that
programs
match
their
specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are non-trivial systems

See how to build them for:
▶ Efficiency
▶ Extensibility

Basic idea:
1. Translate programs into proof

obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 19 / 26

Automated Verification

Algorithms
for
proving
that
programs
match
their
specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are non-trivial systems
See how to build them for:

▶ Efficiency
▶ Extensibility

Basic idea:
1. Translate programs into proof

obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 19 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No manual proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No manual proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No manual proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No manual proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples

▶ No manual proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No manual proofs!

▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking

Automatic techniques
for
finding
bugs
(or
proving
their
absence)

▶ Specifications written in
propositional
temporal
logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No manual proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example

Matt Fredrikson Model Checking 20 / 26

Model Checking Gets Results

Clever ways of dealing with state explosion:

▶ Partial order reduction
▶ Bounded model checking
▶ Symbolic exploration
▶ Abstraction & refinement

Now widely used for verification & bug-finding:
▶ Hardware, software, protocols, …
▶ Microsoft, Intel, Cadence, IBM, NASA, …

Invented here at CMU

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 21 / 26

Model Checking Gets Results

Clever ways of dealing with state explosion:
▶ Partial order reduction
▶ Bounded model checking
▶ Symbolic exploration
▶ Abstraction & refinement

Now widely used for verification & bug-finding:
▶ Hardware, software, protocols, …
▶ Microsoft, Intel, Cadence, IBM, NASA, …

Invented here at CMU

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 21 / 26

Model Checking Gets Results

Clever ways of dealing with state explosion:
▶ Partial order reduction
▶ Bounded model checking
▶ Symbolic exploration
▶ Abstraction & refinement

Now widely used for verification & bug-finding:
▶ Hardware, software, protocols, …
▶ Microsoft, Intel, Cadence, IBM, NASA, …

Invented here at CMU

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 21 / 26

Model Checking Gets Results

Clever ways of dealing with state explosion:
▶ Partial order reduction
▶ Bounded model checking
▶ Symbolic exploration
▶ Abstraction & refinement

Now widely used for verification & bug-finding:
▶ Hardware, software, protocols, …
▶ Microsoft, Intel, Cadence, IBM, NASA, …

Invented here at CMU

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 21 / 26

Textbook

Free PDF available on campus network

Buy hardcover from Amazon, Springer

http://vufind.library.cmu.edu/vufind/Record/1607219

Matt Fredrikson Model Checking 22 / 26

http://vufind.library.cmu.edu/vufind/Record/1607219

Grading

Breakdown:
▶ 50% assignments
▶ 25% final exam
▶ 20% midterm
▶ 5% participation

Between 6-8 assignments

Some pen-and-paper, some programming

Written portions: hand in PDF from LaTeX

In-class exams

Participation:
▶ Come to lecture
▶ Ask questions, give answers
▶ Contribute to discussion

Matt Fredrikson Model Checking 23 / 26

Late Policy

Two days of “grace period” throughout semester
▶ We count in days, not hours or minutes
▶ One assignment, two days late
▶ Two assignments, one day late
▶ You decide...

Notify both instructor and TA when handing in late

Assignments receive no credit if turned in late:
▶ without notification, or
▶ past grace period

Matt Fredrikson Model Checking 24 / 26

Logistics

Course
Website: http://www.cs.cmu.edu/~mfredrik/15414

Lecture: Tuesdays & Thursdays, 10:30-11:50 GHC 4211

Matt Fredrikson
▶ Location: CIC 2126
▶ Office Hours: Mondays & Wednesdays 1-2pm, or by

appointment
▶ Email: mfredrik@cs

Ryan Wagner
▶ Location: Wean 4109
▶ Office Hours: Tuesdays & Thursdays 1-2pm
▶ Email: rrwagner@cs

Matt Fredrikson Model Checking 25 / 26

http://www.cs.cmu.edu/~mfredrik/15414

Next Lecture

Propositional Logic

Reading: Chapter 1 of Bradley & Manna, through 1.5

Matt Fredrikson Model Checking 26 / 26

