15-150

Principles of Functional Programming

Slides for Lecture 22
Time to be Lazy

April 16, 2020
Michael Erdmann



L essons:

* Infinite data structures

* Encapsulated Computation

(We have seen a form of that with failure
continuations. Closures are the key tool.)

 Demand-driven (lazy) computation

Examples of (potentially) infinite data:
* Even integers, natural numbers, primes
 All keystrokes you will make on a keyboard.
* Video/Audio streams



Streams

Caution:

We will build our own streams.

These are different from SML’s
built-in I/O streams.



Brain Teaser

What Is the difference between
f and (fn x => f x) 7



Brain Teaser

What Is the difference between
f and (fn x => f x) 7

f iIs not evaluated in (fn x => £ x) until

the lambda expression is called on an argument
and the body £ x is evaluated.

If £ 1Is Itself an expression, it may not be
extensionally equivalentto (fn x => £ x).



Brain Teaser

What is the difference between
f and (fn x => £ x) ?

For instance, consider:

fun g x = g x
Now suppose £ Is the expression (g 3).
igYB)J an X =>v(g 3) x)/

loops IS a value (a closure)



Brain Teaser

What is the difference between
f and (fn x => £ x) ?

For instance, consider:
fun g x

g X g: 'a->"

Now suppose £ Is the expression (g 3).

igYB)J an X =>v(g 3) xL:'a—>'b
loops IS a value (a closure)

here g : int -> 'a (g 3) : 'a ->'b



Suspensions

Definition

A suspension of type t Is a function of type
unit -> 1.

We say a suspension iIs forced when it
IS applied to argument () .

Ife:t, then (£n () => e) Is a suspension of type t.

We view such a suspension as a lazy represention of e.
The suspension is a function, so e will not be evaluated

until the suspension is forced.



Streams

We will model (potentially infinite) streams
of data much like lists, but lazily:

 Base case: an empty stream
* [nductive case:
A suspension of the following:
A single element
“‘consed”
onto another stream.

(Suspensions will allow us to build streams with no base cases!)
(never-ending, infinite, yet encapsulated finitely)



STREAM Signature

First, a signature to describe
streams abstractly.

(Then we will Implement them.)



signature STREAM =
sig
type 'a stream (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

end



signature STREAM =

sig

type 'a stream (* abstract ¥*)

Streams are abstract, modeled by the type 'a stream.

end




signature STREAM =
sig
type 'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

Streams are abstract and lazy.
We may want to look at their elements.
The type 'a front represents the result of performing just
enough computation to expose the first element of a stream,
as well as obtain the rest of the stream.

Cons models the inductive nature of streams.

Empty models the result of exposing an empty stream.

end



signature STREAM =
sig
type 'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

This function performs the computations needed to
see the first element of a stream.

The function returns the corresponding front
(which could be Empty).

Caution: Since exposing a stream value involves computation,
the computation might not terminate.
This is different from looking at list values.

end



signature STREAM =
sig
type 'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream

This function expects a suspension of a front
and creates the corresponding stream for it.

Notice that the function expects a suspension of a front,
not merely the front. Why?

The reason Is contained in the earlier brain teaser:
ML evaluates arguments eagerly.

If we had delay : 'a front -> 'a stream, then
delay (e) would evaluate e, but we want the computation
represented by e to be lazy, so need delay(fn () => e).




signature STREAM =
sig
type 'a stream (* abstract ¥*)
datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front
val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

This is one representation of a stream containing no elements.

In particular, we will ensure that expose (empty) = Empty.

Caution: One can imagine other “empty stream’s, for instance
a stream value s such that expose (s) loops forever.

end



signature STREAM =
sig
type 'a stream (* abstract ¥*)
datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

A function useful for constructing streams eagerly,
l.e., e.g., when elements are already known.

end



signature STREAM =
sig
type 'a stream (* abstract ¥*)
datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

A function to test whether a stream is empty.

Caution: Under the hood, this may involve stream exposures,
SO0 might not terminate.

end



signature STREAM =
sig
type 'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

take (s,n) returns the first n elements of stream s, as a list;

raises Subscript, if any exposure encounters Empty.

Caution: As always, stream exposures can loop forever.

end




signature STREAM =

sig

type

'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

Thisis lazy!!l So map £ s returns a stream s’ , but does not
apply £ to any element of s, not until someone exposes s’ .

end




signature STREAM =
sig
type 'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

Again: This is lazy!!!

end



signature STREAM =
sig
type 'a stream (* abstract ¥*)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front

val delay : (unit -> 'a front) -> 'a stream
val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

(* ... more functions: append, tabulate, zip

end



Stream Structure

Time to iImplement streams.

Here, we will implement some key functions,
look at some examples,
Implement a couple higher-order functions,
then build a stream containing all the primes.



structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)
fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))
fun map ... (* we will implement this soon *)
fun filter ... (* we will implement this soon *)

(* other functions *)
end



structure Stream : STREAM =
struct

datatype 'a stream = Stream of unit -> 'a front

We define the representation of an 'a stream to be
(a Stream constructor wrapped around)
the suspension of an 'a front.

We do not really need to define a datatype with a
Stream constructor, but doing so helps when debugging.

After all, a suspension is simply a function.
By wrapping Stream around suspensions, we can more
readily see what the function means to encode
(we could also look at the function type).

There Is one additional subtlety:
'a stream refersto 'a front.

Let's see how to deal with that.

end




structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

'a front = Empty | Cons of 'a * 'a stream

The and keyword allows us to
define mutually recursive datatypes.

(recall that we can also define
mutually recursive functions with and).

As a reminder: the datatype declaration for 'a front was
specified in sighature STREAM, SO we need to implement

It as it was specified.

end



structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

A type picture to describe what is happening:
Stream (fn () => Cons(x, s))

(Here t is the stream’s element type.) Y
t t stream
. J
Y

t front

w J
~

t front suspension

N J

~
end t stream



structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

delay : (unit -> 'a front) -> 'a stream

delay simply wraps a Stream constructor around
a suspension of a front.

end



structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)
fun expose (Stream(d)) = d ()

expose : 'a stream -> 'a front

expose (s) forces the underlying suspension in s.

end



structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)
fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

empty IS the suspension of Empty (which is a £ront),
with the Stream constructor turning that into a stream.

end



structure Stream : STREAM =
struct
datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)
fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

Given a known element x and a stream s,
cons (x,s) Creates a new stream,
consisting of x followed by all the elements of s.

end



structure Stream : STREAM =
struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)
fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))
fun map ... (* we will implement this soon *)
fun filter ... (* we will implement this soon *)

(* other functions *)
end



Example #1

For all these examples, assume (a) we are writing code outside
the Stream structure and (b) structure S = Stream.

Here i1s how we might implement an
Infinite stream, all of whose elements are 1:

fun ones’ () = S.Cons(l, S.delay ones’)
val ones = S.delay ones’

Observe: ones’ : unit -> int S.front
ones : 1nt S.stream



Example #2

Here is how we might implement an infinite
stream consisting of all the natural numbers:

fun nat’ x () =
S.Cons (x, S.delay (nat’ (x+1)))

val nats = S.delay (nat’ 0)

Observe:

nat’ : int -> unit -> int S.front

nats : int S.stream



(example #2 continued)

fun nat’ x () = S.Cons (x, S.delay (nat’ (x+1)))
val nats = S.delay (nat’ O0)

Consider now:

val S.Cons(x, rest) = S.expose nats

val S.Cons(y, ) = S.expose rest

What values are bound to x and y?
What does rest represent?



(example #2 continued)

fun nat’ x () = S.Cons (x, S.delay (nat’ (x+1)))
val nats = S.delay (nat’ O0)

Consider now:

val S.Cons(x, rest) = S.expose nats

val S.Cons(y, ) = S.expose rest

What values are bound to x and y?
What does rest represent?

Answers: 0/x 1l/y

rest IS a stream consisting of all natural numbers greater than 0.



(example #2 continued)

fun nat’ x () = S.Cons (x, S.delay (nat’ (x+1)))
val nats = S.delay (nat’ 0)

Consider now:

val S.Cons(x, rest) = S.expose nats
val S.Cons(y, ) = S.expose rest
val S.Cons(z, ) = S.expose nats

What value is bound to z?

Answer: 0/z (Same as x.)



Memoization

Suppose exposing a stream element takes 1
month to compute.

Each time we expose that same stream element,
we will force the same suspension and therefore
require 1 month of computation time.

Some lazy languages, like Haskell, remember
the value computed, so that it does not need to
be re-computed on subsequent re-exposures,
merely looked up. That is called memoization.

We will see one way to do that Tuesday.



Some more Stream functions

Let us implement a few more functions
iInside the structure Stream.

(Since we are within the structure we do not
use the qualified names “Stream.” or “S.”)



null

'a stream -> bool

fun null s = case (expose s) of
Empty => true
| => false

Observe that null must expose stream s,

In order to try to determine whether the stream
IS empty, by checking whether the corresponding
front is Empty. This exposure could take a

long time, possibly even never terminating,
depending on what s Is.



map

('a -> 'b) -> 'a stream -> 'b stream

fun map £ s = delay(fn () => map’ £ (expose s))

and map’ f Empty = Empty
| map’ £ (Cons(x,s’)) = Cons(f x, map £ s’)



map

('a -> 'b) -> 'a stream -> 'b stream

fun map £ s = delay(fn () => map’ £ (expose s))

.map f Empty = Empty

map’ £ (Cons(x,s’)) = Cons(f x, map £ s’)

| find it convenient mentally to have two
mutually recursive functions when working with streams.
One function focuses on streams, the other on fronts.
Other implementations are possible (see next slide).



map

('a -> 'b) -> 'a stream -> 'b stream

fun map £ s = delay(fn () => map’ £ (expose s))

and map’ f Empty = Empty
| map’ £ (Cons(x,s’)) = Cons(f x, map £ s’)

Alternate implementation:
fun map £ s =
delay (fn () =>
case (expose s) of
Empty => Empty
| Cons(x,s’) =>Cons (f x, map £ s’))



map

('a -> 'b) -> 'a stream -> 'b stream

fun map £ s = delay(fn () => map’ £ (expose s))
'\ J

Y

Notice the laziness here!

map does not actually call £ on any elements of s.
Instead, map delays such work. When/if someone
exposes the mapped stream, £ will be applied to
the first element of s by map’.



map

('a -> 'b) -> 'a stream -> 'b stream

fun map £ s = delay(fn () => map’ £ (expose s))

and map’ f Empty = Empty
| map’ £ (Cons(x,s’)) = Cons(f x, map £ s’)

the first element of s by map’.

Then map’ applies map £ to the rest of the stream s’ , so
as to delay further calls until someone needs the elements.



filter

('a -> bool) -> 'a stream -> 'a stream

Similar to map, much like
List.filter and List.map are similar.

There Is one subtlety.



filter

('a -> bool) -> 'a stream -> 'a stream

fun filter p s =
delay (fn () => filter’ p (expose s))

and filter’ p Empty = Empty
| filter’ p (Cons(x,s’)) =
if then Cons (x, )
else filter’ p (expose s’)

If someone exposes a filtered stream,
code must look for the first element satisfying p.
That may entail looking at multiple elements of s,

so may need to call £ilter’ repeatedly.



filter

('a -> bool) -> 'a stream -> 'a stream

fun filter p s =
delay (fn () => filter’ p (expose s))

and filter’ p Empty = Empty
| filter’ p (Cons(x,s’)) =

if (p x) then Cons (x, fllter p s’
else|filter’ p (expose s’

If someone exposes a filtered stream,
code must look for the first element satisfying p.

That may entail looking at multiple elements of s,
so may need to call £ilter’ repeatedly.




filter

('a -> bool) -> 'a stream -> 'a stream

fun filter p s =
delay (fn () => filter’ p (expose s))

and filter’ p Empty = Empty
| filter’ p (Cons(x,s’)) =
if (p x) then Cons (x, filter p s’)

else|filter’ p (expose s’)

If someone exposes a filtered stream, Can loop
code must look for the first element satisfying p. foreyer!

That may entail looking at multiple elemeW
so may need to call £ilter’ repeatedly.



Example #3

val evens = S.map (fn n => 2*n) nats
val [0,2,4] = S.take (evens, 3)
Observe: evens : int S.stream

The stream evens IS a lazy piece of code (sometimes
called a thunk) that knows how to compute the even
natural numbers from the stream nats, which itself is a
thunk that knows how to compute natural numbers. In
particular, the number 4 does not appear explicitly in
nats Or evens, but eventually is computed by the
exposures implicit in the code for take.



Example #4

val ns = S.filter (fn n => n < 0) nats

Observe: ns : int S.stream

Questions:

1. Is ns a value?

2. If so, how long does it take to compute it?
3. Does S.expose ns reduce to a value?




Example #4

val ns = S.filter (fn n => n < 0) nats

Observe: ns : int S.stream

Questions:

1. Is ns a value?

2. If so, how long does it take to compute it?
3. Does S.expose ns reduce to a value?

ANnswers:

1. Yes.
2. Thecallto s.filter returns almost instantaneously.

3. No, S.expose ns loops forever.




Example #5 . All the primes

Inspired by the Sieve of Erathosthenes



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,, ..

Write down all the natural numbers greater than 1.



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

(:)3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,m

Find leftmost element (2 currently).



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

(2)3.%.5.%,7,%9,30,11,32,13, 24,15, 36,17, 34, .

Cross-off all multiples of that leftmost element.



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

2/3/)’(/5/)((/7/)’(/9/)@/11/%1131%115/%/171%1-"

3, 5, 17, 9, 11, 13, 15, 17, ..

Repeat the process with the remaining numbers.



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

2/31X15/><171§<r9/)@/11/%1131%115/%/171%1-"

@ 5, 7, ¥ 11, 13, ¥, 17,.



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

2/31X15/><171§<r9/)@/11/%1131%115/%/171%1-"

3, 5, 7, ¥, 11, 13, ¥, 17,.

G 7. 11, 13, 17,..

Keep repeating this process.



Example #5 . All the primes

Inspired by the Sieve of Erathosthenes

The diagonal of leftmost elements constitutes all primes.



Example #5 . All the primes

fun notDivides p g = (g mod p <> 0)

notDivides p q returns false if gis a multiple of p,
and true otherwise.




Example #5 . All the primes

fun notDivides p g = (g mod p <> 0)

fun sieve s = S.delay (fn () => sieve' (S.expose s))

sieve delays the actual sieving.




Example #5 . All the primes

fun notDivides p g = (g mod p <> 0)

fun sieve s = S.delay (fn () => sieve' (S.expose s))

and sieve' (S.Empty) = S.Empty

We don't really need this clause,
since there are infinitely many primes.




Example #5 . All the primes

fun notDivides p g = (g mod p <> 0)

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
| sieve' (S.Cons(p, s)) =

S.Cons(p, sieve (S.filter (notDivides p) s)

sieve’ filters multiples of the element p
that it finds at the head of its front,

recursively constructs a stream of all larger primes,
and adds p to the front of that.




Example #5 . All the primes

fun notDivides p g = (g mod p <> 0)

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
| sieve' (S.Cons(p, s)) =

S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat’ 2))

All the primes represented lazily.




Example #5 . All the primes

fun notDivides p g = (g mod p <> 0)

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
| sieve' (S.Cons(p, s)) =
S.Cons (p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat’ 2))

val p400 = S.take (primes, 400)
The first 400 primes in a list.




The first 400 primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,
103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,
197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,
523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631, 641,
643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,
761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,
883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,
1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,
1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,
1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,
1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,
1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,
1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,
1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,
1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,
1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,
2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,
2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,
2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,
2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,
2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,
2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,
2713,2719,2729,2731,2741]



Inspired by Euclid’s Proof

Theorem: There are infinitely many primes.
Proof:
Suppose p4, ..., p, are all the primes.
LetP=p, % - kx p,and Q =P + 1.

Q > P, so some p; divides Q and P.

Thus p; divides 1,
establishing a contradiction. |ogp

(Euclid proved that for any finite list of primes,
there exists a prime outside the list.)



That Is all.

Please have a good weekend.

See you Tuesday, when we will talk
about mutation.



