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What This Course is About

Does the software do what it is supposed to do?
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Does this do what it is supposed to?

public static int binarySearch(int[] a, int key) {
int low = O0;
int high = a.length - 1;

int mid = (low + high) / 2;

;
2

3

a

5 while (low <= high) {

6

7 int midVal = al[mid];
8

9

if (midVal < key)

10 low = mid + 1

11 else if (midVal > key)

12 high = mid - 1;

13 else

14 return mid; // key found

15 X

16 return -(low + 1); // key not found.
17 }
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Code Matters

This is a correct binary search algorithm.
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Code Matters

This is a correct binary search algorithm.
But what if Llow + high > 23% — 1?

Thenmid = (low + high) / 2 becomes negative
» Best case: ArrayIndexOutOfBoundsException
» Worst case: undefined behavior

Algorithm may be correct—with proof! The code, another story...
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Bugs make software insecure
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Bugs make software insecure

» April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.
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Bugs make software insecure

» April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.

» “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

» “...this allows attackers to eavesdrop on
communications, steal data directly
from the services and users and to
impersonate services and users.”
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Heartbleed, explained

SERVER, ARE YOU STiLL THERE?

IF 50, REF’LY "POTATO" (6 LETTERS). ser Meg wants these 6 letters: POTATO.

-]

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

ser Meq wants these 6 letters: POTATO.

1 =n

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

SERVER, ARE. YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

SERVER, ARE YOU STiLL THERE?
IFS0,REPLY "HAT" (500 LETTERS),

/

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

Image source: Randall Munroe, xkcd.com
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Many, many bugs
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Many, many bugs

1996, Ariane 5
Numerical overflow
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Many, many bugs

1996, Ariane 5
Numerical overflow

2016, Nissan
1m recalls for buggy airbag code
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Many, many bugs

2000-2010, Toyota
1996, Ariane 5 “Unintended acceleration” bug

Numerical overflow

2016, Nissan
1m recalls for buggy airbag code
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Many, many bugs

2000-2010, Toyota
1996, Ariane 5 “Unintended acceleration” bug

Numerical overflow

ﬁ«m
2016, Nissan 2012, Knight Capital
1m recalls for buggy airbag code Lost $440m in 30 minutes
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Formal Verification

All about proof
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Formal Verification

All about proof

Specification <= Implementation
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Formal Verification

All about proof

Specification <= Implementation

» Specifications must be unambiguous
» Meaning of implementation must be well-defined

When done well, gives strong indication of correctness
» ...but nothing is absolute
» Specifications and models must be validated
» Excellent complement to testing, other engineering practices
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Algorithmic Approaches
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Algorithmic Approaches

Formal proofs are tedious,
error-prone
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Algorithmic Approaches

Formal proofs are tedious,
error-prone

We want algorithms to:
» Check our work
» Fill in low-level details
» Give diagnostic info
» Verify the system (if possible)

Image source: Daniel Kroening & Ofer Strichman,

Decision Procedures: An Algorithmic Point of

View
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Algorithmic Approaches

Formal proofs are tedious,
error-prone

We want algorithms to:

Check our work

» Fill in low-level details

» Give diagnostic info

» Verify the system (if possible)

v

This is called
algorithmic verification

Image source: Daniel Kroening & Ofer Strichman,

Decision Procedures: An Algorithmic Point of

View
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This course

Understand the principles and algorithms behind verification tools

Matt Fredrikson Model Checking 11/26



This course

Understand the principles and algorithms behind verification tools

Gain experience using tools to write machine-checked code

Matt Fredrikson Model Checking 11/26



This course

Understand the principles and algorithms behind verification tools
Gain experience using tools to write machine-checked code

Three high-level topics:
» Decision procedures for automated reasoning
» Techniques for proving program correctness
» Algorithms and tools for automatic verification
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This course, in more detail

In this course, we’ll cover:

>

>

vV V. vV vV vV VY VY

Propositional and first-order logic
First-order theories commonly used in software verification

Satisfiability decision procedures for propositional and
first-order logic with theories

Well-founded and structural induction

Specifications of program correctness

Hoare Logic, verification conditions, and predicate transformers
Techniques for proving termination

Automated inductive verification

Static analysis techniques for inferring useful invariants
Software model checking and temporal logic

Symbolic execution for testing
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Decision Procedures

Decision Procedure

An algorithm that, when given a
decision problem, terminates with
a yes/no answer.
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Decision Procedures
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An algorithm that, when given a » Iswawordin L?
decision problem, terminates with » Does M halt on every input?
a yes/no answer.
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Decision Procedures

Decision problems:

Decision Procedure » Is z a prime?

An algorithm that, when given a » Iswawordin L?
decision problem, terminates with » Does M halt on every input?
2 YER/D SN » Is ¢ satisfiable?

We will focus on satisfiability procedures.
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Decision Procedures

Decision problems:

Decision Procedure » Is z a prime?

An algorithm that, when given a » Iswawordin L?
decision problem, terminates with » Does M halt on every input?

a yes/no answer. » Is ¢ satisfiable?

We will focus on satisfiability procedures.

We’'ll look at examples that are:
» Expressive enough to model real problems.
» Still decidable.
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Propositional SAT

Propositional Logic
False

True

Not

And

Or

Implies
Equivalent

Tl <>1-—20
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Propositional SAT

Propositional Logic

0 False SAT Problem

1 True ; "

~  Not Given a propositional formula £’
A And over variables p1, ps, . . ., find an
v Or assignment I = [p; — -, p2 — -, .. ]
~  Implies that satisfies F'.

< Equivalent
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Propositional SAT

Propositional Logic

Tl <>1-—20

False SAT Problem

True . .

Not Given a propositional formula F’
And over variables p1, ps, . . ., find an
Or assignment I = [p; — -, p2 > -, .. ]
Implies that satisfies F.
Equivalent

Lots of important applications...

» Verification » Equivalence checking
» Program synthesis » Combinatorial design
» Test generation » Cryptanalysis
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Isn’t SAT too hard?
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Isn’t SAT too hard?

3-SAT is the canonical NP-Complete problem
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Isn’t SAT too hard?

1,000,000

100,000 -

10,000 -

1,000 -|

Variables

100

1960 1970 1980 1990 2000

Year
3-SAT is the canonical NP-Complete problem

...but procedures routinely solve very large instances
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Isn’t SAT too hard?

1,000,000

100,000 -

10,000 -

1,000 -|

Variables

100

1960 1970 1980 1990 2000 2010

Year
3-SAT is the canonical NP-Complete problem
...but procedures routinely solve very large instances
Key: combine search and deduction for common-case efficiency

Image source: Daniel Kroening & Ofer Strichman, Decision Procedures
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Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning
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Beyond SAT: Modulo Theories

SAT is a good foundation for
automated reasoning

Finite problems:
1. “Bit blast” the problem to
propositional logic
2. Use latest-and-greatest SAT
solver to find a solution

3. Translate back to original
domain

Matt Fredrikson Model Checking 16/26



Beyond SAT: Modulo Theories

SAT is a good foundation for SMT: Sat Modulo Theories
automated reasoning

Finite problems:
1. “Bit blast” the problem to
propositional logic
2. Use latest-and-greatest SAT
solver to find a solution

3. Translate back to original
domain

Matt Fredrikson Model Checking 16/26



Beyond SAT: Modulo Theories

SAT is a good foundation for SMT: Sat Modulo Theories
automated reasoning

Finite problems: Richer way to model problems:
1. “Bit blast” the problem to
propositional logic
2. Use latest-and-greatest SAT
solver to find a solution

3. Translate back to original
domain
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Beyond SAT: Modulo Theories

SAT is a good foundation for SMT: Sat Modulo Theories
automated reasoning

Finite problems: Richer way to model problems:
1. “Bit blast” the problem to » Allow predicates from
propositional logic selected background theories

2. Use latest-and-greatest SAT
solver to find a solution

3. Translate back to original
domain

(1 > 0) A (21 < 10) Ard(wr(P, z2,23), 21 + 22) = xg + 1
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Beyond SAT: Modulo Theories

SAT is a good foundation for SMT: Sat Modulo Theories
automated reasoning
Finite problems: Richer way to model problems:

1. “Bit blast” the problem to » Allow predicates from
propositional logic selected background theories

2. Use latest-and-greatest SAT » Combine theory-specific
solver to find a solution reasoning with approaches

3. Translate back to original from SAT
domain

(1 > 0) A (21 < 10) Ard(wr(P, z2,23), 21 + 22) = xg + 1

Matt Fredrikson Model Checking 16/26



Beyond SAT: Modulo Theories

SAT is a good foundation for SMT: Sat Modulo Theories
automated reasoning
Finite problems: Richer way to model problems:
1. “Bit blast” the problem to » Allow predicates from
propositional logic selected background theories
2. Use latest-and-greatest SAT » Combine theory-specific
solver to find a solution reasoning with approaches
3. Translate back to original from SAT
domain » Supports infinite domains

(1 > 0) A (21 < 10) Ard(wr(P, z2,23), 21 + 22) = xg + 1
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Reasoning About Programs

1 int[] array_copy(int[] A, int n)
» //@requires O <= n &% n <= \length(A);
3 //@ensures \length(\result) == n;
4
{
int[] B = alloc_array(int, n);

//@loop_invariant 0@ <= i;
{

10 B[i] = A[i];

n }

5

6

7 for (int i = 0; i < n; i++)
8

9

13 return B;
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Reasoning About Programs

Functional Correctness
» Specification

» Proof
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Reasoning About Programs

Functional Correctness
» Specification

» Proof
1 int[] array_copy(int[] A, int n)
. . . . » //@requires 0 <= n & n <= \length(A);
SpeC|fy behavior with |OgIC s //@ensures \length(\result) == n;
. a {
| 4
Declarative s int[] B = alloc_array(int, n);
» Precise 6
7 Ffor (int i = 0; 1 < n; i++)
» Amenable to proof s //@loop_invariant 0 <= i;
s o{
10 B[i] = A[i];
o}

13 return B;

Matt Fredrikson Model Checking 17 /26



Reasoning About Programs

Functional Correctness
» Specification

» Proof
1 int[] array_copy(int[] A, int n)
. . . . 2 //@requires 0 <= n && n <= \length(A);
SpeC|fy behavior with |OgIC s //@ensures \length(\result) == n;
. s {
>
Declarative s int[] B = alloc_array(int, n);
» Precise s
7 Ffor (int i = 0; 1 < n; i++)
» Amenable to proof s //@loop_invariant 0 <= i;
o {
. . B[i] = A[i];
Systematic proof techniques . }
» 12
Based on language n return B:
semantics u}

» Well-defined proof rules
» Ideally, automatable
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A language and verifier for functional correctness
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A language and verifier for functional correctness

» Pre- and postconditions,
assertions

» Pure mathematical functions
» Termination metrics
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A language and verifier for functional correctness

» Pre- and postconditions,
assertions

» Pure mathematical functions
» Termination metrics

1 predicate sorted(a: array<int>)

2 requires a != null

3 reads a

4 {

5 forall j, k :: @ <= j < k < a.Length ==> a[j] <= a[k]

6}

7 method BinarySearch(a: array<int>, val: int) returns (idx: int)

8 requires a != null & & @ <= a.lLength 8& sorted(a)

9 ensures @ <= idx ==> idx < a.lLength 8& a[idx] == val

10 ensures idx < @ ==> forall k :: @ <= k < a.Length ==> a[k] != val

11 {
12 var low, high := @, a.lLength;
13 while low < high
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A language and verifier for functional correctness

Compiler checks everything
statically!

» SMT solver under the hood

» Pre- and postconditions,
assertions

» Pure mathematical functions
» Termination metrics

1 predicate sorted(a: array<int>)

2 requires a != null

3 reads a

4 {

5 forall j, k :: @ <= j < k < a.Length ==> a[j] <= a[k]

6}
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11 {
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A language and verifier for functional correctness

Compiler checks everything
statically!

» SMT solver under the hood

» Pre- and postconditions,
assertions

» Pure mathematical functions

» Termination metrics Used to build real systems
1 predicate sorted(a: array<int>)
2 requires a != null
3 reads a
4 {
5 forall j, k :: @ <= j < k < a.Length ==> a[j] <= a[k]
6}
7 method BinarySearch(a: array<int>, val: int) returns (idx: int)
8 requires a != null & & @ <= a.lLength 8& sorted(a)
9 ensures @ <= idx ==> idx < a.lLength 8& a[idx] == val
10 ensures idx < @ ==> forall k :: @ <= k < a.Length ==> a[k] != val
11 {

12 var low, high := @, a.lLength;
13 while low < high
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Automated Verification

Algorithms for proving that programs match their specifications
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Automated Verification

Algorithms for proving that programs match their specifications

Basic idea:

1. Translate programs into proof
obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision
procedure
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Automated Verification

Algorithms for proving that programs match their specifications

Problem is undecidable!

1. Require annotations Basic idea:
2. Relieve manual burden by 1. Translate programs into proof
inferring some annotations obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision
procedure
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2. Relieve manual burden by 1. Translate programs into proof
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- . 2. Encode proof obligations as
Verifiers are non-trivial systems o
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Automated Verification

Algorithms for proving that programs match their specifications

Problem is undecidable!

1. Require annotations Basic idea:
2. Relieve manual burden by 1. Translate programs into proof
inferring some annotations obligations
2. Encode proof obligations as

Verifiers are non-trivial systems o
satisfiability
See how to build them for: 3. Solve USing a decision
» Efficiency procedure

» Extensibility
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Model Checking

Automatic techniques for finding bugs (or proving their absence)
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Model Checking

Automatic techniques for finding bugs (or proving their absence)

[ code | [ spec |
==

model
checker

—

v counter-
example
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Model Checking

Automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

[ code | [ spec |
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checker
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Model Checking

Automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

» Verification by exhaustive state
space search [ code ] [ spec ]
model
checker

v counter-
example
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Model Checking

Automatic techniques for finding bugs (or proving their absence)
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propositional temporal logic

» Verification by exhaustive state
space search [ code ] [ spec ]
» Diagnostic counterexamples \v /
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Model Checking

Automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

» Verification by exhaustive state
space search [ code ] [ spec ]
» Diagnostic counterexamples \v /
» No manual proofs! model
checker
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Model Checking

Automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

» Verification by exhaustive state
space search [ code ] [ spec ]
» Diagnostic counterexamples \ /
» No manual proofs! model
» Downside: “State explosion” checker
107 atoms 10590000 states v/ \

v counter-
example
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Model Checking Gets Results

Clever ways of dealing with state explosion:
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Model Checking Gets Results

Clever ways of dealing with state explosion:
» Partial order reduction
» Bounded model checking
» Symbolic exploration
» Abstraction & refinement

Now widely used for verification & bug-finding:
» Hardware, software, protocols, ...
» Microsoft, Intel, Cadence, IBM, NASA, ...
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Model Checking Gets Results

Clever ways of dealing with state explosion:
» Partial order reduction
» Bounded model checking
» Symbolic exploration
» Abstraction & refinement

Now widely used for verification & bug-finding:

» Hardware, software, protocols, ... Ed Clarke
» Microsoft, Intel, Cadence, IBM, NASA, ... Turing Award,
2007

Invented here at CMU
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Textbook

Aaron R. Bradley
Zohar Manna

The Calculus

Free PDF available on campus network "
of Computation

Buy hardcover from Amazon, Springer

@ Springer

http://vufind.library.cmu.edu/vufind/Record/1607219
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http://vufind.library.cmu.edu/vufind/Record/1607219

Breakdown:
» 50% assignments
» 25% final exam
» 20% midterm
» 5% participation

Matt Fredrikson

Between 6-8 assignments

Some pen-and-paper, some programming
Written portions: hand in PDF from LaTeX
In-class exams

Participation:
» Come to lecture
» Ask questions, give answers
» Contribute to discussion

Model Checking 23/26



Late Policy

Two days of “grace period” throughout semester
» We count in days, not hours or minutes
» One assignment, two days late
» Two assignments, one day late
» You decide...

Notify both instructor and TA when handing in late

Assignments receive no credit if turned in late:
» without notification, or
» past grace period
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Course Website: http://www.cs.cmu.edu/~mfredrik/15414
Lecture: Tuesdays & Thursdays, 10:30-11:50 GHC 4211

Matt Fredrikson
» Location: CIC 2126

» Office Hours: Mondays & Wednesdays 1-2pm, or by
appointment

» Email: mfredrik@cs

Ryan Wagner
» Location: Wean 4109
» Office Hours: Tuesdays & Thursdays 1-2pm
» Email: rrwagner@cs
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http://www.cs.cmu.edu/~mfredrik/15414

Next Lecture

Propositional Logic

Reading: Chapter 1 of Bradley & Manna, through 1.5
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