16-811: Math Fundamentals for Robotics, Fall 2020

Professor:   Michael Erdmann (me51).
Teaching Assistants:   Chiheb Boussema  (cboussem),  Helen Jiang  (helenjia),  Viraj Mehta  (virajm),  Thomas Weng  (tweng),  Donglai Xiang  (donglaix).
Emails:      AndrewID -at- andrew.cmu.edu (with "AndrewID" shown in parentheses above).
Location:   Posner A35 in IRR mode --- see Canvas for details.
Time:         TR 3:20-4:40pm.

Michael Erdmann's Office Hours: Prefer after class (or by appointment).
TA Office hours: See Piazza for details.


Lecture Synopses

Copies of (handwritten) lecture notes are available online here.


This course covers selected topics in applied mathematics, taken from the following list:
1. Solution of Linear Equations.
2. Polynomial Interpolation and Approximation.
3. Solution of Nonlinear Equations.
4. Roots of Polynomials, Resultants.
5. Approximation by Orthogonal Functions (includes Fourier series).
6. Integration of Ordinary Differential Equations.
7. Optimization.
8. Calculus of Variations (with applications to Mechanics).
9. Probability and Stochastic Processes (Markov chains).
10. Computational Geometry.
11. Differential Geometry.

Course Activity

This is a graduate course. You are thus expected to pursue ideas and topics discussed in this course on your own beyond the level of the lectures. My aim is to cover some of the easy early material quickly, then spend more detailed time on the later material. My goal throughout the course is to acquaint you with fundamental algorithms and mathematical reasoning, as well as give you some implementation experience.

The course grade will be determined by performance on assignments, participation in class, and a class project (see below for further details). Class assignments will entail solving some problems on paper or implementing some of the algorithms discussed in the course.

The term project should take about a month of work (40 hours) per person. It should pursue a mathematical topic in a robotics setting that is not otherwise covered in detail in the course. Ideally, the project should be connected to your research. If you are a first year graduate student, you should view the project as a springboard to research involvement.

Course Goals

The goal of the course is to help you accomplish the following:


In order to pass this course you must do all the work required. "Doing all the work" entails attending class (in-person or online), submitting solutions for the assignments, and doing the project. You must submit a reasonable attempt at a solution for every problem on an assignment by that assignment's due date. Assignments are graded on a "minus, check, plus" scale (on Autolab we will use the point scores 0, 1, 2, respectively). You must receive a "check" or a "plus" on every assignment in order to pass the course. If you obtain a "minus" on an assignment, you may and must submit correct solutions by the resubmission deadline for that assignment, in order to try to raise your assignment grade to a "check" or "plus". (The resubmission deadline is not an alternate deadline for the original assignment; you need to attempt every problem by the original deadline.)

For the project, you should submit a project proposal, a project writeup, and present your project publicly. The project proposal is due near midsemester. It should be about one paragraph long and describe what you plan to do, why it is interesting, and cite prior work. Project writeups should be five pages long. Project writeups are due at the end of the last presentation. Project presentations will occur online, starting with the first lecture after Thanksgiving, and possibly using the Final Exam Period. You will likely speak for about one minute using one slide that you will provide to the course instructor prior to the presentations. Since all lectures occur remotely after Thanksgiving, these presentations will occur using Zoom.

Projects may be individual projects or team projects. Team projects must be commensurately larger in scope than single person projects. Projects that are used in more than one course need to be significantly more substantial than single course projects. A team project that is used in more than one course needs to be very significant. (That said, if the whole class would like to work on one massive research project together, that could be fantastic.)

(Please note: Not doing all the work as described above within the time frame allotted means you fail the course.)


There is no required text for this course. The lecture material is available online (as scans of handwritten notes). The following is a suggested reading list. Much of the lecture material is taken from these books.
1. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge University Press. (Any edition.)

2. G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press. 1986.

3. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press. 1983.

4. S. D. Conte and C. de Boor. Elementary Numerical Analysis. Third edition. McGraw-Hill. 1980.

5. G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical Computations. Prentice-Hall. 1977.

6. D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley. 1973.

7. R. Weinstock. Calculus of Variations. Dover Publications. 1974. (Reprint of 1952 McGraw-Hill edition.)

8. R. Courant and D. Hilbert. Methods of Mathematical Physics. Volume I. John Wiley and Sons. 1989. (Reprint of 1953 Interscience edition.)

9. W. Yourgrau and S. Madelstam. Variational Principles in Dynamics and Quantum Theory. Dover Publications. 1979. (Reprint of a 1968 edition.)

10. F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985. (Corrected and expanded printing: 1988.)

11. J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.

12. W. Feller. An Introduction to Probability Theory and Its Applications. Volume 1. Third edition. John Wiley and Sons. 1968.

13. B. O'Neill, Elementary Differential Geometry, Academic Press, New York, 1966. 2nd Edition: 1997.

Note to Students

Take care of yourself. Do your best to maintain a healthy lifestyle this semester by eating well, exercising, avoiding drugs and alcohol, getting enough sleep and taking some time to relax. This will help you achieve your goals and cope with stress.

All of us benefit from support during times of struggle. You are not alone. There are many helpful resources available on campus and an important part of the college experience is learning how to ask for help. Asking for support sooner rather than later is often helpful.

If you or anyone you know experiences any academic stress, difficult life events, or feelings like anxiety or depression, we strongly encourage you to seek support. Counseling and Psychological Services (CaPS) is here to help: call 412-268-2922 and visit their website at http://www.cmu.edu/counseling/. Consider reaching out to a friend, faculty, or family member you trust for help getting connected to the support that can help.

If you or someone you know is feeling suicidal or in danger of self-harm, call someone immediately, day or night:

CaPS: 412-268-2922
Resolve Crisis Network: 888-796-8226
If the situation is life threatening, call the police:
On campus: CMU Police: 412-268-2323
Off campus: 911

Use of Recording Devices

Please do not record lectures or take images of the professor. University policy on this matter suggests the following formal statement:

No student may record any classroom activity without express written consent from the professor. If you have (or think you may have) a disability such that you need to record or tape classroom activities, you should contact the Office of Equal Opportunity Services, Disability Resources to request an appropriate accommodation.
Thank you.