
15–212: Principles of Programming

Some Notes on Structural Induction

Michael Erdmann∗

Spring 2011

These notes provide a brief introduction to structural induction for proving properties of ML
programs. We assume that the reader is already familiar with ML and the notes on evaluation and
natural number induction for pure ML programs.

We write e
k=⇒ e′ for a computation of k steps, e =⇒ e′ for a computation of any number of

steps (including 0), e ↪→ v for a complete computation of e to a value v, and n = m or e = e′ for
mathematical equality.

We define e ∼= e′ (e is operationally equivalent to e′) to hold if for any value v, e ↪→ v iff e′ ↪→ v,
that is, if e and e′ either both have values (in which case it must be the same), or neither has a
value. This notion will have to be refined when the language is extended by effects.

Structural inductions in ML often arise as inductions over the structure of values defined by
datatype declarations. Most datatype declarations give rise to an induction principle which may
be used to prove properties of recursive functions with arguments of the given type.

1 Proof By Cases

A very simple form of “structural induction” arises if the datatype declaration is not recursive,
but provides a finite number of data constructors. For such datatypes we can prove theorems by
cases, which may also be viewed as an induction with only base cases. As an example, consider the
declaration

datatype PrimColor = Red | Green | Blue;

We can now prove properties of all primitive colors by distinguishing the cases of Red, Green, and
Blue.

Another form for proof by cases arises for the booleans, since there is a pervasive definition

datatype bool = true | false;

For example, it is easy to see that

if e then e′ else e′ �∼= e′

since e might not terminate, while e′ could. However, if e has a value, then the two expressions are
operationally equivalent.

∗Modified from a draft by Frank Pfenning, 1997.

1

Theorem 1 For every expression e (of type bool) such that e ↪→ v for some v and for every e′ we
have

if e then e′ else e′ ∼= e′

Proof: By cases on the value of e.

if e then e′ else e′

=⇒ if v then e′ else e′ by assumption on e

Now either v = true or v = false by cases on the structure of bool. In either case, the expression
above reduces to e′. �

2 Structural Induction on Lists

The pervasive type of ’a list is defined by

datatype ’a list = nil | :: of ’a * ’a list;
infixr ::;

The last declaration changes the lexical status of the constructor :: to be a right-associative infix
operator. That is, 1::2::3::nil should be read as 1::(2::(3::nil)) which in turn would corre-
spond to ::(1,::(2,::(3,nil))) if :: had not been declared infix. ML provides an alternative
syntax for lists defined by

[] ≡ nil
[e1, e2, . . ., en] ≡ e1 :: (e2 :: (· · · (en :: nil)))

The recursive nature of the declaration of ’a list means that the corresponding induction
principle is not just a proof by cases. It reads:

If: 1. a property holds for the empty list nil
and

2. whenever the property holds for a value l of type t list
it also holds for v :: l (for any value v of type t),

then: the property holds for all values of type t list.

As a very simple example, consider the definition of a function to append two lists.

(* @ : ’a list * ’a list -> ’a list *)
fun @ (nil, k) = k

| @ (x::l, k) = x :: @(l,k);
infixr @;

Appending two lists always terminates in ML. While this may seem trivial, it is actually not the
case for some other functional languages such as Haskell in which values may be defined recursively.

Lemma 2 For any values l and k of type t list, l @ k ↪→ v for some v.

Proof: By structural induction on l.

2

Induction Basis: l = nil. Then

nil @ k =⇒ k by straightforward code evaluation

Induction Step: l = x :: l′ for some x.

Induction hypothesis: Assume l′ @ k ↪→ v′ for some v′.

We need to show that: l @ k ↪→ v for some v.

Evaluating code, we see that:

(x :: l′) @ k

=⇒ x :: (l′ @ k)

=⇒ x :: v′ by induction hypothesis on l′

= v

�

One can also prove that l @ k takes O(|l|) steps, where |l| is the length of the list l. From this
observation one can see that (l @ k) @ m takes O(2|l|+ |k|) steps, while l @ (k @ m) takes only
O(|l| + |k|) steps. This is the basis for a number of simple efficiency improvements one can make
in ML programs. It is formalized in the following lemma.

Lemma 3 For any values l1, l2, and l3 of type t list,

(l1 @ l2) @ l3 ∼= l1 @ (l2 @ l3)

Proof: We reformulate this slightly to simplify the presentation of the proof:

(l1 @ l2) @ l3 =⇒ l12 @ l3 =⇒ l123 iff
l1 @ (l2 @ l3) =⇒ l1 @ l23 =⇒ l123

The proof is by structural induction on l1.

Induction Basis: l1 = nil. Then

(nil @ l2) @ l3
=⇒ l2 @ l3
=⇒ l23 by termination of @

and

nil @ (l2 @ l3)
=⇒ nil @ l23 by termination of @
=⇒ l23

Induction Step: l1 = x :: l′1 for some x.

Induction hypothesis: Assume

(l′1 @ l2) @ l3 =⇒ l′12 @ l3 =⇒ l′123 iff l′1 @ (l2 @ l3) =⇒ l′1 @ l23 =⇒ l′123

3

We need to show that:

(l1 @ l2) @ l3 =⇒ l12 @ l3 =⇒ l123 iff l1 @ (l2 @ l3) =⇒ l1 @ l23 =⇒ l123

Evaluating code, for the left expression we obtain:

((x :: l′1) @ l2) @ l3

=⇒ (x :: (l′1 @ l2)) @ l3

=⇒ (x :: l′12) @ l3

=⇒ x :: (l′12 @ l3)

=⇒ x :: l′123

For the right expression we obtain:

(x :: l′1) @ (l2 @ l3)

=⇒ (x :: l′1) @ l23

=⇒ x :: (l′1 @ l23)

=⇒ x :: l′123 by induction hypothesis on l′1

The intermediate values all exist since @ terminates by Lemma 2.

�

We actually have the stronger and often useful result that @ is associative even for expressions
which are not necessarily values. This holds even under extensions by arbitrary effects, since in
e1 @ (e2 @ e3) and (e1 @ e2) @ e3, the expressions e1, e2 and e3 are evaluated in the same order,
with only terminating @ computations on the resulting values in between.

Lemma 4 For arbitrary expressions e1, e2 and e3 (of the same list type),

(e1 @ e2) @ e3
∼= e1 @ (e2 @ e3)

Proof: By straightforward computation and Lemma 3.

(e1 @ e2) @ e3

=⇒ (l1 @ e2) @ e3 or e1 has no value
=⇒ (l1 @ l2) @ e3 or e2 has no value
=⇒ l12 @ e3 by termination of @
=⇒ l12 @ l3 or e3 has no value
=⇒ l123 by termination of @

For the right-hand side we compute:

e1 @ (e2 @ e3)
=⇒ l1 @ (e2 @ e3) or e1 has no value
=⇒ l1 @ (l2 @ e3) or e2 has no value
=⇒ l1 @ (l2 @ l3) or e3 has no value
=⇒ l1 @ l23 by termination of @
=⇒ l123 by Lemma 3

�

4

3 Structural Induction on Other Types

As an example for structural induction over other types we use binary trees in which the leaves
carry all information.

datatype ’a tree = Leaf of ’a | Node of ’a tree * ’a tree;

The structural induction principle for these types of trees then reads:

If: 1. a property holds for every leaf Leaf(x), with x of type s,
and

2. whenever the property holds for values t1 and t2 of type
s tree it also holds for Node(t1, t2),

then: the property holds for all values of type s tree.

The following function is inefficient, since the elements of flatten t1 may end up being copied
many times when the result lists are appended.

(* val flatten : ’a tree -> ’a list
flatten(t) returns the inorder traversal of the leaf values.

*)
fun flatten (Leaf(x)) = [x]

| flatten (Node(t1,t2)) = flatten t1 @ flatten t2;

A more efficient alternative introduces an accumulator argument.

(* val flatten2 : ’a tree * ’a list -> ’a list
flatten2 (t, acc) ∼= flatten (t) @ acc

*)
fun flatten2 (Leaf(x), acc) = x::acc

| flatten2 (Node(t1,t2), acc) =
flatten2 (t1, flatten2 (t2, acc));

(* val flatten’ : ’a tree -> ’a list *)
fun flatten’ (t) = flatten2 (t, nil);

We would like to prove that flatten and flatten’ define the same function. In order to do
that, we need to prove a lemma about flatten2, which requires a generalization of the induction
hypothesis: We cannot prove directly by induction that flatten2(t, nil) ∼= flatten(t) since
recursive calls in flatten2 have a more general structure. The case of a leaf provides a clue about
the proper generalization.

Lemma 5 For any values t of type s tree and acc of type s list we have

flatten2(t, acc) ∼= flatten(t) @ acc

Proof: By structural induction on t.

Induction Basis: t = Leaf(x). We compute the value of both sides.

flatten2(Leaf(x), acc)
=⇒ x :: acc

5

and

flatten(Leaf(x)) @ acc
=⇒ [x] @ acc
≡ (x :: nil) @ acc
=⇒ x :: acc

Induction Step: t = Node(t1, t2).

Induction hypothesis: Assume that for any value acc of type s list,
flatten2(t1, acc) ∼= flatten(t1) @ acc and
flatten2(t2, acc) ∼= flatten(t2) @ acc.

We need to show that for any value acc of type s list,
flatten2(t, acc) ∼= flatten(t) @ acc.

We compute the value of both sides, using Lemma 4.

flatten2(Node(t1, t2), acc)
=⇒ flatten2(t1, flatten2(t2, acc))
=⇒ flatten2(t1, l2) for some list l2
=⇒ l12 for some list l12

and

flatten(Node(t1, t2)) @ acc
=⇒ (flatten(t1) @ flatten(t2)) @ acc
∼= flatten(t1) @ (flatten(t2) @ acc) by associativity of @ (Lemma 4)
=⇒ flatten(t1) @ l2 by induction hypothesis on t2
=⇒ l12 by induction hypothesis on t1

�

The theorem now follows directly:

Theorem 6 For any value t of type s tree we have

flatten’(t) ∼= flatten(t)

Proof: We compute directly:

flatten’(t)
=⇒ flatten2(t, nil)
∼= flatten(t) @ nil by Lemma 5
=⇒ l @ nil
=⇒ l

Where the last equality holds by a property of @ which is left as an exercise. �

There are also variants of structural induction analogous to complete induction, where we need
to apply the induction hypothesis to some subexpression of the given value. We will not go into
further details here.

6

