15-150

Principles of Functional Programming

Slides for Lecture 23
Imperative Programming

April 21, 2020
Michael Erdmann

Lessons:
* Mutation
— Mutable cells
— Typing rules
— Evaluation rules
 Aliasing
» Race Conditions

 Ephemeral Data vs Persistent Data

A New Type

The type Is written
t ref

with t any ML type.

A New Type

The type is written
t ref

with t any ML type.

Restriction: at top-level, t must be monomorphic.

(This is a consequence of ML's “value restriction”, designed
to avoid bizarre side-effects. We won't discuss details.)

Values

We think of a value of type t ref as being a
cell that contains a value v of type t :

E.q, is a value of type i nt ref
containing the value 7 of type I nt .

(Create such a cell by writing ref 7.)

Typing and Evaluation

* EXxpressions involving reference cells have
precise type-checking and evaluation rules.

* As always in SML, type-checking happens
before evaluation.

* We will discuss evaluation first, since that is a
natural way to introduce new constructs
iInvolving reference cells. (\We assume all
expressions are well-typed during evaluation.)

ref e

Evaluation rules:

* Evaluate expression e.

* |f e reduces to a value v, then
create and return a new cell

containing v.
Pictorially: Ife<—sv ,thenref e «— .
Example: val ¢ = ref 7

That creates a binding / C .

l e

Evaluation rules:

* Evaluate expression e.

* |f e reduces to a cell containing
value v, then return v.

Pictorially: If @ — ,then e <3 v.

Example: val ¢ =ref 7
val v = lc

That creates bindings |7 |/ ¢ and 7/v.

e, .= e,

Evaluation rules:

« Evaluate expression e;.
* If e, reduces to cell ¢, then evaluate e.,.

* If e, reduces to value \._then change the contents
of ¢ tobev an

observe

e, .= e,

Evaluation rules:

« Evaluate expression e;.
» If e, reduces to cell c, then evaluate e.,.

» If e, reduces to value v, then change the contents
of ¢ tobev andreturn ().

Pictorially: If €, (some w) and if e, vV,
then replace wwith v in the cell above.

Example: val ¢ = ref 7 /C

e, .= e,

Evaluation rules:

« Evaluate expression e;.
» If e, reduces to cell c, then evaluate e.,.

» If e, reduces to value v, then change the contents
of ¢ tobev andreturn ().

Pictorially: If €, (some w) and if e, vV,
then replace wwith v in the cell above.

Example: va =ref 7 /C

C
val () = c¢c =4
val v = Ic 4/ v

Typing Rules

t ref If e ;:

f e : t ref .

uni t
if e, : t
and e, : t .

r ef

Side Comment

There is no explicit “deallocation” of cells.

In practice, a garbage collector reclaims
cells once they become inaccessible via
any code (e.g., permanently shadowed).

We do not worry about that in this course.

Aliasing

val
val
val

val
val

c = ref 10
w=1¢
d = C
() =d:= 42
v = |

What values are boundto w and v?

Aliasing

val
val
val

val
val

c = ref 10

w=1lc We say that ¢ and d are
d = C aliases for the same cell.
() =d:= 42

v = |

What values are boundto w and v?

Answer:

10/ w 42/] v

pattern matching

Can pattern match on r ef :

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
| contal nsZero = fal se

val d = ref 42

val false = contalinsZero d

val false = containsZero (ref 7)
val true = containsZero (ref 0)

Equality

Variables of type t ref are equal iff they
are bound to the same cell. Consider:

val ¢ = ref 10
val d = c
val e = ref 10

All three variables are bound to cells
containing the integer 10, so the expressions

lc=l'd and! c=! e both evaluate tot r ue.

Variables ¢ and d are aliases, so c=d <« true.
Variable e is bound to a different cell, so c=e <« f al se.

Sequential Expressions

SML allows this form of an expression:

(e;; €5 .., €y

P\

observe the semi-colons (and the parentheses)

Sequential Expressions

SML allows this form of an expression:

(e;; €5 .., €y

The overall expression is well-typed
iff each expression e; is well-typed.

In that case, the overall type is the type of e,

(e,; e, .., ey : t,

If there exist types t; such that
e:t;,, 1=1,...,n.

Sequential Expressions

SML allows this form of an expression:

(e,; e, .. €y

The overall expression has a value
iff each expression e; has a value.

In that case, the overall expression has the value of e :

(€1 €5 . €,) — V,

If there exist values v, such that
e v, 1=1,...,n.

Sequential Expressions

SML allows this form of an expression:

(e;; €5 .., €y

Evaluation is left-to-right.

If any e, raises an exception or loops forever,

then the overall expression raises an exception

or loops forever, as determined by the
leftmost e; that fails to reduce to a value.

Sequential Expressions

Example:
| et
val
| N

ref 10

(print(lnt.toString(!c));

C)

end

This code creates a reference cell c,
prints the contents 10,

then returns the cell.

What is the type of this | et ? What is the value?

Sequential Expressions

Example:

| et
val ¢ = ref 10

I N
(print(Int.toString(!c));

C) This code creates a reference cell c,
prints the contents 10,

end then returns the cell.

What is the type of this | et ? What is the value?
| nt ref ref 10

Race Conditions

Consider:

fun deposit a n=a:="!a +n

deposit increments the contents of cell a by n.

deposit : Iint ref ->int -> unit

When we see a return type of uni t in a function,
we understand that the function is being called for effect.

Race Conditions

Consider:

fun deposit a n=a:="!a +n

fun wMmthdrawa n = a :=!la - n

val chk = ref 100 (* bank account *)

Race Conditions

Consider:

fun deposit a n=a:="!a +n

fun wMmthdrawa n = a :=!la - n

val chk = ref 100 (* bank account *)

val _ = (deposit chk 50, wthdraw chk 80)

Assume sequential evaluation of the pair.
What is the value of ! chk ?

Race Conditions

Consider:

fun deposit a n=a:="!a +n

fun wMmthdrawa n = a :=!la - n

val chk = ref 100 (* bank account *)

val _ = (deposit chk 50, wthdraw chk 80)

Assume sequential evaluation of the pair.
What is the value of ! chk ? 70

Race Conditions

Now assume parallel evaluation of the pair.

fun deposit a n =a :="!a + n

fun wthdrawa n =a :=!a - n

val chk = ref 100

val = (deposit chk 50, wthdraw chk 80)

What now is the value of ! chk ?

Race Conditions

Now assume parallel evaluation of the pair.

fun deposit a n =a :="!a + n

fun wthdrawa n =a :=!a - n

val chk = ref 100

val = (deposit chk 50, wthdraw chk 80)

What now is the value of ! chk ?
There is no definitive answer.

If deposi t and w t hdr awhappen atomically, then 70 as before.
Otherwise, timing of read and write could mean 20, 70, or 150.

If simultaneous writes to the underlying bits, then maybe garbage.

Deterministic Parallelism

The previous example has multiple outcomes,
determined nondeterministically
(that means: beyond our knowledge or control).

We want deterministic outcomes.

Concerns: Sequential vs Parallel Evaluation

Persistent vs Ephemeral Data

) !

no mutation mutable

Persistent

Ephemeral

Sequential

Parallel

Functional
programming
is a good tool

Reasoning is
more complicated,
but FP is fine.

|

need to think
about concurrency

Can include diverging code by left-to-right evaluation
semantics, perhaps modeling exceptions via options.

Can also include some mutation
as benign effects (see subsequent slides).

Benign Effects

A benign effect is some effect (such as mutation)
that is localized within some sufficiently small
chunk of code (such as a function or structure)
so that external users can use the code as if it
were purely functional.

Benign effects can be useful, for instance, in
iImproving efficiency while still keeping code simple
enough to analyze and prove correct.

Example #1: Graph Reachabillity

Can get to vertex 4

any other vertex from 4.

1
G <.> \ 3 from any other vertex,
®—>®4 |but cannot get to
o’ _/
2

Let us model a graph as a function that
encodes neighbors reachable by a single edge:

type graph = int ->1i1nt |1 st

val G: graph =fn 1 =>[2, 3]
2 => [1, 3]
3 => [4]

=> []

First (naive) attempt to check reachability:

(*reach : graph -> i1nt*int -> bool *)

reach g (x,y) issupposed to
returntrue if y is reachable from x in g,
and return f al se otherwise.

First (naive) attempt to check reachability:

(*reach : graph -> i1nt*int -> bool *)

fun reachable (g : graph) (x,y) =
| et
fun dfs n = (n=y) orelse

Perform a depth-first search.
I N Current vertex is n.
df s X First, check whether n is the
end \ desired destination y.

Start the search from x initially.

First (naive) attempt to check reachability:

(*reach : graph -> i1nt*int -> bool *)

fun reachable (g : graph) (x,y) =
| et
fun dfs n = (n=y) orelse

(List.exists dfs (g n))
al Check whether y is reachable
df s X from any of n’s neighbors.
end
Recall

List.exists . ('a -> bool) ->"a list -> bool
checks whether some element in the list satisfies the predicate.

First (naive) attempt to check reachability:

(*reach : graph -> int*int -> bool *)

fun reachable (g : graph) (x,y) =
| et
fun dfs n = (n=y) orelse
(List.exists dfs (g n))
I N
df s x

end G :'—~\43
(;210—)04

Issue: The depth-first search can loop forever on G

We can fix this by updating a visited list:

(* mem Int ->1int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

nmem n L checks whether n isinlist L.

We can fix this by updating a visited list:

(* mem Int ->1int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

(* reach : graph -> int*int -> bool *)
fun reachable (g:graph) (x,y) =

| et
val visited =ref []

Create a reference cell that will hold a list of vertices (integers)
visited during depth first search of the graph.
Initially the list is empty.

| N

end

We can fix this by updating a visited list:

(* mem Int ->1int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

(* reach : graph -> int*int -> bool *)
fun reachable (g:graph) (x,y) =
| et
val visited =ref []
fun dfs n = (n=y) orelse

As before, the first thing df s does is to check whether
it has arrived at the destination y.

| N
df s x
end

We can fix this by updating a visited list:

(* mem Int ->1int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

(* reach : graph -> int*int -> bool *)
fun reachable (g:graph) (x,y) =
| et
val visited =ref []
fun dfs n = (n=y) orelse
(not (memn (!visited))
andal so
(visited := n::(!visited);
List.exists dfs (g n)))

In Only continue the depth first search if the current
df s x vertex n has not already been visited.
end In that case, also update the visited list with n.

Alternative approaches

» Pass and return vi si t ed explicitly as an
argument.

 Use continuations with vi si t ed as an
argument.

Other Roles for Benign Mutation

« Maintain local state in a random number
generator.

 Remember stream values that have been
exposed previously, so that re-exposing
them does not require repeating potentially
expensive computations.
(This is called memoization.)

Example #2: Stream Memoization

Previously we had the following code
inside our St r eamstructure:

fun delay d = Stream d
fun expose (Streamd) =d ()

Data persistence means that any and every time someone
exposes a given stream, the computation d() will occur.

Let us add a hidden reference cell that remembers the
result of computing d(). We will leave expose as is,

and change del ay.

Example #2: Stream Memoization

fun delay d =
| et
val cell = ref d

Our first observation is that we can put d in a reference cell.

Recall the code for expose:
fun expose (Streamd) = d()

That means we now need a suspension, which when forced
will access the reference cell and force the function we put there:

| N

Stream (fn () => lcell())

end

Example #2: Stream Memoization

fun delay d =
| et
val cell = ref d
fun menoFn () =
| et

ro=d()

= (fn ()

=>r);

end

menokFn is a function that computes d() , remembers the result
I in a suspension, puts that suspension in cel | , and returnsr .

| N
Stream (fn () => lcell())
end

Example #2: Stream Memoization

fun delay d =
| et
val cell = ref d
fun menoFn () =
| et
val r = d()
I N
(cell :=(fn () =>171);
r)
end

We put nenoFn into cel | , where it will sit until someone exposes
the stream, at which point nenpFn replaces itself with (f n() =>r) .

Stream (fn () => lcell())
end

Example #2: Stream Memoization

fun delay d =
| et
val cell =ref d
fun menoFn () =
| et .
val r = d() Qne can evgn memmze
- raised exceptions this way.

(cel l

= (fn () =>r1);

andle E =>
(cell := (fn () => raise E);

| N

Stream (fn () => lcell())
end

Example #2: Stream Memoization

fun delay d =
| et
val cell = ref d
fun menoFn () =
| et
val r = d()
I N
(cell :=(fn () =>171);
r)
end handle E =>
(cell :=(fn () => raise E);
rai se E)
val = cell := menoFn
I N

Stream (fn () => lcell())
end

That is all.

Have a good online lab tomorrow.

See you Thursday.

We will discuss context free grammars
and parsing.

