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Abstract. Embodied perception refers to the ability of an autonomous
agent to perceive its environment so that it can (re)act. The responsive-
ness of the agent is largely governed by latency of its processing pipeline.
While past work has studied the algorithmic trade-off between latency
and accuracy, there has not been a clear metric to compare different
methods along the Pareto optimal latency-accuracy curve. We point out
a discrepancy between standard offline evaluation and real-time applica-
tions: by the time an algorithm finishes processing a particular frame,
the surrounding world has changed. To these ends, we present an ap-
proach that coherently integrates latency and accuracy into a single
metric for real-time online perception, which we refer to as “stream-
ing accuracy”. The key insight behind this metric is to jointly evaluate
the output of the entire perception stack at every time instant, forc-
ing the stack to consider the amount of streaming data that should be
ignored while computation is occurring. More broadly, building upon
this metric, we introduce a meta-benchmark that systematically con-
verts any single-frame task into a streaming perception task. We focus
on the illustrative tasks of object detection and instance segmentation
in urban video streams, and contribute a novel dataset with high-quality
and temporally-dense annotations. Our proposed solutions and their em-
pirical analysis demonstrate a number of surprising conclusions: (1) there
exists an optimal “sweet spot” that maximizes streaming accuracy along
the Pareto optimal latency-accuracy curve, (2) asynchronous tracking
and future forecasting naturally emerge as internal representations that
enable streaming perception, and (3) dynamic scheduling can be used to
overcome temporal aliasing, yielding the paradoxical result that latency
is sometimes minimized by sitting idle and “doing nothing”.

1 Introduction

Embodied perception refers to the ability of an autonomous agent to perceive its
environment so that it can (re)act. A crucial quantity governing the responsive-
ness of the agent is its reaction time. Practical applications, such as self-driving
vehicles or augmented reality and virtual reality (AR/VR), may require reac-
tion time that rivals that of humans, which is typically 200 milliseconds (ms)
for visual stimuli [22]. In such settings, low-latency algorithms are imperative to
ensure safe operation or enable a truly immersive experience.

Historically, the computer vision community has not particularly focused on
algorithmic latency. This is one reason why a disparate set of techniques (and
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Fig. 1. Latency is inevitable in a real-world perception system. The system takes a
snapshot of the world at t1 (the car is at location A), and when the algorithm finishes
processing this observation, the surrounding world has already changed at t2 (the car
is now at location B, and thus there is a mismatch between prediction A and ground
truth B). If we define streaming perception as a task of continuously reporting back the
current state of the world, then how should one evaluate vision algorithms under such
a setting? We invite the readers to watch a video on the project website that compares
a standard frame-aligned visualization with our latency-aware visualization [Link].

conference venues) have been developed for robotic vision. Interestingly, latency
has been well studied recently (e.g., fast but not necessarily state-of-the-art ac-
curate detectors such as [34,27,25]). But it has still been primarily explored in an
offline setting. Vision-for-online-perception imposes quite different latency de-
mands as shown in Fig. 1, because by the time an algorithm finishes processing
a particular frame — say, after 200ms — the surrounding world has changed!
This forces perception to be ultimately predictive of the future. In fact, such pre-
dictive forecasting is a fundamental property of human vision (e.g., as required
whenever a baseball player strikes a fast ball [31]). So we argue that streaming
perception should be of interest to general computer vision researchers.

Contribution (meta-benchmark) To help explore embodied vision in a truly
online streaming context, we introduce a general meta-benchmark that system-
atically converts any single-frame task into a streaming perception task. Our
key insight is that streaming perception requires understanding the state of
the world at all time instants — when a new frame arrives, streaming algo-
rithms must report the state of the world even if they have not done processing
the previous frame. Within this meta-benchmark, we introduce an approach to
measure the real-time performance of perception systems. The approach is as
simple as querying the state of the world at all time instants, and the quality of
the response is measured by the original task metric. Such an approach natu-
rally merges latency and accuracy into a single metric. Therefore, the trade-off
between accuracy versus latency can now be measured quantitatively. Interest-
ingly, our meta-benchmark naturally evaluates the perception stack as a whole.
For example, a stack may include detection, tracking, and forecasting modules.

https://www.cs.cmu.edu/~mengtial/proj/streaming/vid/Viz Compare.mp4
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Our meta-benchmark can be used to directly compare such modular stacks to
end-to-end black-box algorithms [28]. In addition, our approach addresses the
issue that overall latency of concurrent systems is hard to evaluate (e.g., latency
cannot be simply characterized by the runtime of a single module).

Contribution (analysis) Motivated by perception for autonomous vehicles, we
instantiate our meta-benchmark on the illustrative tasks of object detection and
instance segmentation in urban video streams. Accompanied with our streaming
evaluation is a novel dataset with high-quality, high-frame-rate, and temporally-
dense annotations of urban videos. Our evaluation on these tasks demonstrates a
number of surprising conclusions. (1) Streaming perception is significantly more
challenging than offline perception. Standard metrics like object-detection av-
erage precision (AP) dramatically drop (from 38.0 to 6.2), indicating the need
for the community to focus on such problems. (2) Decision-theoretic schedul-
ing, asynchronous tracking, and future forecasting naturally emerge as internal
representations that enable accurate streaming perception, recovering much of
the performance drop (boosting performance to 17.8). With simulation, we can
verify that infinite compute resources modestly improves performance to 20.3,
implying that our conclusions are fundamental to streaming processing, no mat-
ter the hardware. (3) It is well known that perception algorithms can be tuned
to trade off accuracy versus latency. Our analysis shows that there exists an
optimal “sweet spot” that uniquely maximizes streaming accuracy. This pro-
vides a different perspective on such well-explored trade-offs. (4) Finally, we
demonstrate the effectiveness of decision-theoretic reasoning that dynamically
schedules which frame to process at what time. Our analysis reveals the para-
dox that latency is minimized by sometimes sitting idle and “doing nothing”!
Intuitively, it is sometimes better to wait for a fresh frame rather than to begin
processing one that will soon become “stale”.

2 Related Work

Latency evaluation Latency is a well-studied subject in computer vision. One
school of research focuses on reducing the FLOPS of backbone networks [20,40],
while another school focuses on reducing the runtime of testing time algorithms
[34,27,25]. We follow suit and create a latency-accuracy plot under our exper-
iment setting (Fig. 2). While such a plot is suggestive of the trade-off for of-
fline data processing (e.g., archived video footage), it fails to capture the fact
that when the algorithm finishes processing, the surrounding world has already
changed. Therefore, we believe that existing plots do not reveal the streaming
performance of these algorithms. Aside from computational latency, prior work
has also investigated algorithmic latency [30], evaluated by running algorithms
on a video in the offline fashion and measuring how many frames are required
to detect an object after it appears. In comparison, our evaluation is done in
the more realistic online real-time setting, and applies to any single-frame task,
instead of just object detection.
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Fig. 2. Prior art routinely explores the
trade-off between detection accuracy
versus runtime. We generate the above
plot by varying the input resolution
of each detection network. We argue
that such plots are exclusive to offline
processing and fail to capture latency-
accuracy trade-offs in streaming per-
ception. AP stands for average preci-
sion, and is a standard metric for ob-
ject detection [26].

Real-time evaluation There has not
been much prior effort to evaluate vision
algorithms in the real-time fashion in the
research community. Notable exceptions
include work on real-time tracking and
real-time simultaneous localization and
mapping (SLAM). First, the VOT2017
tracking benchmark specifically included
a real-time challenge [23]. Its benchmark
toolkit sends out frames at 20 FPS to par-
ticipants’ trackers and asks them to re-
port back results before the next frame
arrives. If the tracker fails to respond in
time, the last reported result is used. This
is equivalent to applying zero-order hold
to trackers’ outputs. In our benchmarks,
we adopt a similar zero-order hold strat-
egy, but extend it to a broader context
of arbitrary single-frame tasks and allow
for a more delicate interplay between de-
tection, tracking, and forecasting. Second,
the literature on real-time SLAM also considers benchmark evaluation under a
“hard-enforced” real-time requirement [5,14]. Our analysis suggests that hard-
enforcement is too stringent of a formulation; algorithms should be allowed to
run longer than the frame rate, but should still be scored on their ability to
report the state of the world (e.g., localized map) at frame rate.

Progressive and anytime algorithms There exists a body of work on pro-
gressive and anytime algorithms that can generate outputs with lower latency.
Such work can be traced back to classic research on intelligent planning under
resource constraints [4] and flexible computation [19], studied in the context
of AI with bounded rationality [35]. Progressive processing [42] is a paradigm
that splits up an algorithm into sequential modules that can be dynamically
scheduled. Often, scheduling is formulated as a decision-theoretic problem un-
der resource constraints, which can be solved in some cases with Markov decision
processes (MDPs) [41,42]. Anytime algorithms are capable of returning a solution
at any point in time [41]. Our work revisits these classic computation paradigms
in the context of streaming perception, specifically demonstrating that classic
visual tasks (like tracking and forecasting) naturally emerge in such bounded
resource settings.

3 Proposed Evaluation

In the previous section, we have shown that existing latency evaluation fails to
capture the streaming performance. To address this issue, here we propose a new
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Fig. 3. Our proposed streaming perception evaluation. A streaming algorithm f is
provided with (timestamped) observations up until the current time t and refreshes
an output buffer with its latest prediction of the current state of the world. At the
same time, the benchmark constantly queries the output buffer for estimates of world
states. Crucially, f must consider the amount of streaming observations that should
be ignored while computation is occurring.

method of evaluation. Intuitively, a streaming benchmark no longer evaluates a
function, but a piece of executable code over a continuous time frame. The code
has access to a sensor input buffer that stores the most recent image frame. The
code is responsible for maintaining an output buffer that represents the up-to-
date estimate of the state of the world (e.g., a list of bounding boxes of objects
in the scene). The benchmark examines this output buffer, comparing it with a
ground truth stream of the actual world state (Fig. 3).

3.1 Formal definition

We model a data stream as a set of sensor observations, ground-truth world
states, and timestamps, denoted respectively as {(xi, yi, ti)}Ti=1. Let f be a
streaming algorithm to be evaluated. At any continuous time t, the algorithm f
is provided with observations (and timestamps) that have appeared so far:

{(xi, ti)|ti ≤ t} [accessible input at time t] (1)

We allow the algorithm f to generate an output prediction at any time. Let sj be
the timestamp that indicates when a particular prediction ŷj is produced. The
subscript j indexes over the N outputs generated by f over the entire stream:

{(ŷj , sj)}Nj=1 [all outputs by f ] (2)

Note that this output stream is not synchronized with the input stream, and N
has no direct relationship with T . Generally speaking, we expect algorithms to
run slower than the frame rate (N < T ).

We benchmark the algorithm f by comparing its most recent output at time
ti to the ground-truth yi. We first compute the index of the most recent output:

ϕ(t) = arg max
j

sj < t [real-time constraint] (3)
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This is equivalent to the benchmark applying a zero-order hold for the algo-
rithm’s outputs to produce continuous estimation of the world states. Given an
arbitrary single-frame loss L, the benchmark formally evaluates:

Lstreaming = L({(yi, ŷϕ(ti))}
T
i=1) [evaluation] (4)

By construction, the streaming loss above can be applied to any single-frame
task that computes a loss over a set of ground truth and prediction pairs.

3.2 Emergent tracking and forecasting

At first glance, “instant” evaluation may seem unreasonable: the benchmark at
time t queries the state at time t. Although xt is made available to the algo-
rithm, any finite-time algorithm cannot make use of it to generate its prediction.
For example, if the algorithm takes time ∆t to perform its computation, then
to make a prediction at time t, it can only use data before time t − ∆t. We
argue that this is the realistic setting for streaming perception, both in biolog-
ical and robotic systems. Humans and autonomous vehicles must react to the
instantaneous state of the world when interacting with dynamic scenes. Such
requirements strongly suggest that perception should be inherently predictive
of the future. Our benchmark similarly “forces” algorithms to reason and fore-
cast into the future, to compensate for the mismatch between the last processed
observation and the present.

One may also wish to take into account the inference time of downstream
actuation modules (that say, need to optimize a motion plan that will be ex-
ecuted given the perceived state of the world). It is straightforward to extend
our benchmark to require algorithms to generate a forecast of the world state
when the downstream module finishes its processing. For example, at time t the
benchmark queries the state of the world at time t+ η, where η > 0 represents
the inference time of the downstream actuation module.

In order to forecast, the algorithms need to reason temporally through track-
ing (in the case of object detection). For example, constant velocity forecasting
requires the tracks of each object over time in order to compute the velocity.
Generally, there are two categories of trackers — post-hoc association [3] and
template-based visual tracking [29]. In this paper, we refer them in short as
“association” and “tracking”, respectively. Association of previously computed
detections can be made extremely lightweight with simple linking of bounding
boxes (e.g., based on the overlap). However, association does not make use of
the image itself as done in (visual) tracking. We posit that trackers may pro-
duce better streaming accuracy for scenes with highly unpredictable motion. As
part of emergent solutions to our streaming perception problem, we include both
association and tracking in our experiments in the next section.

Finally, it is natural to seek out an end-to-end system that directly optimizes
streaming perception accuracy. We include one such method in Appendix C.2 to
show that tracking and forecasting-based representations may also emerge from
gradient-based learning.



Towards Streaming Perception 7

3.3 Computational constraints

1 frame

(a) Single GPU model

1 frame 1 frame

t

…….

(b) Infinite GPU model

t

1 frame

1 frame

1 frame

Fig. 4. Two computation models considered in our evaluation. Each block represents
an algorithm running on a device and its length indicates its runtime.

Because our metric is runtime dependent, we need to specify the compu-
tational constraints to enable a fair comparison between algorithms. We first
investigate a single GPU model (Fig. 4a), which is used for existing latency
analysis in prior art. In the single GPU model, only a single GPU job (e.g., de-
tection or visual tracking) can run at a time. Such a restriction avoids multi-job
interference and memory capacity issues. Note that a reasonable number of CPU
jobs are allowed to run concurrently with the GPU job. For example, we allow
bounding box association and forecasting modules to run on the CPU in Fig. 7.

Nowadays, it is common to have multiple GPUs in a single system. We in-
vestigate an infinite GPU model (Fig. 4b), with no restriction on the number
of GPU jobs that can run concurrently. We implement this infinite computation
model with simulation, described in the next subsection.

3.4 Challenges for practical implementation

While our benchmark is conceptually simple, there are several practical hurdles.
First, we require high-frame-rate ground truth annotations. However, due to
high annotation cost, most existing video datasets are annotated at rather sparse
frame rates. For example, YouTube-VIS is annotated at 6 FPS, while the video
data rate is 30 FPS [39]. Second, our evaluation is hardware dependent — the
same algorithm on different hardware may yield different streaming performance.
Such hardware-in-the-loop testing is commonplace in control systems [1] and
arguably vital for embodied perception (which should by definition, depend on
the agent’s body!). Third, stochasticity in actual runtimes yields stochasticity
in the streaming performance. Note that the last two issues are also prevalent
in existing offline runtime analyses. Here we present high-level ideas for the
solutions and leave additional details to Appendix A.2 & A.3.

Pseudo ground truth We explore the use of pseudo ground truth labels as a
surrogate to manual high-frame-rate annotations. The pseudo labels are obtained
by running state-of-the-art, arbitrarily expensive offline algorithms on each frame
of a benchmark video. While the absolute performance numbers (when bench-
marked on ground truth and pseudo ground truth labels) differ, we find that
the rankings of algorithms are remarkably stable. The Pearson correlation coef-
ficient of the scores of the two ground truth sets is 0.9925, suggesting that the
real score is literally a linear function of the pseudo score. Moreover, we find
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that offline pseudo ground truth could also be used to self-supervise the training
of streaming algorithms.

Simulation While streaming performance is hardware dependent, we now demon-
strate that the benchmark can be evaluated on simulated hardware. In simula-
tion, the benchmark assigns a runtime to each module of the algorithm, instead
of measuring the wall-clock time. Then based on the assigned runtime, the sim-
ulator generates the corresponding output timestamps. The assigned runtime to
each module provides a layer of abstraction on the hardware.

The benefit of simulation is to allow us to assess the algorithm performance
on non-existent hardware, e.g., a future GPU that is 20% faster or infinite GPUs
in a single system. Simulation also allows our benchmark to inform practitioners
about the design of future hardware platforms, e.g., one can verify with simu-
lation that 4 GPUs may be “optimal” (producing the same streaming accuracy
as infinite GPUs).

Runtime-induced variance Due to algorithmic choice and system scheduling,
different runs of the same algorithm may end up with different runtimes. This
variation across runs also affects the overall streaming performance. Fortunately,
we empirically find that such variance causes a standard deviation of up to
0.5% under our experiment setting. Therefore, we omit variance report in our
experiments.

4 Solutions and Analysis

In this section, we instantiate our meta-benchmark on the illustrative task of
object detection. While we show results on streaming detection, several key ideas
also generalize to other tasks. An instantiation on instance segmentation can be
found in Appendix A.6. We first explain the setup and present the solutions and
analysis. For the solutions, we first consider single-frame detectors, and then
add forecasting and tracking one by one into the discussion. We focus on the
most effective combination of detectors, trackers, and forecasters which we have
evaluated, but include additional methods in Appendix C.

4.1 Setup

We extend the publicly available video dataset Argoverse 1.1 [7] with our own an-
notations for streaming evaluation, which we name Argoverse-HD (High-frame-
rate Detection). It contains diverse urban outdoor scenes from two US cities.
We select Argoverse for its embodied setting (autonomous driving) and its high-
frame-rate sensor data (30 FPS). We focus on the task of 2D object detection
for our streaming evaluation. Under this setting, the state of the world yt is a
list of bounding boxes of the objects of interest. While Argoverse has multiple
sensors, we only use the center RGB camera for simplicity. We collect our own
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Dataset AP APL APM APS AP50 AP75

MS COCO 37.6 50.3 41.4 20.7 59.8 40.5
Argoverse-HD (Ours) 30.6 52.4 33.1 12.2 52.3 31.2

Fig. 5. Comparison between our dataset and MS COCO [26]. Top shows an example
image from Argoverse 1.1 [7], overlaid with our dense 2D annotation (at 30 FPS).
Bottom presents results of Mask R-CNN [18] (ResNet 50) evaluated on the two datasets.
APL, APM and APS denote AP for large, medium and small objects respectively.
AP50, AP75 denote AP with IoU (Intersection over Union) thresholds at 0.5 and 0.75
respectively. We first observe that the APs are roughly comparable, showing that our
annotation is reasonable in evaluating object detection performance. Second, we see
a significant drop in APS from COCO to ours, suggesting that the detection of small
objects is more challenging in our setting. For self-driving vehicle applications, those
small objects are important to identify when the ego-vehicle is traveling at a high speed
or making unprotected turns.

annotations since the dataset does not provide dense 2D annotations1. For the
annotations, we follow MS COCO [26] class definitions and format. For example,
we include the “iscrowd” attribute for ambiguous cases where each instance can-
not be identified, and therefore the algorithms will not be wrongfully penalized.
We use only a subset of 8 classes (from 80 MS COCO classes) that are directly
relevant to autonomous driving: person, bicycle, car, motorcycle, bus, truck, traf-
fic light, and stop sign. This definition allows us to evaluate off-the-shelf models
trained on MS COCO. No training is involved in the following experiments un-
less otherwise specified. All numbers are computed on the validation set, which
contains 24 videos ranging from 15–30 seconds each (the total number of frames
is 15k). Figure 5 shows a comparison of our annotation with that of MS COCO.
Additional comparison with other related datasets can be found in Appendix
A.4. All output timing is measured on a single Geforce GTX 1080 Ti GPU (a
Tesla V100 counterpart is provided in Appendix A.7).

4.2 Detection-Only

Table 1 includes the main results of using just detectors for streaming perception.
We first examine the case of running a state-of-the-art detector — Hybrid Task
Cascade (HTC) [8], both in the offline and the streaming settings. The AP drops

1 It is possible to derive 2D annotations from the provided 3D annotations, but we
find that such derived annotations are highly imprecise.
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Table 1. Performance of existing detectors for streaming perception. The number after
@ is the input scale (the full resolution is 1920× 1200). * means using GPU for image
pre-processing as opposed to using CPU in the off-the-shelf setting. The last column
is the mean runtime of the detector for a single frame in milliseconds (mask branch
disabled if applicable). The first baseline is to run an accurate detector (row 1), and
we observe a significant drop of AP in the online real-time setting (row 2). Another
commonly adopted baseline for embodied perception is to run a fast detector (row 3–4),
whose runtime is smaller than the frame interval (33ms for 30 FPS streams). Neither of
these baselines achieves good performance. Searching over a wide suite of detectors and
input scales, we find that the optimal solution is Mask R-CNN (ResNet 50) operating
at 0.5 input scale (row 5–6). In addition, our scheduling algorithm (Alg. 1) boosts the
performance by 1.0/2.3 for AP/APL (row 7). In the hypothetical infinite GPU setting,
a more expensive detector yields better trade-off (input scale switching from 0.5 to
0.75, almost doubling the runtime), and it further boosts the performance to 14.4 (row
8), which is the optimal solution achieved by just running the detector. Simulation
suggests that 4 GPUs suffice to maximize streaming accuracy for this solution

ID Method Detector AP APL APM APS AP50 AP75 Runtime

1 Accurate (Offline) HTC @ s1.0 38.0 64.3 40.4 17.0 60.5 38.5 700.5

2 Accurate HTC @ s1.0 6.2 9.3 3.6 0.9 11.1 5.9 700.5
3 Fast RetinaNet R50 @ s0.2 5.5 14.9 0.4 0.0 9.9 5.6 36.4
4 Fast* RetinaNet R50 @ s0.2 6.0 18.1 0.5 0.0 10.3 6.3 31.2
5 Optimized Mask R-CNN R50 @ s0.5 10.6 21.2 6.3 0.9 22.5 8.8 77.9
6 Optimized* Mask R-CNN R50 @ s0.5 12.0 24.3 7.9 1.0 25.1 10.1 56.7

7 + Scheduling (Alg. 1) Mask R-CNN R50 @ s0.5 13.0 26.6 9.2 1.1 26.8 11.1 56.7

8 + Infinite GPUs Mask R-CNN R50 @ s0.75 14.4 24.3 11.3 2.8 30.6 12.1 92.7

significantly in the streaming setting. Such a result is not entirely surprising
due to its high runtime (700ms). A commonly adopted strategy for real-time
applications is to run a detector that is within the frame rate. We point out that
this strategy may be problematic, since such a hard-constrained time budget
results in poor accuracy for challenging tasks (Table 1 row 3–4). In addition, we
find that many existing network implementations are optimized for throughput
rather than latency, reflecting the bias of the community for offline versus online
processing! For example, image pre-processing (e.g., resizing and normalizing) is
often done on CPU, where it can be pipelined with data pre-fetching. By moving
it to GPU, we save 21ms in latency (for an input of size 960× 600).

Our benchmarks allow streaming algorithms to choose which frames to pro-
cess/ignore. Figure 6 compares a straight-forward schedule with our dynamic
schedule (Alg. 1), which attempts to address temporal aliasing of the former.
While spatial aliasing and quantization has been studied in computer vision [18],
temporal quantization in the streaming setting has not been well explored. Note-
ably, it is difficult to pre-compute the optimal schedule because of the stochastic-
ity of actual runtimes. Our proposed scheduling policy (Alg. 1) tries to minimize
the expected temporal mismatch of the output stream and the data stream, thus
increasing the overall streaming performance. Empirically, we find that it raises
the AP for the detector (Table 1 row 7). We provide a theoretical analysis of
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Fig. 6. Algorithm scheduling for streaming perception with a single GPU. (a) A fast
detector finishes processing the current frame before the next frame arrives. An accurate
(but slow) detector cannot process every frame due to high latency. In this example,
frame 1 is skipped. Note that the goal of streaming perception is not to process every
frame but to produce accurate state estimates in a timely manner. (b) One straight-
forward schedule is to simply process the latest available frame upon the completion of
the previous processing (idle-free). However, if latest available frame will soon become
stale, it might be better to idle and wait for a fresh frame (our dynamic schedule,
Alg. 1). In this illustration, Alg. 1 determines that frame 2 will soon become stale and
decides to wait (visualized in red) for frame 3 by comparing the tails τ2 and τ3.

Algorithm 1 Shrinking-tail policy

1: Given finishing time s and algorithm runtime r in the unit of frames (assuming
r > 1), this policy returns whether the algorithm should wait for the next frame

2: Define tail function τ(t) = t− btc
3: return [τ(s+ r) < τ(s)] (Iverson bracket)

the algorithm and additional empirical results for a wide suite of detectors in
Appendix B.1. Note that Alg. 1 is by construction task agnostic (not specific to
object detection).

4.3 Forecasting

Now we expand our solution space to include forecasting methods. We experi-
mented with both constant velocity models and first-order Kalman filters. We
find good performance with the latter, given a small modification to handle asyn-
chronous sensor measurements (Fig. 7). The classic Kalman filter [21] operates
on uniform time steps, coupling prediction and correction updates at each step.
In our case, we perform correction updates only when a sensor measurement is
available, but predict at every step. Second, due to frame-skipping, the Kalman
filter should be time-varying (the transition and the process noise depend on the
length of the time interval, details can be found in Appendix B.2). Association
for bounding boxes across frames is required to update the Kalman filter, and we
apply IoU-based greedy matching. For association and forecasting, the compu-
tation involves only bounding box coordinates and therefore is very lightweight
(< 2ms on CPU). We find that such overhead has little influence on the overall
AP. The results are summarized in Table 2.

Streamer (meta-detector) Note that our dynamic scheduler (Alg. 1) and
asynchronous Kalman forecaster can be applied to any off-the-shelf detector,
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Fig. 7. Scheduling for association and forecasting. Association takes place immediately
after a new detection result becomes available, and it links the bounding boxes in two
consecutive detection results. Forecasting takes place right before the next time step
and it uses an asynchronous Kalman filter to produce an output as the estimation of
the current world state. By default, the prediction step also updates internal states in
the Kalman filter and is always called before the update step. In our case, we perform
multiple update-free predictions (green blocks) until we receive a frame result.

Table 2. Streaming perception with joint detection, association, and forecasting. As-
sociation is done by IoU-based greedy matching, while forecasting is done by an asyn-
chronous Kalman filter. First, we observe that forecasting greatly boosts the perfor-
mance (from Table 1 row 7’s 13.0 to row 1’s 16.7). Also, with forecasting compensating
for algorithm latency, it is now desirable to run a more expensive detector (row 2).
Searching again over a large suite of detectors after adding forecasting, we find that
the optimal detector is still Mask R-CNN (ResNet 50), but at input scale 0.75 instead
of 0.5 (runtime 93ms and 57ms)

ID Method AP APL APM APS AP50 AP75

1 Detection + Scheduling + Association + Forecasting 16.7 39.9 14.9 1.2 31.2 16.0
2 + Re-optimize Detection (s0.5 → s0.75) 17.8 33.3 16.3 3.2 35.2 16.5

3 + Infinite GPUs 20.3 38.5 19.9 4.0 39.1 18.9

regardless of its underlying latency (or accuracy). This means that we can as-
semble these modules into a meta-detector – which we call Streamer – that
converts any detector into a streaming detection system that reports real-time
detections at an arbitrary framerate. Appendix B.4 evaluates the improvement
in streaming AP across 80 different settings (8 detectors × 5 image scales × 2
compute models), which vary from 4% to 80% with an average improvement of
33%.

4.4 Visual tracking

Visual tracking is an alternative for low-latency inference, due to its faster speed
than a detector. For our experiments, we adopt the state-of-the-art multi-object
tracker [2] (which is second place in the MOT’19 challenge [11] and is open
sourced), and modify it to only track previously identified objects to make it
faster than the base detector (see Appendix B.3). This tracker is built upon a
two-stage detector and for our experiment, we try out the configurations of Mask
R-CNN with different backbones and with different input scales. Also, we need
a scheduling scheme for this detection plus tracking setting. For simplicity, we
only explored running detection at fixed strides of 2, 5, 15, and 30. For example,
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Table 3. Streaming perception with joint detection, visual tracking, and forecasting.
We see that initially visual trackers do not outperform simple association (Table 2)
with the corresponding setting in the single GPU case. But that is reversed if the
tracker can be optimized to run faster (2x) while maintaining the same accuracy (row
6). Such an assumption is not unreasonable given the fact that the tracker’s job is as
simple as updating locations of previously detected objects

ID Method AP APL APM APS AP50 AP75

1 Detection + Visual Tracking 12.0 29.7 11.2 0.5 23.3 11.3
2 + Forecasting 13.7 38.2 14.2 0.5 24.6 13.6
3 + Re-optimize Detection (s0.5 → s0.75) 16.5 31.0 14.5 2.8 33.4 14.8

4 + Infinite GPUs w/o Forecasting 14.4 24.2 11.2 2.8 30.6 12.0
5 + Forecasting 20.1 38.3 19.7 3.9 38.9 18.7

6 Detection + Simulated Fast Tracker (2x) + Forecasting + Single GPU 19.8 39.2 20.2 3.4 38.6 18.1

stride 30 means that we run the detector once and then run the tracker 29 times,
with the tracker getting reset after each new detection. Table 3 row 1 contains
the best configuration over backbone, input scale, and detection stride.

5 Discussion

Streaming perception remains a challenge Our analysis suggests that
streaming perception involves careful integration of detection, tracking, fore-
casting, and dynamic scheduling. While we present several strong solutions for
streaming perception, the gap between the streaming performance and the of-
fline performance remains significant (20.3 versus 38.0 in AP). This suggests
that there is considerable room for improvement by building a better detector,
tracker, forecaster, or even an end-to-end model that blurs boundary of these
modules.

Formulations of real-time computation Common folk wisdom for real-time
applications like online detection requires that detectors run within the sensor
frame rate. Indeed, classic formulations of anytime processing require algorithms
to satisfy a “contract” that they will finish under a compute budget [41]. Our
analysis suggests that this view of computation might be too myopic as evidenced
by contemporary robotic systems [33]. Instead, we argue that the sensor rate and
compute budget should be seen as design choices that can be tuned to optimize a
downstream task. Our streaming benchmark allows for such a global perspective.

Generalization to other tasks By construction, our meta-benchmark and
dynamic scheduler (Alg. 1) are not restricted to object detection. We illustrate
such generalization with an additional task of instance segmentation (Fig. 9).
However, there are several practical concerns that need to be addressed. Densely
annotating video frames for instance segmentation is almost prohibitively expen-
sive. Therefore, we adopt offline pseudo ground truth (Section 3.4) to evaluate
streaming performance. Another concern is that the forecasting module is task-
specific. In the case of instance segmentation, we implement it as forecasting
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Fig. 8. Qualitative results. Video results can be found on the project website [Link].

a) Pseudo ground truth b) Real-time latency c) Instance mask forecasting

Fig. 9. Generalization to instance segmentation. (a) The offline pseudo ground truth we
adopt for evaluation is of high quality. (b) A similar latency pattern can be observed for
instance segmentation as in object detection. (c) Forecasting for instance segmentation
can be implemented as forecasting the bounding boxes and then warping the masks
accordingly.

the bounding boxes and then warping the masks accordingly. Please refer to
Appendix A.6 for the complete streaming instance segmentation benchmark.

6 Conclusion and Future Work

We introduce a meta-benchmark for systematically converting any single-frame
task into a streaming perception task that naturally trades off computation be-
tween multiple modules (e.g., detection versus tracking). We instantiate this
meta-benchmark on tasks of object detection and instance segmentation. In
general, we find online perception to be dramatically more challenging than its
offline counterpart, though significant performance can be recovered by incorpo-
rating forecasting. We use our analysis to develop a simple meta-detector that
converts any detector (with any internal latency) into a streaming perception
system that can operate at any frame rate dictated by a downstream task (such
as a motion planner). We hope that our analysis will lead to future endeavor
in this under-explored but crucial aspect of real-time embodied perception. For
example, streaming benchmarks can be used to motivate attentional processing;
by spending more compute only on spatially [16] or temporally [32] challenging
regions, one may achieve even better efficiency-accuracy tradeoffs.
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We summary the contents of the appendix as follows. Appendix A describes
additional details of our meta-benchmark, including discussion on the definition,
pseudo ground-truth, simulation, dataset and instantiations for novel hardware
and task. Appendix B provides additional details of our proposed solutions,
including scheduling, tracking and forecasting. Finally, Appendix C includes ad-
ditional baselines for a more thorough evaluation.

A Benchmark Details

A.1 Additional Discussion on the Benchmark Definition

In Section 3.1, we defined our benchmark as evaluation over a discrete set of
frames. One might point out that a continuous definition is more consistent with
the notion of estimating the state of the world at all time instants for streaming
perception. First, we note that it is possible to define a continuous-time counter-
part, where the ground truth can be obtained via polynomial interpolation and
the algorithm prediction can be represented as a function of time (e.g., simply
derived from extrapolating the discrete output). Also in Eq 4, the aggregation
function (implicit in L) could be integration. However, our choice of a discrete
definition is mainly for two reasons: (1) we believe a high-frame-rate data stream
is able to approximate the continuous evaluation; (2) most existing single-frame
metrics (L, e.g., average-precision) is defined with a discrete set of input and we
prefer that our streaming metric is compatible with these existing metrics.

A.2 Pseudo Ground Truth

We use manually obtained ground-truth for bounding-box-based object detec-
tion. As we point out in the main text, one could make use of pseudo ground
truth by simply running an (expensive but accurate) off-line detector to generate
detections that could be used to evaluate on-line streaming detectors.

Here, we analyze the effectiveness of pseudo ground truth detection as a
proxy for ground-truth. We adopt the state-of-the-art detector — Hybrid Task
Cascade (HTC) [8] for computing the offline pseudo ground truth. As shown in
Table 1, this offline detector dramatically outperforms all real-time streaming
methods by a large margin. As shown in the main text, pseudo-streaming AP
correlates extraordinarily well with ground-truth-streaming AP, with a normal-
ized correlation coefficient of 0.9925. This suggests that pseudo ground truth can
be used to rank streaming perception algorithms.

We emphasize that since we have constructed Argoverse-HD by deliberately
annotating high frame rate bounding boxes, we use real ground truth for evaluat-
ing detection performance. However, obtaining such high-frame-rate annotations
for instance segmentation is expensive. Hence we make use of pseudo ground-
truth instance masks (provided by HTC) to benchmark streaming instance seg-
mentation (Section A.6).
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A.3 Simulation

In true hardware-in-the-loop benchmarking, the output timestamp sj is simply
the wall-clock time at which an algorithm produces an output. While we hold this
as the gold-standard, one can dramatically simplify benchmarking by making
use of simulation, where sj is computed using runtimes of different modules. For
example, sj for a single-frame detector on a single GPU can be simulated by
adding its runtime to the time when it starts processing a frame. Complicated
perception stacks require considering runtimes of all modules (we model those
that contribute > 1 ms) in order to accurately simulate timestamps.

Modeling runtime distribution Existing latency analysis [34,27,25] usually
reports only the mean runtime of an algorithm. However, empirical runtimes are
in fact stochastic (Fig. A), due to the underlying operating system scheduling
and even due to the algorithm itself (e.g., proposal-based detectors often take
longer when processing a scene with many objects). Because scene-complexity
is often correlated across time, runtimes will also be correlated (a long runtime
for a given frame may also hold for the next frame).

We performed a statistical analysis of runtimes, and found that a marginal
empirical distribution to work well. We first run the algorithm over the entire
dataset to get the empirical distribution of runtimes. At test time, we randomly
sample a runtime when needed from the empirical distribution, without consider-
ing the correlation across time. Empirically, we found that the results (streaming
AP) from a simulated run is within the variance of a real run.
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Fig.A. Runtime distribution for an object detector. Note that runtime is not constant,
and this variance needs to be modeled in a simulation. This plot is obtained by running
RetinaNet (ResNet 50) [25] on Argoverse 1.1 [7] with input scale 0.5.

Simulation for non-existent hardware/algorithm Through simulation,
our evaluation protocol does not directly depend on hardware, but on a collec-
tion of runtime distributions for different modules (known as a runtime profile).
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One thus has the freedom to alter the distributions. For example, we can simu-
late a faster algorithm simply by scaling down the runtime profile. Table 3, uses
simulation to evaluate the streaming performance of a non-existent tracker that
runs twice as fast as the actual implementation on-hand. The reduced runtime
could have arisen from better hardware; one can run the benchmark on a Geforce
GTX 1080 Ti GPU and simulate the performance on a Tesla V100 GPU. We
find that Tesla V100 makes our detectors run 16% faster, implying we can scale
runtime profiles accordingly. For example, Mask R-CNN R50 @ s0.5 produces a
simulated-streaming AP of 12.652 while the real-streaming AP (on a V100) is
12.645, suggesting that effectivness of simulated benchmarking.

Infinite GPUs In simulation, we are not restricted by the number of physical
GPUs present in a system. Therefore, we are able to perform analysis in the
infinite GPU setting. In this setting, each detector or visual tracker runs on a
different device without any interference with each other. Equivalently, we run a
new GPU job on an existing device as long as it is idle. As a result, the simula-
tion also provides information on how many GPUs are required for a particular
infinite GPU experiment in practice (i.e., the maximum number of concurrent
jobs). We summarize the number of GPUs required for the experiments in the
main text in Table A. This implies that our streaming benchmark can be used
to inform hardware design of future robotic platforms.

Table A. Summary of the experiments in the infinite GPU settings (in the main
text) and the number of GPUs needed in practice to achieve this performance (i.e.,
the maximum number of concurrent jobs). This suggest that our simulation can also
identify the optimal hardware configuration

Method # of GPUs

Det (Table 1, row 8) 4
Det + Associate + Forecast (Table 2, row 3) 4
Det + Visual Track (Table 3, row 4) 9
Det + Visual Track + Forecast (Table 3, row 5) 9

Runtime-induced variance As mentioned in the previous section, runtime
is stochastic and has a variance up to 11.1% (standard deviation normalized
by mean). Fortunately, such a variance does not transfer to the variance of
our streaming metric. Empirically, we found that the variance of streaming AP
of different runs (by varying the random seed) is around 0.5% for the same
algorithm. In comparison, independent training runs of Mask R-CNN [18] on
MS COCO [26] with the same random seed yield a variance of 0.3% on the
AP (cudnn back-propagation is stochastic by default) [24]. Since the stochastic
noise of streaming evaluation is at the same scale as CNN training, we ignore
runtime-induced variance for our evaluation.
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A.4 Dataset Annotation and Comparison

Based on the publicly available video dataset Argoverse 1.1 [7], we build our
dataset with high-frame-rate annotations for streaming evaluation — Argoverse-
HD (High-frame-rate Detection). One key feature is that the annotation follows
MS COCO [26] standards, thus allowing direct evaluation of COCO pre-trained
models on this self-driving vehicle dataset. The annotation is done at 30 FPS
without any interpolation used. Unlike some self-driving vehicle datasets where
only cars on the road are annotated [37], we also annotate background objects
since they can potentially enter the drivable area. Of course, objects that are too
small are omitted and our minimum size is 5× 15 or 15× 5 (based on the aspect
ratio of the object). We outsourced the annotation job to Scale AI. In Table B,
we compare our annotation with existing datasets: DETRAC [38], KITTI-MOTS
[37], MOTS [37], UAVDT [13], Waymo [36], and Youtube-VIS [39].

Table B. Comparison of 2D video object detection datasets. For surveillance camera
setups, the cameras are either stationary or have limited motion. For ego-vehicle setups,
the scene dynamics evolve quickly, as (1) the ego-vehicle is traveling fast, and (2) other
objects are much closer to the camera and thus have a higher speed in the image
space. Our contributed dataset (annotation) is a high-frame-rate and high-resolution
multi-class one compared to existing datasets

Name Camera Setup Image Res Image FPS Annot FPS Classes Boxes

DETRAC Survelliance 960× 540 30 6 4 1.21M
KITTI-MOTS Ego-Vehicle 1242× 375 10 10 2 46K
MOTS Generic 1920× 1080 30 30 2 30K
UAVDT UAV Survelliance 1080× 540 30 30 1 842K
Waymo Ego-Vehicle 1920× 1280 10 10 4 11.8M
Youtube-VIS Generic 1280× 720 30 6 40 131K

Argoverse-HD (Ours) Ego-Vehicle 1920× 1200 30 30 8 250K

A.5 Experiment Settings

Platforms The CPU used in our experiments is Xeon Gold 5120, and the GPU
is Geforce GTX 1080 Ti. The software environment is PyTorch 1.1 with CUDA
10.0.

Timing The setup which we time single-frame algorithms mimics the scenario
in real-world applications. The offline pipeline involves several steps: loading
data from the disk, image pre-processing, neural network forward pass, and
result post-processing. Our timing excludes the first step of loading data from
the disk. This step is mainly for dataset-based evaluation. In actual embodied
applications, data come from sensors instead of disks. This is implemented by
loading the entire video to the main memory before the evaluation starts. In
summary, our timing (e.g., the last column of Table 1) starts at the time when

https://www.argoverse.org/
https://scale.com/
https://detrac-db.rit.albany.edu/Tracking
http://www.vision.rwth-aachen.de/page/mots
http://www.vision.rwth-aachen.de/page/mots
https://sites.google.com/site/daviddo0323/projects/uavdt
https://waymo.com/open/about/
https://youtube-vos.org/dataset/vis/
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the algorithm receives the image in the main memory, and ends at the time when
the results are available in the main memory (instead of in the GPU memory).

A.6 Alternate Task: Instance Segmentation

Table C. Instance segmentation overhead compared with object detection. This table
lists runtimes of several methods with and without the mask head, and their differences
are the extra cost which one has to pay for instance segmentation. All numbers are
milliseconds except the scale column and the last column. The average overhead is
17ms or 13%

Method Scale w/o Mask w/ Mask Overhead Overhead

0.2 34.3 41.4 7.1 21%
0.25 36.1 44.3 8.2 23%

Mask R-CNN ResNet 50 0.5 56.7 65.6 8.8 16%
0.75 92.7 101.0 8.3 9%
1.0 139.6 147.7 8.1 6%

0.2 38.4 46.4 7.9 21%
0.25 40.9 48.7 7.8 19%

Mask R-CNN ResNet 101 0.5 68.8 76.4 7.6 11%
0.75 119.7 127.1 7.5 6%
1.0 183.8 190.8 7.0 4%

0.2 60.9 66.0 5.1 8%
0.25 59.2 69.1 9.9 17%

Cascade MRCNN ResNet 50 0.5 80.0 95.4 15.3 19%
0.75 118.1 133.8 15.7 13%
1.0 164.6 181.9 17.3 10%

0.2 66.4 71.0 4.6 7%
0.25 65.4 75.2 9.7 15%

Cascade MRCNN ResNet 101 0.5 92.2 106.6 14.4 16%
0.75 143.4 159.2 15.8 11%
1.0 208.2 225.1 16.9 8%

In the main text, we propose a meta-benchmark and mention that it can
be instantiated with different tasks. In this section, we include full benchmark
evaluation for streaming instance segmentation.

Instance segmentation is a more fine-grained task than object detection. This
creates challenges for streaming evaluation as annotation becomes more expen-
sive and forecasting is not straight-forward. We address these two issues by
leveraging pseudo ground truth and warping masks according to the forecasted
bounding boxes.

Another issue which we observed is that off-the-shelf pipelines are usually
designed for benchmark evaluation or visualization. First, similar to object de-
tection, we adopt GPU image pre-processing by default. Second, we found that
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more than 90% of the time within the mask head of Mask R-CNN is spent on
transforming masks from the RoI space to the image space and compressing
them in a format to be recognized by the COCO evaluation toolkit. Clearly,
compression can be disabled for streaming perception. We point out that mask
transformation can also be disabled. In practice, masks are used to tell if a spe-
cific point or region contains the object. Instead of transforming the mask (which
involves object-specific image resizing operations), we can transform the query
points or regions, which is simply a linear transformation over points or control
points. Therefore, our timing does not include RoI-to-image transformation or
mask compression. Furthermore, this also implies that we do not pay an addi-
tional cost for masks in forecasting, since only the box coordinates are updated
but the masks remain in the RoI space.

For the instance segmentation benchmark, we use the same dataset and the
same method HTC [8] for the pseudo ground truth as for detection, and we
include 4 methods: Mask R-CNN [18] and Cascade Mask R-CNN [6] with ResNet
50 and ResNet 101 backbones. Since these are hybrid methods that produce both
instance boxes and masks, we can measure the overhead of including masks as
the difference between runtime with and without the mask head in Table C.
We find that the average overhead is around 13%. We include the streaming
evaluation in Tables D and E (with forecasting).

Table D. Streaming evaluation for instance segmentation. We find that many of our
observations for object detection still hold for instance segmentation: (1) AP drops
significantly when moving from offline to real time, (2) the optimal “sweet spot” is
not the fastest algorithm but the algorithm with runtime more than the unit frame
interval, and (3) both our dynamic scheduling and infinite GPUs further boost the
performance. Note that the absolute numbers might appear higher than the tables in
the main text since we use pseudo ground truth here

ID Method Detector AP APL APM APS AP50 AP75 Runtime

1 Accurate (Offline) Cascade MRCNN R50 @ s1.0 63.1 63.0 60.9 47.9 81.6 69.4 225.1

2 Accurate Cascade MRCNN R50 @ s1.0 11.8 11.5 8.1 5.4 20.4 11.1 225.1
3 Fast Mask R-CNN R50 @ s0.2 8.3 16.5 2.1 0.0 13.6 8.3 41.4
4 Optimized Mask R-CNN R50 @ s0.5 17.2 19.9 13.8 5.2 31.8 15.1 65.6

5 + Scheduling (Alg. 1) Mask R-CNN R50 @ s0.5 18.3 21.4 14.9 5.8 33.5 16.4 65.5

6 + Infinite GPUs Mask R-CNN R50 @ s0.75 20.6 20.0 19.0 9.1 38.4 18.2 100.8

A.7 Alternate Hardware: Tesla V100

In the main text, we propose a meta-benchmark and mention that it can be
instantiated with different hardware platforms. In this section, we include full
benchmark evaluation for streaming detection with Tesla V100 (a faster GPU
than GTX 1080 Ti used in the main text).
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Table E. Streaming evaluation for instance segmentation with forecasting. Despite
that we only forecast boxes and warp masks accordingly, we still observe significant
improvement from forecasting for mask AP. The optimized algorithm for row 1 is Mask
R-CNN ResNet 50 @ s0.5, and for row 2 is Mask R-CNN ResNet 50 @ s0.75

ID Method AP APL APM APS AP50 AP75

1 Detection + Scheduling + Association + Forecasting 24.1 32.4 23.0 6.0 43.7 22.0

2 + Infinite GPUs 29.2 30.7 30.2 11.4 53.0 26.7

While our benchmark is hardware dependent, the method of evaluation gen-
eralizes across hardware platforms, and our conclusions largely hold when the
hardware environment changes. We follow the same setup as in the experiments
in the main text, except that we use Tesla V100 from Amazon Web Services (EC2
instance of type p3.2xlarge). We provide the results for detection, forecasting,
and tracking in Tables F, G, and H, respectively. We see that the improvement
due to better hardware is largely orthogonal to the algorithmic improvement pro-
posed in the main text.

Table F. Performance of detectors for streaming perception on Tesla V100 (a faster
GPU than the Geforce GTX 1080 Ti used in the main text). By comparing with Table 1
in the main text, we see that runtime is shortened and the AP is increased due to the
boost of hardware performance. Different from Table 1, we only consider GPU image
pre-processing here for simplicity. Interestingly, with additional computation power,
Tesla V100 enables more expensive models like input scale 0.75 (row 4) and Cascade
Mask R-CNN (row 5) to be the optimal configurations (detector and scale) under
their corresponding settings. Note that the improvement from our dynamic scheduler
is orthogonal to the boost from hardware performance

ID Method Detector AP APL APM APS AP50 AP75 Runtime

1 Accurate (Offline) HTC @ s1.0 38.0 64.3 40.4 17.0 60.5 38.5 338.0

2 Accurate HTC @ s1.0 8.2 12.3 5.1 1.6 15.3 7.6 338.0
3 Fast RetinaNet R50 @ s0.25 6.4 17.3 0.6 0.0 11.9 6.0 43.3
4 Optimized Mask R-CNN R50 @ s0.75 13.0 22.2 9.5 2.3 27.6 10.9 72.1
5 + Scheduling (Alg. 1) Cascade MRCNN R50 @ s0.5 14.0 28.8 9.9 1.0 26.8 12.2 60.2

6 + Infinite GPUs Mask R-CNN R50 @ s1.0 15.9 24.1 13.2 4.9 34.2 13.3 98.8
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Table G. Streaming perception with joint detection, association, and forecasting on
Tesla V100 (corresponding to Table 2 in the main text). We observe similar boost as in
the detection only setting (Table F). The “re-optimize detection” step finds that Mask
R-CNN R50 @ s1.0 outperforms Cascade Mask R-CNN R50 @ s0.5 with forecasting
(row2), and it also happens to be the optimal detector with infinite GPUs (row 3)

ID Method AP APL APM APS AP50 AP75

1 Detection + Scheduling + Association + Forecasting 18.2 42.7 16.1 1.1 30.9 17.7
2 + Re-optimize Detection 19.6 33.0 19.2 5.3 38.5 17.9

3 + Infinite GPUs 22.9 38.7 23.1 6.9 43.8 21.2

Table H. Streaming perception with joint detection, visual tracking, and forecasting on
Tesla V100 (corresponding to Table 3 in the main text). We find the similar conclusions
that visual tracking with forecasting does not outperform association with forecasting
in the single GPU case and achieves comparable performance in the infinite GPU case

ID Method AP APL APM APS AP50 AP75

1 Detection + Visual Tracking 12.6 21.5 9.0 2.2 27.1 10.5
2 + Forecasting 18.0 34.7 16.8 3.2 36.0 16.4

3 + Infinite GPUs w/o Forecasting 14.4 24.2 11.2 2.8 30.6 12.0
4 + Forecasting 22.8 38.6 23.0 6.9 43.7 21.0
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B Solution Details

B.1 Dynamic Scheduling

In the main text, we propose the dynamic scheduling algorithm (Alg. 1) to
reduce temporal aliasing. Such an algorithm is counter-intuitive in that it mini-
mizes latency by sometimes sitting idle. In this subsection, we provide additional
theoretical analysis and empirical results for algorithm scheduling. We first in-
troduce the framework to study algorithm scheduling for streaming perception.
Next, we show theoretically that our dynamic scheduling outperforms naive idle-
free scheduling for any constant runtime larger than the frame interval and any
long-enough sequence length. Lastly, we verify empirically the superiority of our
dynamic scheduling.

To study algorithm scheduling, we assume no concurrency (i.e., a single job
at a time) and that jobs are not interruptible. For notational simplicity, we
assume a fixed input frame rate where frame xi is the frame available at time
i ∈ {0, . . . , T − 1} (i.e., zero-based indexing), and therefore i can be used to
denote both frame index and time. We assume that time (time axis, runtime,
and latency) is represented in the units of the number of frames. We also assume
g to be a single-frame algorithm, and the streaming algorithm f is thus composed
of g and a scheduling policy. No tracking or forecasting is used in the discussion
below. Let kj be the input frame index that was processed to generate output
oj = (ŷj , sj): if ŷj = g(xi), then kj = i. We denote the runtime of g as r.

Definition (Temporal Mismatch) When the benchmark queries for the state
of the world at frame i, the temporal mismatch is δi := i − kj , where j =
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Fig. B. Temporal mismatch for single-frame algorithms. Take t = 3 (query index i = 3)
as an example (highlighted in orange): when the benchmark queries for y3, the latest
prediction is g(x0), whose input index is 0, thus leading to a temporal mismatch of 3
(frames).
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arg maxj′ sj′ < i. If there is no output available, δi := 0. We denote the average

temporal mismatch over the entire sequence as δ̄.
Intuitively, the temporal mismatch measures the latency of a streaming al-

gorithm f in the unit of the number of frames (Fig. B). This latency is typically
higher than the runtime of the single-frame algorithm g itself due to the blocking
effect of consecutive execution blocks. For example, in Figure B, although run-
time r < 2, the average mismatch δ̄ = 15/7 > 2 for T = 7. Note that we define
δi := 0 if there is no output available. To avoid the degenerate case where an al-
gorithm processes nothing and yields a zero cumulative temporal mismatch, we
assume that all schedules start processing the first frame immediately at t = 0.

MDP Naive idle-free scheduling processes the next available frame immediately
after the previous execution is finished. However, a scheduler can choose when
and which frames to process. Selection among such choices over the data sequence
can be modeled as a decision policy under a Markov decision process (MDP).
An MDP formulation allows one to compute the expected future cumulative
mismatch for a given policy under stochastic runtimes r. In theory, one may also
be able to compute the optimal schedule (that minimizes expected cumulative
mismatches) through policy search algorithms. However, Figure A shows that
practical runtime profiles have low variance and are unimodal. If one assumes
that runtimes are deterministic and fixed at a constant value, we will now show
that our shrinking-tail policy outperforms idle-free over a range of runtimes r and
sequence lengths T . We believe that constant runtime is a reasonable assumption
for our setting, and empirically verify so after our theoretical analysis.

Pattern analysis Crucially, constant runtimes ensure that all transitions are
deterministic, allowing for a global view of the sequence. Our key observation is
that the global sequence will contain repeating mismatch patterns. Analysis of one
such pattern sheds light on the cumulative mismatch of the entire sequence. For
example, r = 1.5 under idle-free repeats itself every 2 processing blocks. How-
ever, different patterns emerge for different values of r and for different policies.
We assume that r > 1 to avoid the trivial schedule where an algorithm consis-
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Fig. C. Mismatch is the same for the shrinking-tail policy with different runtime r1
and r2 as long as br1c = br2c, τ(r1) ≥ 0.5, and τ(r2) ≥ 0.5.
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tently finishes before the next frame arrives. We write δ̄if and δ̄st for the average
temporal mismatch δ̄ for the idle-free and shrinking-tail policies, respectively.
Our analysis is based on the concept of tail: τ(t) := t − btc. We denote τ(r) as
τr for short. Note that the integral part of runtime does not contribute to the
temporal quantization effect, and we thus focus on the discussion of 1 < r ≤ 2
for simplicity. We split our analysis into 3 different cases: r = 2, 1.5 ≤ r < 2,
and 1 < r < 1.5.

Case 1 The first is a special case where τr = 0. It can be easily verified that
idle-free is equivalent to shrinking-tail, and thus δ̄st = δ̄if.

Case 2 Now we inspect the case with 1.5 ≤ r < 2. Since τ(2r) < 0.5 ≤ τ(r), the
shrinking-tail policy will output true (waiting) after processing the first frame.
The waiting aligns the execution again with the integral time step, and thus for
the subsequent processing blocks, it also outputs true (waiting). In summary,
shrinking-tail always outputs true in this case, and its pattern in mismatch is
agnostic to the specific runtime r (Fig. C). Let δ̄r denote δ̄ with runtime r, then
we can draw the conclusion that δ̄r1st = δ̄r2st for br1c = br2c, τ(r1) ≥ 0.5, and
τ(r2) ≥ 0.5.

We then focus on a particular case of r = 1.5. As shown in Figure D, idle-free
repeats itself in a period of 3 frames, and shrinking-tail repeats itself in a period
of 2 frames. Together, they form a joint pattern that repeats itself in a period
of 6 frames (their least common multiple). The diagram shows that within each
common period, the difference of cumulative mismatch between idle-free and
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Fig.D. For r = 1.5, shrinking-tail achieves less cumulative mismatch than idle-free.
Note that each policy has its own repeating period and shrinking-tail always achieves
1 less cumulative mismatch within each common period.
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shrinking-tail is increased by 1. And it is the same for all common periods.
Therefore, if T = 6n + 1 for some positive integer n (intuitively, the entire
sequence is a multiple of several common periods), δ̄1.5st < δ̄1.5if . Additionally,
Figure D enumerates all possible cases, where the sequence ends before a common
period is over or in the middle of a common period. All these cases have δ̄1.5st ≤
δ̄1.5if .

Next, it is straightforward to see thatthe cumulative mismatch will not de-
crease if one increases the runtime r of g: δ̄r1 ≤ δ̄r2 if r1 ≤ r2. Therefore, for
1.5 ≤ r < 2, we have

δ̄rst = δ̄1.5st ≤ δ̄1.5if ≤ δ̄rif (5)

Case 3 The last case with 1 < r < 1.5 (i.e., τr < 0.5) is more complicated than
previous cases because the underlying repeating pattern never exactly repeats
itself. To address this issue, we must introduce several new concepts to charac-
terize such near-repeating patterns. We first observe a special type of execution
block:
Definition (Shrinking-Tail Block) Denoting the start and the end time of an
execution block as t1 and t2, a shrinking-tail block is an execution block such that
τ(t1) > τ(t2). As shown in Figure E, a shrinking-tail block increases temporal
mismatch.
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Fig. E. A shrinking-tail execution block (orange) increases temporal mismatch.

Definition (Shrinking-Tail Cycle) A sequence of execution blocks can be
divided into segments by a shrinking-tail block or an idle gap. A shrinking-
tail cycle is a set of queries covered by the segment between these dividers.
Specifically, the cycle starts from the 0-th query, the last query of a shrinking-
tail block, or the query at the end of an idle gap. The cycle ends either when
the sequence ends or the next cycle starts. The length of a cycle is the number
of queries it covers.
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Fig. F. Shrinking-tail cycle. Intuitively, blocks within each shrinking-tail cycle has tails
increasing (τ1 < τ2 < τ3 and τ5 < τ6 < τ7). It ends when the tail decreases or there is
an idle gap, and thus the tail “shrinks”.

As shown in Figure F, shrinking-tail cycles are small segments of the en-
tire sequence and they may have different lengths. Note that the definitions of
both shrinking-tail block and cycle are agnostic to r, but we only refer to them
during our discussion for 1 < r < 1.5. Instead of comparing δ̄ for idle-free and

shrinking-tail directly, we compare them for each cycle (denoted as δ̄
(c)
if and

δ̄
(c)
st respectively). First, we observe that a shrinking-tail cycle starts with either

a shrinking-tail block or an idle gap and ends with consecutive tail-increasing
blocks. Second, we observe that most queries have a mismatch of 2 for both
policies (e.g., Cycle 2’s queries 20 to 21 and Cycle 4’s queries 18 to 19 in Fig. F),
and that the second query in a cycle is always 3 due to having a shrinking-tail
block or an idle-gap before it. This is the rounding effect when adding multiple
fractional numbers. The difference between the two policies is thus the mismatch
of the first query. For 1 < r < 1.5, the first query of idle-free has a mismatch of 3,
while shrinking-tail has a mismatch of 2. Intuitively, given that the majority of
queries are with mismatch 2, the number of queries with mismatch 3 determines

the relationship between δ̄(c): δ̄
(c)
st < δ̄

(c)
if . Therefore, when the sequence length is

long enough, the policy with a smaller δ̄(c) leads to a smaller overall cumulative
mismatch.

Now, we present a more formal analysis on the above statement. To quantify
the cycle patterns, we first quantify the number of consecutive tail-increasing
blocks. Let the number of consecutive tail-increasing blocks be a and the tail of
the first block covered by the cycle be b (in the case where the first block starts
after an idle gap, we define b to be 0). We first observe that a = max{a′|a′τr+b ≤
1, a′ ∈ N} = b 1−bτr c. Also, b has its own range for each policy. For idle-free,
0 ≤ b < τr, and for shrinking-tail, b = 0. Taking Figure F for example (τr = 0.3),
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Cycle 1 has a = 3 and b = 0, Cycle 2 has a = 2 and b = τ4, and Cycle 4 has
a = 3 and b = 0.

Since a might vary from cycle to cycle, we introduce a reference quantity
that is constant and can be used to measure the length of cycles. Let a0 be
the a when b = 0, i.e., a0 = b 1

τr
c, and c be the length of a cycle. For idle-free

policy, c = a0 + 2 or a0 + 1. The variable length in cycles is due to variable b
between cycles. When b ≤ 1 − a0τr, we have the first type of cycle with length
a0 + 2 (denoted as c1); when b > 1 − a0τr, we have the second type of cycle of
length a0 + 1 (denoted as c2). The starting cycle in a sequence is always the first
type, while the ensuing cycles can be either the first or second type. Note that
it is possible that all cycles are the first type. For example, when r = 1.25, each
cycle resets itself and b = 0 for all cycles. For shrinking-tail policy, each cycle
resets itself (whose length denoted as c3). Note that c1, c2, c3 denotes the length
of the 3 types of cycles and Cycle 1, 2, 3, ... in the figures denote specific cycle
instances. From the above analysis, we can see

c1 = a0 + 2, c2 = a0 + 1, c3 = a0 + 1. (6)

δ̄
(c1)
if =

2

a0 + 2
+ 2, δ̄

(c2)
if =

2

a0 + 1
+ 2, δ̄

(c3)
st =

1

a0 + 1
+ 2. (7)

Therefore,

δ̄
(c3)
st < δ̄

(c1)
if < δ̄

(c2)
if (8)

Next, we explain how to infer the relationship between δ̄ from that between
δ̄(c). To analyze the mismatch of the whole sequence, we need to inspect the
boundary cases at the start and the end of the sequence, where the cycle-based
analysis might not hold. As shown in Figure G, the first cycles for both policies
have different mismatch patterns due to empty detection at the first two queries.
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Fig.G. The first cycles for both policies have different mismatch patterns.
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Compared to regular cycles in Figure F, the first cycle has 6 and 5 less total
mismatch for idle-free and shrinking-tail policy respectively. Let m1, m2, and
m3 be the number of complete cycles of type c1, c2, and c3 in a sequence,
respectively, d be the number of residual queries at the end of the sequence that
do not complete a cycle, and e be the total mismatch of these d queries, then we
have

T = m1c1 +m2c2 + dif (9)

T = m3c3 + dst (10)

δ̄if = (m1c1δ̄
(c1)
if +m2c2δ̄

(c2)
if − 6 + eif)/T (11)

δ̄st = (m3c3δ̄
(c3)
st − 5 + est)/T (12)

Note that the above holds only when m1 ≥ 1 and m3 ≥ 1 (the sequence is at
least one cycle long for both policies). If T is smaller or equal to one cycle, the
two policies are equivalent and δif = δst. When T is large enough (e.g., T →∞),
the δ̄(c) terms dominate Eq 11 and Eq 12, and due to Eq 7, we have δ̄st < δ̄if,
which shows that the shrinking-tail policy is superior. Formally, when T > C(r),
where C(r) is some constant depending on r, δ̄st < δ̄if.

Summary of the theoretical analysis Considering all 3 cases, we can draw
the conclusion that δ̄st ≤ δ̄if when T is large enough (greater than C(r) if
τr < 0.5, and no requirement otherwise). By achieving less average mismatch,
shrinking-tail outperforms idle-free.

Practical Performance of Dynamic Scheduling We apply our dynamic
schedule (Alg. 1) to a wide suite of detectors under the same settings as our
main experiments and summarize the results in Table I. In practice, runtime
is stochastic due to complicated software and hardware scheduling or running
an input adaptive model, but we find the theoretical results obtained under
constant runtime assumption generalizes to most of the practical cases under
our experiment setting.

B.2 Additional Details for Forecasting

We use an asynchronous Kalman filter for our forecasting module. The state
representation which we choose is [x, y, w, h, ẋ, ẏ, ẇ, ḣ], where [x, y, w, h] are the
top-left coordinates, and width and height of the bounding box, and the remain-
ing four are their derivatives. The state transition is assumed to be linear. We
also test with the representation used in SORT [3], which assumes that the area
(the product of the width and the height) varies linearly instead of that each
of the width and the height varies linearly. We find that such a representation
produces lower numbers in AP.

As explained in the main text, Kalman filter needs to be asynchronous and
time-varying for streaming perception. Let ∆tk be the time-varying intervals
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Table I. Empirical performance comparison before and after using Alg. 1. We see that
our shrinking-tail policy consistently boosts the streaming performance for different
detectors and for different input scales. We also observe some failure cases (last two
rows), where runtime is close to one frame duration. This is because our theoretical
analysis assumes constant runtime, while it is dynamic in practice. Hence, the vari-
ance in runtime when it is a boundary value can make a noticeable difference on the
performance

Method AP (Before) AP (After) Runtime (ms) Runtime (frames)

SSD @ s0.5 9.7 9.7 66.7 2.0
RetinaNet R50 @ s0.5 10.9 11.6 54.5 1.6
RetinaNet R101 @ s0.5 9.9 9.9 66.8 2.0
Mask R-CNN R101 @ s0.5 11.0 11.1 68.8 2.1
Cascade MRCNN R50 @ s0.5 11.3 11.7 80.0 2.4
Cascade MRCNN R101 @ s0.5 10.3 11.1 92.2 2.8
HTC @ s0.5 7.9 8.0 240.8 7.2

Mask R-CNN R50 @ s0.25 7.7 7.8 36.1 1.1
Mask R-CNN R50 @ s0.5 12.0 13.0 56.7 1.7
Mask R-CNN R50 @ s0.75 11.5 12.6 92.7 2.8
Mask R-CNN R50 @ s1.0 10.6 10.7 139.6 4.2

RetinaNet R50 @ s0.25 6.9 6.8 33.4 1.0
Mask R-CNN R50 @ s0.2 6.5 6.3 34.3 1.0

between updates or prediction steps, we pick the transition matrix to be:

Fk =

[
I4×4 ∆tkI4×4

I4×4

]
(13)

and the process noise to be

Qk = ∆t2kI8×8 (14)

Intuitively, the process noise is larger the longer between the updates.

All forecasting modules are implemented on the CPU and thus can be paral-
lelized while the detector runs on the GPU. Our batched (over multiple objects)
implementation of the asynchronous Kalman filter takes 0.98 ± 0.39ms for the
update step and 0.22± 0.07ms for the prediction step, which are relatively very
small overheads compared to detector runtimes. For scalable evaluation, we as-
sume zero runtime for the association and forecasting module, and implement
forecasting as post-processing of the detection outputs. One might wonder that a
simulated post-processing run and an actual real-time parallel execution might
have different final APs. We have also implemented the latter for verification
purposes. For most settings the differences are within 1%. Although for some
settings the difference can reach 3%, we find such fluctuation does not affect the
relative rankings.
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B.3 Additional Details for Visual Tracking

For our tracking experiments (Section 4.4), we adapt and modify the state-of-
the-art multi-object tracker [2]. A component breakdown in Fig. H explains how
this tracker works and why it has the potential to achieve better performance
under the streaming setting.

Box Head
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RPN Head
24% (19ms)

Box

FPN

Last Known 
Object Locations

Updated
Object Locations

Latest
Observation

(a) Multi-Object Tracker (b) Computation Saving

Fig.H. Multi-object visual tracker. The advantage of a visual tracker is that it runs
faster than a detector and thus yields lower latency for streaming perception. The
multi-object tracker used here is modified from [2]. It is mostly the same as a two-stage
detector, except that its box head uses the last known object location as input in place
of region proposals. Therefore, we get a computation saving by not running the RPN
head. Runtime is measured for Mask R-CNN (ResNet 50) with input scale 0.5.

B.4 Evaluation of Our Meta-Detector Streamer

Streamer is introduced in Section 4.3 in the main text. Given a detector and
an input scale, Streamer automatically schedules the detector and employs fore-
casting to compensate for some of its latency. In the single GPU case, our dy-
namic schedule (Alg. 1) is used and in the infinite GPU case, idle-free scheduling
(Fig. 4c) is used. Proper scheduling requires the knowledge of runtime of the al-
gorithm, which is known in the case of benchmark evaluation. When applied in
the wild, we can optionally track runtime of the algorithm on unseen data and
adjust the scheduling accordingly. The forecasting module is implemented with
asynchronous Kalman filter (Section B.2).

Streamer has several key features. First, it enables synchronous processing for
an asynchronous problem. Under the commonly studied settings (both offline and
online), computation is synchronous in that the outputs and the inputs have a
natural one-to-one correspondence. Therefore, many existing temporal reasoning
models assume that the inputs are at a uniform rate and each input corresponds
to an output [12,17,15]. In the real-time setting, however, such a relationship does
not exist due to the latency of the algorithm, i.e., the number of outputs can be
arbitrary. Streamer converts detectors with arbitrary runtimes into systems that
output at a designated fixed rate. In short, it abstracts away the asynchronous
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Table J. Performance boost after applying Streamer. “(B)” standards for “Before”,
and “(A)” standards for “After”. The evaluation setting is the same as Table 1 in the
main text. This table assumes a single GPU, and an infinite GPU counterpart can
be found in Table K. Under this setting, we observe significant improvement in AP,
ranging from 5% to 78%, and averaging at 34%

Method Scale AP(B) AP(A) Boost APL(B) APL(A) Boost

0.2 9.5 10.4 9% 23.5 28.6 21%
0.25 9.3 10.6 14% 23.9 31.5 32%

SSD 0.5 9.7 13.5 40% 20.0 32.4 62%
0.75 6.0 10.7 78% 11.5 19.8 72%
1.0 4.2 7.3 76% 7.3 12.5 72%

0.2 6.0 6.3 5% 18.1 21.3 17%
0.25 6.9 7.5 9% 19.8 26.2 33%

RetinaNet R50 0.5 10.9 14.2 30% 24.1 38.3 59%
0.75 10.8 16.1 50% 20.2 32.9 63%
1.0 9.9 14.1 42% 16.7 24.7 48%

0.2 5.4 5.9 9% 14.7 19.8 35%
0.25 6.5 7.4 14% 18.2 25.8 42%

RetinaNet R101 0.5 9.9 13.0 31% 21.5 33.6 56%
0.75 9.9 14.5 47% 18.1 27.7 53%
1.0 8.9 12.7 42% 14.7 22.0 50%

0.2 6.5 7.2 11% 18.0 25.1 40%
0.25 7.7 9.1 19% 20.1 29.9 49%

Mask R-CNN R50 0.5 12.0 16.7 39% 24.3 39.9 64%
0.75 11.5 17.8 54% 19.5 33.3 71%
1.0 10.6 15.0 42% 16.6 25.0 50%

0.2 6.3 7.2 14% 16.7 24.1 45%
0.25 7.6 9.0 17% 19.3 28.5 48%

Mask R-CNN R101 0.5 11.0 15.2 39% 21.6 35.4 64%
0.75 10.0 15.3 52% 16.8 28.0 67%
1.0 8.8 12.4 42% 13.7 21.2 55%

0.2 6.2 7.8 25% 15.4 25.5 66%
0.25 7.5 9.6 28% 18.4 30.1 63%

Cascade MRCNN R50 0.5 11.3 16.4 45% 22.6 37.5 66%
0.75 10.9 16.7 54% 18.6 29.8 60%
1.0 10.1 15.7 55% 15.4 25.3 64%

0.2 6.1 7.3 20% 15.2 23.1 52%
0.25 7.4 9.5 28% 17.6 29.6 69%

Cascade MRCNN R101 0.5 10.3 15.4 49% 20.5 34.1 66%
0.75 9.5 14.7 54% 16.1 26.1 62%
1.0 8.8 12.9 46% 13.7 21.8 59%

0.2 5.6 6.8 22% 12.0 17.0 42%
0.25 6.3 8.3 31% 13.0 19.8 53%

HTC 0.5 7.9 10.8 38% 13.3 19.9 49%
0.75 7.1 8.6 22% 11.4 14.8 30%
1.0 6.4 7.2 12% 9.6 11.4 18%
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Table K. Performance boost after applying Streamer. “(B)” standards for “Before”,
and “(A)” standards for “After”. The evaluation setting is the same as Table 1 in the
main text. This table assumes infinite GPUs, and a single GPU counterpart can be
found in Table J. Under this setting, we observe significant improvement in AP, ranging
from 4% to 80%, and averaging at 32%

Method Scale AP(B) AP(A) Boost APL(B) APL(A) Boost

0.2 9.9 10.6 7% 25.5 29.4 15%
0.25 9.6 10.7 12% 24.9 31.7 27%

SSD 0.5 11.3 14.7 30% 24.1 35.4 47%
0.75 8.0 13.3 66% 14.6 25.6 76%
1.0 5.5 9.8 80% 10.0 16.5 65%

0.2 6.1 6.3 4% 18.6 21.3 15%
0.25 7.1 7.6 8% 21.4 27.1 26%

RetinaNet R50 0.5 12.3 14.7 20% 28.1 40.1 42%
0.75 13.1 18.0 37% 24.3 37.8 56%
1.0 11.7 17.3 48% 19.5 31.3 60%

0.2 5.5 6.0 9% 15.3 20.1 32%
0.25 6.7 7.5 12% 18.8 26.1 38%

RetinaNet R101 0.5 11.3 14.0 24% 25.3 38.1 50%
0.75 11.8 17.0 44% 21.3 34.3 61%
1.0 10.8 16.3 51% 18.2 28.2 55%

0.2 6.7 7.4 10% 20.0 26.2 31%
0.25 7.8 9.2 17% 20.8 30.1 45%

Mask R-CNN R50 0.5 13.9 17.4 26% 29.0 42.6 47%
0.75 14.4 20.3 40% 24.3 38.5 59%
1.0 12.4 18.7 51% 19.4 31.4 62%

0.2 6.5 7.3 13% 17.4 24.3 40%
0.25 7.9 9.1 15% 20.5 28.9 41%

Mask R-CNN R101 0.5 11.9 16.2 36% 23.7 38.4 62%
0.75 12.4 18.5 49% 20.3 35.3 74%
1.0 10.6 16.2 53% 16.9 27.7 64%

0.2 7.0 7.9 13% 18.9 26.5 40%
0.25 8.5 9.9 16% 22.3 31.7 42%

Cascade MRCNN R50 0.5 12.9 17.6 37% 26.0 41.2 58%
0.75 13.2 19.9 51% 22.1 36.5 65%
1.0 12.6 19.8 57% 19.0 31.8 67%

0.2 6.8 7.9 17% 17.8 26.6 49%
0.25 8.3 9.8 18% 21.0 31.7 50%

Cascade MRCNN R101 0.5 12.6 17.0 35% 25.0 38.5 54%
0.75 11.4 17.7 56% 19.0 32.7 72%
1.0 10.5 16.6 59% 16.7 27.6 65%

0.2 6.3 8.0 27% 14.0 21.8 55%
0.25 7.3 9.8 34% 15.7 25.5 62%

HTC 0.5 9.2 13.7 50% 16.3 26.9 65%
0.75 8.2 11.4 39% 13.2 20.5 55%
1.0 7.4 9.3 25% 11.1 15.8 43%
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nature of the problem and therefore allows downstream synchronous processing.
Second, by adopting forecasting, Streamer significantly boosts the performance
of streaming perception. In Tables J and K, we evaluate the detection AP before
and after applying our meta-detector. We observe relative improvement from
4% to 80% with an average of 33% in detection AP under 80 different settings
(8 detectors × 5 image scales × 2 compute models). Note that the difference
of this evaluation and benchmark evaluation in the main text is that we fix
the detector and input scale here, while benchmark evaluation searches over the
best configuration of detectors and input scales. For the infinite GPU settings,
we discount the boost from additional compute itself.

B.5 Implementation Details

Detectors We experiment with a large suite of object detectors: SSD [27],
RetinaNet [25], Mask R-CNN [18], Cascade Mask R-CNN [6], and HTC [8]. The
“optimized” and “re-optimized” rows in all tables represent the optimal config-
uration over all detectors and all input scales of 0.2, 0.25, 0.5, 0.75, and 1.0.
We adopt mmdetection codebase [9] (one of the fastest open-source implemen-
tation for Mask R-CNN) for object detectors. Note that for all detectors, the
implementation has reproduced both the accuracy and runtime reported in the
original papers.

Potentially better implementation We acknowledge that there are addi-
tional bells and whistles to reduce runtime of object detectors, which might
further improve the results on our benchmark. We focus on general techniques
instead of device- or application-specific ones. For example, we have explored

𝑡

frame 0Detection (GPU)

Association (CPU)

Forecasting (CPU)

frame 1 frame 3

0 1 2 3 4

𝑣1 = (𝑏1 − 𝑏0)/(1 − 0)

෠𝑏4 = 𝑏1 + 𝑣1(4 − 1)

Fig. I. Scheduling for linear forecasting. The scheduling is similar as with the Kalman
filter case in that both are asynchronous. The difference is that linear forecasting does
not explicitly maintain a state representation but only stores two latest detection re-
sults. Association takes place immediately after a new detection result becomes avail-
able, and it links the bounding boxes in two consecutive detection results and computes
a velocity estimate. Forecasting takes place right before the next time step, and it uses
linear extrapolation to produce an output as the estimation of the current world state.
The equations represent the computation for reporting to benchmark query at t = 4.
b is a simplified representation for object location. At this time, only detection results
for frame 0 and 1 are available, but through association and forecasting, the algorithm
can make a better prediction for the current world state.
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GPU image pre-processing, which is applicable to all GPUs. Another implemen-
tation technique is to use half-precision floating-point numbers (FP16), which
we have not explored, since it will only pay off for certain GPUs that have been
optimized for FP16 computation (it is reported that FP16 yields only marginal
testing time speed boost on 1080 Ti [10]).

C Additional Baselines

C.1 Forecasting Baselines

We have also tested linear extrapolation (i.e., constant velocity) and quadratic
extrapolation for forecasting detection results. We include an illustration of linear
forecasting in Fig. I, and the quadratic counterpart is a straight-forward exten-
sion that involves three latest detection results. Though they produce inferior
results than Kalman filter, we include the results in Table L for completeness.

Table L. Comparison of different forecasting methods for streaming perception. We
see that both linear and Kalman filter forecasting methods significantly improve the
streaming performance. Kalman filter further outperforms the linear forecasting. The
quadratic forecasting decreases the AP, suggesting that high-order extrapolation is not
suitable for this task. The detection used here is Mask R-CNN ResNet 50 @ s0.5 with
dynamic scheduling (Alg. 1)

ID Method AP APL APM APS AP50 AP75

1 No Forecasting 13.0 26.6 9.2 1.1 26.8 11.1
2 Linear (constant velocity) 15.7 38.1 13.8 1.1 30.2 14.8
3 Quadratic 9.7 23.8 6.6 0.4 21.4 7.9
4 Kalman filter 16.7 39.8 14.9 1.2 31.2 16.0

C.2 An End-to-End Baseline

In the main text, we break down the streaming detection task into detection,
tracking, and forecasting for modular analysis. Alternatively, it is also possible
to train a model that directly outputs detection results in the future. F2F [28]
is one such model. Building upon Mask R-CNN, it does temporal reasoning and
forecasting at the level of FPN feature maps. Note that no explicit tracking is
performed. In this section, we compare against this end-to-end baseline in both
offline and streaming settings.

In the offline setting, the algorithm is given s frames as input history, and
outputs detection results for t frames ahead. This is the same as the evaluation
in [28]. We set both s and t to be 3, as the optimal detector in our forecast-
ing experiments (Table 2) has runtime of 2.78 frames. Since F2F forecasts at
the FPN feature level, it is agnostic to second stage tasks. In our evaluation,
we focus on the bounding box detection task instead of instance segmentation.
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Table M. Standard offline forecasting evaluation for the end-to-end method F2F [28].
The goal is to forecast 3 frames into the future. Surprisingly, the more expensive F2F
method performs worse than the simpler Kalman filter in terms of the overall AP

ID Method AP APL APM APS AP50 AP75

1 None (copy last) 13.4 24.3 10.9 1.9 27.9 11.3
2 Linear 16.3 34.8 16.8 1.8 32.9 14.3
3 Kalman filter 19.1 40.3 19.8 2.6 35.8 17.7
4 F2F 18.3 41.0 20.0 2.5 33.9 17.1

Also, we conduct experiments on Argoverse-HD, consistent with the setting in
our other experiments. Due to a lack of annotation, we adopt pseudo ground
truth (Section A.2) for training (data from the original training set of Argoverse
1.1 [7]). We implement our own version of F2F based on mmdetection (instead
of Detectron as done in [28]). We train the model for 12 epochs end-to-end (a
50% longer schedule than combined stages in [28]). For a fair comparison, we
also finetuned the detectors on Argoverse with the same pseudo ground truth.
For Mask R-CNN ResNet 50 at scale 0.5, it boosts the offline box AP from 19.4
to 22.9. We use this finetuned detector in our method to compare against F2F.
The results are summarized in Table M. We see that an end-to-end solution does
not immediately boost the performance. We believe that it is still an open prob-
lem on how to effectively replace tracking and forecasting with an end-to-end
solution.

In the streaming setting, F2F can be viewed as a detector that compensates
its own latency. The results are summarized in Table N. We see that F2F is too
expensive compared with other streaming solutions, showing that forecasting
can help only if it is fast under our evaluation. Note that the detectors (row 1–2)
are not finetuned as in the offline case, which means that they can be further
improved.

Table N. Streaming evaluation for the end-to-end method F2F [28]. The setting is the
same as the experiments in the main text. Rows 1 and 2 are the optimized detector and
the Kalman filter forecasting solution from the main text. The underlying detectors
used are Mask R-CNN ResNet 50 at scale 0.5 and scale 0.75 respectively. Row 3 suggests
that F2F has a low streaming AP, due to its forecasting module being very expensive
(last column, runtime in milliseconds). For diagnostics purpose, we assume F2F to run
as fast as our optimized detector (row 4), and arm it with our scheduling algorithm
(row 5). But even so, F2F still under-performs the simple Kalman filter solution

ID Method AP APL APM APS AP50 AP75 Runtime

1 Detection 12.0 24.3 7.9 1.0 25.1 10.1 56.7
2 + Scheduling (Alg. 1) + KF 17.8 33.3 16.3 3.2 35.2 16.5 92.7
3 F2F 6.2 11.1 3.4 0.8 13.1 5.2 321.6
4 F2F (Simulated Fast) 14.1 29.1 12.7 1.9 28.9 12.0 92.7
5 + Scheduling (Alg. 1) 15.6 33.0 15.2 2.1 30.7 13.9 92.7


