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1 Introduction

Computers can be programmed to perform an impressive variety of tasks, ranging from numerical
computations to natural language processing. The computer is surely one of the most versatile
tools ever devised, playing a critical role in solving all manner of “real world” problems. Some
would argue that computers can solve any problem that a human can solve; some would argue
the opposite; and some regard the question as irrelevant. Whatever view one adopts, it is still
interesting to consider whether there are any limits to what can be solved by a computer.

Any given computer has only a finite memory capacity, so certainly there are problems that
are too large for it to solve. We abstract away from these limitations, and consider the question of
what can be solved by an ideal computing device, one which is not limited in its memory capacity
(but is still required to produce an answer in a finite amount of time). Computability theory is
concerned with exploring the limitations of such idealized computing devices. Complexity theory
(which we shall not study here) is concerned with calibrating the resources (both time and space)
required to solve a problem.

Our treatment of computability theory is based on problems pertaining to ML programs. We
begin by considering questions about ML functions such as “does the function f yield a value when
applied to an input x?” or “are functions f and g equal for all inputs?”. It would be handy to
build a debugging package that included ML programs to answer these (and related) questions for
us. Can such a package be built? You may well suspect that it cannot, but how does one prove
that this suspicion is well-founded?

We then go on to consider questions about ML programs (presented as values of a datatype
representing the abstract syntax of ML). The difference lies in the fact that in ML functions are
“black boxes” — we can apply them to arguments, but we can’t look inside the box. “Of course,”
you might think, “one can’t test convergence of a function on a given input, but what if it were
possible to look at the code of the function? What then? Maybe then one can decide convergence
on a given input.” Unfortunately (or fortunately, depending on your point of view), the problem
remains undecidable.

∗Modified from a draft by Robert Harper, 1997.
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2 Properties of Functions

A decision problem is a well-defined question about well-specified data (called instances of the
problem) that has a “yes” or “no” answer. For example, the primality problem is a decision
problem, namely to decide whether or not a given natural number n is prime. A decision problem
is decidable (or solvable or computable) iff there is an ML function that, when applied to an instance
of the problem, evaluates to either true or false according to whether or not the answer to the
instance is “yes” or “no”. The primality problem is decidable: there is an ML function is prime
of type int->bool such that for every natural number n, is prime n evaluates to true iff n is
prime, and evaluate to false otherwise. We will show that there are undecidable problems — ones
for which no ML program can decide every instance.

It is important to stress that the whole question of decidability can only be considered for
well-posed problems. In particular it must be absolutely clear what are the problem instances
and how they are to be represented as input to an ML program. For example, in the case of the
primality problem we are representing a natural number as an ML value of type int. (We could
also represent it as a string, or as a list of booleans corresponding to its binary representation!)
Questions such as “is sentence s grammatical according to the rules of English grammar?” are not
well-posed in this sense because it is not clear what is the grammar of English, and so it is never
clear whether a given sentence is grammatical or not. Many fallacious arguments hinge on the fact
that the “problem” under consideration is so ill-defined as to render it meaningless to ask whether
or not a computer may be used to solve it!

The fundamental result of computability theory is the unsolvability of the halting problem: given
a function f of type int->int and an input x of type int, does f evaluate to a value on input x?
That is, does f halt on input x? (If f on input x raises an uncaught exception, then we do not
regard it as halting.) The halting problem for functions is undecidable:

Theorem 1 There is no ML function H of type (int->int)*int->bool such that for every f of
type int->int and every x of type int,

1. H(f, x) evaluates to either true or false.

2. H(f, x) evaluates to true iff f x evaluates to a value.

Proof: Suppose, for a contradiction, that there were such an ML function H. Consider the fol-
lowing function of type int->int:

fun diag(x:int):int = if H(diag, x) then loop () else 0.

Here loop is the function defined by the declaration

fun loop () = loop ().

(Obviously loop () runs forever.)
Now consider the behavior of H(diag, 0). (There is nothing special about 0; we could as well

choose any number.) By our first assumption, either H(diag, 0) evaluates to true or H(diag,
0) evaluates to false. We show that in either case we arrive at a contradiction. It follows that
there is no such ML function H.

1. Suppose that H(diag, 0) evaluates to true. Then by the second assumption we know that
diag 0 halts. But by inspecting the definition of diag we see that diag 0 halts only if
H(diag, 0) evaluates to false! Since true is not equal to false, we have a contradiction.
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2. Suppose that H(diag, 0) evaluates to false. Then by the second assumption we know that
diag 0 does not halt. But by inspecting the definition of diag we see that this happens only
if H(diag, 0) evaluates to true, again a contradiction.

�

It is worthwhile to contemplate this theorem and its proof very carefully. The function diag
used in the proof is said to be defined by diagonalization, a technique introduced by the Georg
Cantor in his proof of the uncountability of the real numbers. The idea is that diag calls H on
itself, and then “does the opposite” — if H diag evaluates to true, diag goes into an infinite loop,
and otherwise terminates immediately. Thus diag is a demonic adversary that tries (and succeeds!)
to refute the existence of a function H satisfying the conditions of the theorem.

Note that the proof relies on both assumptions about H. Dropping the second assumption
renders the theorem pointless: of course there are ML functions that always yield either true or
false! But suppose we drop the first assumption instead. Is there an ML program H satisfying
only the second assumption? Of course! It is defined as follows:

fun H(f, x) = (f x; true)

Clearly H(f, x) evaluates to true iff f x halts, and that is all that is required. The function H
so defined is sometimes called a semi-decision procedure for the halting problem because it yields
true iff the given function halts when called with argument x, but may give no answer otherwise.

The unsolvability of the halting problem can be used to establish the unsolvability of a number
of related problems about functions. The idea is to show that a problem P is unsolvable by showing
that if P were solvable, then the halting problem would also be solvable. This is achieved by showing
that an ML function to decide the halting problem can be defined if we are allowed to use an ML
function to decide P as a “subroutine”. In this way we reduce the halting problem to the problem
P by showing how instances of the halting problem can be “coded up” as instances of problem P .
Since an ML function to solve the halting problem does not exist, it follows that there cannot exist
an ML function to solve P . Here are some examples.

Is there an ML function Z of type (int->int)->bool such that Z f evaluates to true iff f 0
halts and evaluates to false otherwise? That is, is the “halts on zero” problem decidable? No.
Here is a tempting, but incorrect, attempt at a proof:

Clearly, Z f evaluates to true iff H(f, 0), so Z must be undecidable. So we can define
Z by fun Z(f)=H(f,0). Hence no such Z can exist.

But this is backwards! A correct proof proceeds by showing that if there were an ML function Z
satisfying the conditions given above, then there would exist an ML function H solving the halting
problem. Stated contrapositively, if no function H solving the halting problem exists, then no
function Z solving the “halts on zero” problem exists. Since we’ve already shown there is no such
H, then there is no such Z. To complete the proof, we must show how to define H from Z. But
this is easy: fun H(f,x) = Z(fn 0 => (f x)). Notice that the function fn 0 => (f x) halts on
input 0 iff f halts on input x, so the proposed definition of H in terms of Z solves the halting
problem, contradiction.

By a similar pattern of reasoning we may show that the halting problem for suspensions is
undecidable. More precisely, there is no ML function S of type (unit->int)->bool such that
for every t of type unit->int, the application S t evaluates to true iff t() halts, and evaluates
to false otherwise. Suppose there were such an S. Then we may define a procedure H to solve
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the halting problem as follows: fun H(f,x) = S(fn () => (f x)). (Convince yourself that this
definition refutes the existence of S as described.)

Consider the following problem: given an ML function f of type int->int, is there any argu-
ment x of type int such that f x halts? This problem is also undecidable. For if F were an ML
function of type (int->int)->bool solving this problem, then we could define an ML function to
solve the halting problem as follows:

fun H(f, x) =
let

fun g y = (f x; y)
in

F g
end.

Note that the function g has the property that it halts on some input only if f halts on x.
It is worth pointing out that there is nothing special about the type int in the above arguments.

The proofs would go through for any type τ , provided that there is a value v of that type. (In the
above cases we took τ = int and v = 0.)

A type in ML for which there is an equality test function is said to admit equality. For example,
the types int and string admit equality. But not every type admits equality. For example, there
is no equality test for values of type int->int. Is this just an oversight? First let us be clear
what we mean by equality of such functions. If f and g are functions of type int->int then f is
equal to g iff for every input x of type int, either f x and g x both diverge, or both evaluate to the
same value of type int. Thus (fn x:int=>2*x) and (fn x:int=>x+x) are equal functions of type
int->int, as are (fn x:int=>loop()) and the function f defined by fun f(x:int)=f(x).

The equality problem for functions of type int->int is to decide whether or not two functions
f and g of this type are equal in the sense just described. The equality problem is undecidable:
there is no ML function E of type (int->int)*(int->int)->bool such that E(f,g) evaluates to
true iff f is equal to g, and evaluates to false otherwise. Suppose there were such an E. Then we
may define a function H to solve the halting problem as follows:

fun H(f, x) = E (fn y:int => (f x; y), fn y:int => y)

Notice that the two functions in the call to E are equal iff f x halts. Thus H solves the halting
problem, which is a contradiction. Thus we see that the limitation on equality in ML is a feature,
rather than a bug!

3 Properties of Programs

Is it possible to decide halting for functions if we are given the actual program, rather than just a
“black box”? It may seem plausible, at first sight, since, after all, we as programmers make such
judgments based on the program itself, so why might not a computer be able to do the same thing?
And if computers have the same capabilities as people (as some would say), then perhaps computers
can do this too. One problem with this argument is that it’s far from clear that people can decide
halting for arbitrary functions, even given the code: the program might be so complicated as to
overwhelm even the most clever among us. Be that as it may, it is possible to prove that halting
remains undecidable, even if the program is given as input to the halting tester.

4



Recall that we defined an interpreter for a small fragment of ML, let’s call it Mini-ML, written in
full ML.1 The implementation consisted of two main parts. First, we defined a datatype called exp
for the abstract syntax of Mini-ML and a datatype called value for the values of Mini-ML. Then
we defined a function eval of type value env * exp -> value that, given the representation of
a value environment and an ML expression as a value of type value env * exp, evaluates that
expression and yields a representation of its value as a value of type value. From this we can easily
define another function eval of type exp -> value which fixes the top-level value environment to
be empty.

First off, let’s be more precise about the representation of Mini-ML expressions as values of
type exp. For example, the Mini-ML expression 2+3 is represented by the value Plus(Integer
2, Integer 3) of type exp, and the expression fn x => x is represented by the value Fn ("x",
Var "x"). In general, if e is a Mini-ML expression, then �e� (“corners e” or “quote e”) is its
representation as a value of type exp. Thus �e� = Plus(Integer(2), Integer(3)), and so on. A
formal definition of quotation is given in Figure 1. There is a corresponding representation function
for values, which we write the same way as �v�. Note that we have omitted some cases which are
analogous to the given ones.

Now we can state precisely the behavior of eval: given a Mini-ML expression e, eval �e�
evaluates to �v� iff e evaluates to v. For example, if e is the Mini-ML expression 2+3, which evaluates
to 5, then eval �e� evaluates to Rational(5//1), which is �5/1� as a value. In other words, given
the representation �e� of a Mini-ML expression e, the function eval yields the representation �v�
of its value v according to the rules of evaluation for Mini-ML.

For the remainder of these notes we ask you to accept the following claim without proof: there
is a type exp of the abstract syntax of all of Standard ML for which we can write a function eval
of type exp -> value such that eval �e� evaluates to �v� iff e evaluates to v. The extension to
all of ML does not involve many new ideas beyond those appearing in the interpreter for Mini-ML,
but, as you can readily imagine, there are a lot more cases to consider.

With this bit of machinery in hand we return to the question of decidability of halting for
programs, rather than functions. We will prove that there is no ML function K of type exp * exp
-> bool with the following properties:

1. K (v,w) evaluates to either true or false for any values v and w of type exp;

2. if e is an ML expression of type exp -> exp and v is a value of type exp, then K (�e�,v)
evaluates to true iff e v halts.

Before giving the proof, let us note carefully what is being said. First of all, we require that
K terminate for all pairs of inputs of type exp * exp. Second, we specify that K test halting of
the representation of an ML function of type exp->exp on a given input of type exp. That is,
if e is an ML function of type exp->exp for which we are interested in testing whether or not it
halts on a given input v, then we call K with the argument (�e�, v) and see whether or not the
result is true. This is tricky, and you should pause to make sure you understand precisely what is
happening here before reading any further.

Suppose that we are given such a function K. Let diag be the ML function of type exp ->
exp defined by

fun diag(x) = if K(x,x) then loop () else Integer(0)

1see the code for lecture 24
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Expressions
�x� = Var "x"
�n� = Integer n

�e1+e2� = Plus (�e1�, �e2�)
�true� = True

�false� = False
�if e1 then e2 else e3� = IfThenElse (�e1�,�e2�,�e3�)

�fn x => e� = Fn ("x", �e�)
�e1 e2� = App (�e1�, �e2�)

�let d in e end� = Let (�d�, �e�)

Declarations
�·� = Null

�d val x = e� = Dec (�d�, ("x", �e�))
�d val rec x = e� = Rec (�d�, ("x", �e�))

Values
�r� = Rational r
�b� = Boolean b

�{η; e}� = Closure (�η�, �e�)

Value Environments
�·� = Null

�η, x = v� = Dec (�η�, ("x", �v�))
�η, rec x = e� = Rec (�η�, ("x", Freeze �e�))

Figure 1: Quotation for Mini-ML
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where loop is as defined before and Integer(0) is a convenient value of type exp.
Consider the evaluation of K (�diag�,�diag�). By the first assumption on K, this expression

evaluates to either true or false. We consider each case in turn, as before, in order to derive a
contradiction:

1. Suppose that K (�diag�,�diag�) evaluates to true. Then by the second assumption on K
it follows that diag �diag� halts. But by the definition of diag we see that diag �diag� halts
only if K (�diag�,�diag�) evaluates to false, contradicting the assumption.

2. Suppose on the other hand that K (�diag�,�diag�) evaluates to false. Then by the second
assumption on K it follows that diag �diag� loops forever. But by the definition of diag this
happens only if K (�diag�,�diag�) evaluates to true, contradicting the assumption.

Thus we arrive at a contradiction in either case, and conclude that there is no ML function K
satisfying the two conditions stated above. That is, the halting problem is undecidable even if we
are given the (representation of the) program, and not just the function as a “black box”.

We’ve just proved that the halting problem for representations of functions of type exp -> exp
as values of type exp and arguments of type exp is undecidable: there is no ML function K taking
a representation of such a function and a purported argument that yields true or false according
to whether or not that function halts on the given input. The restriction to functions of type exp
-> exp may seem rather odd. After all, few programs that we’ve written this semester (with the
exception of eval!) have this type. Perhaps halting is decidable for (representations of) functions
of type, say, int -> int and purported arguments of type int?

The answer is “no” because we can reduce the halting problem to this problem. That is, we can
encode instances of the halting problem as instances of the latter problem, demonstrating that no
such decision procedure exists. The reduction is achieved by a technique called Gödelization, named
after the great Austrian mathematician Kurt Gödel who invented it. The technique is based on a
fundamental lemma: there is a one-to-one and onto correspondence between values of type exp and
values of type int. That is, we can encode programs as integers and, conversely, decode integers
into programs, without any loss of information.2

How is this done? A simple approach is to think of the ASCII representation of characters.
Each character is assigned a code number between 0 and 127. We may think of each character as a
“digit” in base 128. Then a string is nothing more than a base-128 number — in other words, a very
large integer. Now this representation is somewhat awkward to work with, especially if we want
to take apart programs and put them back together. But we can, if we’d like, write a parser and
un-parser to translate to and from abstract syntax (the type exp!), where we can do the real work.
The important point is that the parsing and un-parsing can be designed to be mutual inverses:
if you parse a string, then un-parse it, you get back the same string, and vice-versa. In this way
we can reduce the halting problem for functions of type exp -> exp to the halting problem for
functions of type int -> int, demonstrating that the latter is also undecidable.

Exercise 2 Give an informal argument that halting is undecidable for representations of functions
of type int list -> int list.

2For this to work with programs of any size, we must assume that our integers are of unbounded size. Mere
32-bit machine words will not suffice. But, as we said in the introduction, we are abstracting away from the physical
capacity of a given machine.
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4 Church’s Thesis

To complete our discussion of computability, we consider the generality of our results. So far we’ve
demonstrated that several problems about ML functions and about representations of ML functions
as ML data structures are all undecidable. The possibility remains, however, that all of this is an
artifact of ML. Might it perhaps be possible to decide halting of representations of C functions as
C data structures? Or of Java applets represented as Java data structures?

The answer is “no” because each of these languages is capable of simulating the other. That
is, we can write an ML interpreter for C code and a C interpreter for ML code (but it wouldn’t
be much fun). Therefore their halting problems are equally unsolvable: a halting checker for C
could be used to build a halting checker for ML by asking about the behavior of the ML interpreter
written in C.3 The point is that all of these languages are Turing equivalent which means that they
compute the exact same functions over the natural numbers, namely the partial recursive functions.

What about the languages of the future? So far no one has invented a programming language
that can be executed by a computer that is more powerful (in the sense of representing number-
theoretic functions) than the languages we all know. Might there be one someday? Who knows?
Church’s Thesis is the claim that this will never happen — according to Alonzo Church, the great
logician and mathematician, the very idea of computable function on the numbers coincides with
the partial recursive functions on the natural numbers. That is, all programming languages are of
the same expressive power when it comes to functions on the natural numbers.

What about functions on other types? It is easy to see that any types whose values are them-
selves finite (e.g., lists of integers, or lists of lists of pairs of integers, etc.) may be coded up as
integers by some sort of Gödelization scheme. So we cannot hope to make progress here. But what
about functions on the real numbers? Is there a sensible notion of computability for inherently
infinite objects such as the reals? And are all such notions equivalent? These and related questions
are a fascinating part of the extension of computation theory to higher types, all of which lie far
beyond the scope of these notes.

5 Conclusion

Thus we see that there are limitations to what can be computed. What are the practical implica-
tions of these limitations? An immediate consequence is that we should not expect too much from
compilers. For example, it is undecidable whether or not a given conditional branch (say, to the
else clause) will ever be taken in a given program. (It is easy to devise a program for which a given
if expression takes the else branch iff a given program halts on a given input.) Consequently the
compiler must allow for the possibility that either branch may be taken, and must refrain from
making optimizations that rely on knowing the outcome. Nor is it possible to determine whether
a given variable will ever take on values greater than, say, 255, limiting the possibilities for the
compiler to represent it as a byte rather than a full word. In fact any non-trivial property of
the execution behavior of programs is undecidable (this can be proved!). On the one hand this is
disappointing — only so much can be automated. On the other hand it is a “full employment”
guarantee for compiler writers — since the ultimate solution is not programmable, there is always
room to improve the partial solutions that are programmable.

3We are glossing over a few details here, but this is the general idea.
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