Derivatives of Regular Expressions

Frank Pfenning

15-150, April 23, 2020

Largely Following:

S. Owens, J. Reppy, and A. Turon. Regular Expression Derivatives Reexamined. Journal of Functional Programming 19(2):173-190, March 2009

Learning Objectives

Review

- Type-directed programming
- Inductive and equational reasoning
- Representation invariants
- Higher-order functions
- Restaging
- Type classes
- Functors
- Regular expression and automata
 - Brzozowski derivatives
 - Regular expression matching revisited
 - Optimization via algebraic laws for regular expressions
 - Deterministic finite-state automata (DFAs)
 - Compiling regular expressions to DFAs

Recalling Regular Expressions

In Backus-Naur Form (BNF)

Alphabet
$$\Sigma$$
 ::= $\{a_1,\ldots,a_n\}$
Words w ::= $a\mid\epsilon\mid w_1\;w_2$
Reg.Exps. r ::= $a\mid1\mid0\mid r_1\cdot r_2\mid r_1+r_2\mid r^*$

 \blacksquare $\mathcal{L}(r)$, the language of r is a set of words

$$\mathcal{L}(a) = \{a\}$$
 $\mathcal{L}(1) = \{\epsilon\}$
 $\mathcal{L}(0) = \{\}$
 $\mathcal{L}(r_1 \cdot r_2) = \{w_1 w_2 \mid w_1 \in \mathcal{L}(r_1) \text{ and } w_2 \in \mathcal{L}(r_2)\}$
 $\mathcal{L}(r_1 + r_2) = \{w \mid w \in \mathcal{L}(r_1) \text{ or } w \in \mathcal{L}(r_2)\}$
 $\mathcal{L}(r^*) = \{w_1 \cdots w_n \mid \text{each } w_i \in \mathcal{L}(r)\}$
 $= \mathcal{L}(1 + r \cdot r^*)$

Examples

■ String contains two consecutive a's (over $\Sigma = \{a, b\}$)

$$(a+b)^* \cdot a \cdot a \cdot (a+b)^*$$

■ String contains no two consecutive a's

$$((a\cdot b)+b)^*\cdot(1+a)$$

Brzozowski Derivatives

■ Define $\partial_a(r)$ and nullable(r) such that

$$a w \in \mathcal{L}(r)$$
 iff $w \in \mathcal{L}(\partial_a(r))$
 $\epsilon \in \mathcal{L}(r)$ iff $\text{nullable}(r)$

- Key: $\partial_a(r)$ is again a regular expression!
 - Brzozowski also allows $r_1 \& r_2$ and $\neg r$
 - Efficiency depends on size of $\partial_a(r)$
- In code

Computing nullable

■ Recall: $\epsilon \in \mathcal{L}(r)$ iff nullable(r)

Computing the Brzozowski Derivative

■ Recall: $aw \in \mathcal{L}(r)$ iff $w \in \mathcal{L}(\partial_a(r))$

$$\begin{array}{rcl} \partial_a(c) &=& 1 & \text{if } a = c \\ &=& 0 & \text{if } a \neq c \\ \partial_a(1) &=& 0 \\ \partial_a(0) &=& 0 \\ \partial_a(r_1 \cdot r_2) &=& \partial_a(r_1) \cdot r_2 & \text{if not nullable}(r_1) \\ &=& \partial_a(r_1) \cdot r_2 + \partial_a(r_2) & \text{if nullable}(r_1) \\ \partial_a(r_1 + r_2) &=& \partial_a(r_1) + \partial_a(r_2) \\ \partial_a(r^*) &=& \partial_a(r) \cdot r^* \end{array}$$

- \blacksquare Time proportional to size of r
- Note size increase for $r_1 \cdot r_2$ and r^*

Examples

Let's Code!

Correctness Proof

- How do we prove the correctness of nullable, deriv, and match?
- nullable $r \Longrightarrow \mathtt{true}$ iff $\epsilon \in \mathcal{L}(r)$, otherwise false
 - \blacksquare By induction over the structure of r
- If deriv $a \ r \Longrightarrow s$ then $a \ w \in \mathcal{L}(r)$ iff $w \in \mathcal{L}(s)$
 - \blacksquare By induction over the structure of r
- lacktriangledown match $r \ w \Longrightarrow$ true iff $w \in \mathcal{L}(r)$, otherwise false
 - By induction over the structure of w (left to right)

The Algebra of Regular Expressions

- How can we avoid size explosion of regular expressions?
 - In practice, if not in theory
- Key idea: exploit their algebraic properties!
 - Regular expressions form a Kleene algebra
 - lacksquare Can be derived from the definition of $\mathcal{L}(r)$
 - We only use some of the laws
- (+,0) form a commutative idempotent monoid

$$(r+s)+t=r+(s+t)$$
 associativity
 $0+r=r$ left identity
 $r+0=r$ right identity
 $r+s=s+r$ commutativity
 $r+r=r$ idempotence!

Would like to use idempotence as much as possible

The Algebra of Regular Expressions, Continued

- More laws are better (if fast to use for simplification)
- \bullet $(\cdot,1)$ form a monoid with annihilation by 0

$$(r \cdot s) \cdot t = r \cdot (s \cdot t)$$
 associativity
 $1 \cdot r = r$ left identity
 $r \cdot 1 = r$ right identity
 $0 \cdot r = 0$ left annihilation
 $r \cdot 0 = 0$ right annihilation

■ Some laws for Kleene *

$$(r^*)^* = r^*$$
 idempotence
 $1^* = 1$ identity
 $0^* = 1$ identity + annihilation

Let's Code!

Deterministic Finite Automata (DFAs)

- An exceedingly simple computational model
- Usually defined as $M = \langle \Sigma, \mathcal{Q}, q_0, \mathcal{F}, \delta \rangle$
 - lacksquare Σ is the alphabet
 - lacksquare Q is a set of states q
 - $q_0 \in \mathcal{Q}$ is the initial state
 - $\mathcal{F} \subseteq \mathcal{Q}$ are the final states
 - \bullet $\delta: \mathcal{Q} \times \Sigma \to \mathcal{Q}$ is the transition function
- The automaton accepts $w = a_1 a_2 \dots a_n \in \Sigma^*$ if there is a sequence of states $s_0, s_1 \dots, s_n$ such that
 - 1 $s_0 = q_0$
 - 2 $s_{i+1} = \delta(s_i, a_{i+1})$ for $0 \le i < n$
 - $s_n \in \mathcal{F}$
- $\mathcal{L}(M) = \{ w \mid M \text{ accepts } w \}$

Examples

Regular Expressions and DFAs

- $L = \mathcal{L}(M)$ for some DFA M iff $L = \mathcal{L}(r)$ for some regular expression r (over the same alphabet Σ)
- Key idea: compile a regular expression r to a DFA M accepting $\mathcal{L}(r)$
 - M executes very efficiently
 - M might be large (in theory, hopefully not in practice)
- Observe that deriv a r does not depend on input string!
 - Precompute all necessary derivatives
 - If we normalize there will only be finitely many! [Brzozowski 1964]

Compiling Regular Expressions

- Each derivative will be a state in a DFA
- Top-level r is initial state q_0
- If nullable(r) then r is a final state
- If deriv a r = s then $\delta(r, a) = s$

Example

Let's Code

Summary

- Brzozowski derivatives
- Regular expression matching revisited
- Optimization via algebraic laws for regular expressions
- Deterministic finite-state automata (DFAs)
- Compiling regular expressions to DFAs by restaging
- This algorithm is effective in practice