15-150: Principles of Functional Programming

Games

Michael Erdmann*

Spring 2020

In the this lecture and the next, we will implement a program that plays any two-player, de-
terministic, perfect-information, finitely branching, zero-sum game. The minimaz algorithm for
playing such games is a standard example in Al, and we will implement it in SML. In fact, that
algorithm is the basis for many ideas in automated planning and machine learning. Generaliza-
tions of the algorithm described here apply in settings with imperfect information and uncertain
outcomes, such as planning the motions and actions of a robot.

The code development in the next two lectures provides a nice use of modules, and in particular
an elegant application of functors for code re-use. The code also illustrates some features of SML
that we haven’t talked about yet: views; mutual recursion; input/output; sharing constraints.

1 Overview

Games

What is a two-player, deterministic, perfect-information, finitely branching, zero-sum game?
o “Two-player” means the game is played by two players who alternate taking turns.

e “Deterministic” means that each move has a well-defined outcome; there is no randomness
(no luck, no rolling the dice).

e “Perfect-information” means that, at any given moment, both players know the complete
state of the game; there is no hidden information.

e “Finitely branching” means that there are only a finite number of allowed moves at each stage
of the game.

e “Zero-sum” means that if I win, you lose, and vice versa—what’s good for me is bad for you.
Draws are allowed.

Examples include tic-tac-toe, Nim, chess, checkers, Connect 4, Mancala, and Gomoku. By way
of contrast, poker is not a perfect-information game, because neither player knows the cards held
by the other and because there is randomness in the draws.

*Adapted from documents by Stephen Brookes and Dan Licata.

Nim
Let’s illustrate with Nim: Let’s start with 15 pieces. You make the first move: you pick up 1, 2, or

3 pieces. Then it’s my turn. I have to pick up 1, 2, or 3 pieces. Then it is your turn again. And
so forth. Whoever picks up the last piece loses.

Here is an example:

We start with 15 pieces

You pick up 3 (12 pieces left)
I pick up 3 (9 left)

You pick up 2 (7 left)

I pick up 2 (5 left)

You pick up 1 (4 left)

I pick up 3 (1 left)

You pick up 1 (0 left)

I win!

In fact, Nim with 15 pieces has a winning strategy for whoever goes first: To understand this,
let’s suppose we are down to 5 pieces. If it is your turn, and there are 5 pieces left, then you lose:
go ahead and try it. If you take 1, I take 3, and there is 1 left. If you take 2, I take 2. If you
take 3, I take 1. No matter what you do, there is 1 left on your next turn. Similarly, if there are 9
pieces left and it is your turn, then I can ensure that on your subsequent turn there will be 5 pieces
left, similarly from 13 to 9, etc. What is the pattern? If it is your turn, and the number of pieces
(mod 4) is 1, then I have a winning strategy. So I choose my move to always leave the number of
pieces congruent to 1 (mod 4).

Nim is special, in that I can do a quick calculation that tells me who will win. For chess, one
can not tell (in constant time) just by looking at the board who will win. So, if you were writing
a program to play it, what would you do? Use your computational resources to explore possible
future states!

Game Trees

To explore possible futures in a game, one imagines a game tree. The tree’s nodes represent game
states and its edges represent game moves. Each layer in the tree is labeled with the name of the
player whose turn it is in all the states at that level. In what fallows, we will call the players Maxie
and Minnie to emphasize the role of maximization and minimization in the upcoming minimax
algorithm. The SML code implementing this algorithm won’t actually build trees like this; instead,
it will explore possible futures recursively, in a way that mimics the tree structure.

Again, let’s illustrate with Nim, starting with 3 pieces to keep the tree small enough to see well.

3 Maxie
/ 1\
2 1 0 Minnie
/N
1 00 Maxie
I
0 Minnie

The nodes are Nim states (number of pieces), and each downward edge represents the effect of
making a Nim move at a state (i.e., removing 1, 2, or 3 pieces).

We want to assign to each state a value which tells us who (eventually) wins from that state.
We use the value 1 to indicate a win for Maxie, and —1 to indicate a win for Minnie.

First, we label the leaves. Leaf nodes for Nim have 0 pieces. If there are 0 pieces left, and it’s
my turn, then you took the last one, so I won. We’ll put ? in nodes to which we have not yet
assigned a value.

(3,7) Maxie
/ | \
(2,7) 1,?) (0,-1) Minnie
/ \ |
(1,7) (0,1) (0,1 Maxie
|
(0,-1) Minnie

Next, we propagate these values up the tree. If it’s Maxie’s turn at a node, then the value is the
maximum value of the children, assuming all children have been assigned values. If it’s Minnie’s
turn, we take the minimum.

First level: (we propagate from the deepest leaf to its parent node)

(3,7 Maxie
/ | \
2,7 (1,7?) (0,-1) Minnie
/ N\ |
(1,-1) (0,1) (0,1 Maxie
|
(0,-1 Minnie
Next level:
(3,7 Maxie
/ | \
(2,-1) (1,1) (0,-1) Minnie
/ \ |
(1,-1) (0,1) (0,1 Maxie
|
(0,-1) Minnie

After this step we see in the leftmost child tree that if there are 2 pieces left, Minnie should take 1,
rather than 2: taking 1 piece leads to state (1, —1) whose value —1 says that Minnie wins, whereas
taking 2 pieces leads to a state that is a win for Maxie.

Finally, top level:

(3,1) Maxie
/ | \
(2,-1) (1,1) (0,-1) Minnie
/ \ |
(1,-1) (0,1) (0,1 Maxie
|
(0,-1) Minnie

The information at the root now says that when starting with 3 pieces Maxie should take 2 pieces
in order to win, leaving 1, rather than taking 1 piece or 3 pieces.
Exercise: draw and label the Nim game tree starting from 5 pieces.

What the minimax algorithm (as illustrated above) computes is the value of a game state,
assuming both players will play optimally. It does not account for imponderables like “if I do this,
the chess board will look more confusing, so I think you’re likely to make a mistake”.

In a game with a bigger search space, we cannot draw out the whole tree, or expand out the
recursive calls forever! Instead, we will write a heuristic that looks at states and approximate their
value. For Nim, there is a perfect heuristic: is the number of pieces congruent to 1 modulo 47 For
chess, a useful heuristic would take account of which pieces are left, where they are positioned,
etc. This is where the smarts in playing a particular game come in. Then, the overall algorithm
for selecting a move is to (a) explore the game tree up to a certain depth, (b) use the heuristic to
approximate node values at that depth, and (c) propagate those values back up to the root of the
tree as we just did using the minimax algorithm.

2 Game Architecture

The process of minimax game tree searching is independent of the particular game. Moreover, the
process of putting together a run of a game, given two players, is independent of the game and the
players. We represent this by defining some signatures:

signature GAME
signature PLAYER

We can define various GAMESs, like Chess, Connect 4, Mancala, Othello. We can define other types
of “players”, that is, search algorithms, beyond the minimax described above. For instance, in
the next lecture we will see alpha-beta. This is a search algorithm that prunes parts of the search
space that are known to be suboptimal. We can also set up our interface to include a human player.
Each such player will have a generic component that can play any game, and a heuristic component
specific to the particular game being played. And we can also define a generic referee that puts two
players together and runs a game. This is an example of modular program design, where we will
use functors to achieve good code reuse. And it is an application-specific illustration of modules.

3 Games

Let’s start with the signature for a game. As usual, we assume that we have a structure Seq: SEQUENCE
implementing sequences.

signature GAME =

sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

type state (* abstract, representing states of the game *)
type move (* abstract, representing moves of the game *)

val start : state

(* REQUIRES: m is in moves(s) *)
(x ENSURES: make_move(s,m) returns a value. *)
val make_move : state * move —-> state

(* The next three functions are "views" of the abstract types state and move. *)

(* REQUIRES: status(s) == In_play *)
(* ENSURES: moves(s) returns a nonempty sequence of moves legal at s. *)
val moves : state -> move Seq.seq

val status : state -> status
val player : state -> player (* says whose turn it is to make a move *)

datatype est = Definitely of outcome | Guess of int

(* REQUIRES: status(s) == In_play *)
(* ENSURES: estimate(s) returns a value. *)
val estimate : state -> est

[plus helper functions useful for input/output, omitted]

end

In words, a game structure ascribing to the GAME signature must provide:

e A datatype of two players, with standard names Maxie and Minnie. This is a feature of
signatures that we haven’t exploited previously: you can put a datatype definition in a
signature, in which case clients have access to the constructors. These constructors may be
used to create values and for pattern-matching. Also in order to implement this signature
you must declare exactly the same datatype.

e Two datatypes status and outcome whose values tell you whether the game is over, and, if it
is, what the outcome was. These types are again datatypes with standard (not game-specific)
constructors (Over and In_play for status; Winner and Draw for outcomes).

e An abstract type state whose values represent game states, including the board, whose turn
it is, etc.

e An abstract type move representing an action a player can take.
e A start state start.

e A transition function make_move that applies a move to a state, returning the resulting state.
The move must be an action allowed at the state.

e A function moves that computes the sequence of allowed actions at a given state.

e A function status that tells us if a game state represents a completed game, and if so, what
the outcome was.

e A function player that tells us whose turn it is in a given state.

These last three functions are called views, because they allow us to see information about
values of the abstract types state and move.

e A game comes with a type est and a function estimate, that approximates the value of a
state. An estimation produces either Definitely an outcome, or a Guess of an integer; a
positive guess indicates “better for Maxie”, whereas a negative guess indicates “better for
Minnie”. The magnitude of a guess indicates how favorable the estimate looks.

We regard estimate values as an ordered type, with a greater-than ordering based on the
following;:

Definitely (Winner Maxie) >
Guess(some positive number) >
Guess(0) and Definitely Draw >
Guess(some negative number) >
Definitely (Winner Minnie)

Comment: We have placed the estimator inside GAME for simplicity in these introductory
lectures. More generally, one would want to place it in a separate signature/structure.

e Finally, a game comes with some parsing and printing functions, omitted here.

Multiple abstract types at once: Note that this signature defines two abstract types, for
states and moves, at once. The implementation must be privy to both at once, and clients don’t
need to know either. This is perfectly natural in SML, but difficult in some languages.

4 Nim

Here is an implementation of Nim, eliding the parsing and printing code. Since we already saw
that there is a simple way to figure out how to win at Nim, we build into this implementation a
“genius” estimator that never needs to guess!

The code makes use of SML’s predefined exception Fail that can be raised with a string
argument, useful for returning error messages.

structure Nim : GAME =

struct
datatype player = Maxie | Minnie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

datatype state = State of int * player
(* The integer component is the number of pieces left. *)
(* The player component is who should take pieces next. *)

datatype move = Move of int
(* The integer is how many pieces to pick up. *)

val start = State (15, Maxie)
(* Initial state for Nim has 15 pieces, Maxie goes first. x*)

fun flip Maxie = Minnie
| flip Minnie = Maxie
(* flip : player -> player *)
(* Switches the player from Maxie to Minnie or vice versa. *)

fun make_move (State (n, p), Move k) =

if (n >= k) then State (n - k, flip p)
else raise Fail "tried to make an illegal move"

fun moves (State (n , _))

Seq.tabulate (fn k => Move(k+1)) (Int.min(n,3))

fun status (State (0, p))
| status _ = In_play

Over (Winner p)

(* Nim is over when no pieces are left. *)
(* When game ends, whoever would have moved next is the winner. *)

fun player (State (_, p)) =p

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =
if n mod 4 = 1 then Definitely (Winner (flip p))
else Definitely (Winner p)
(* If there are n pieces left, with n=1 (mod 4), then the player
whose turn it is must lose, assuming optimal play by opponent.
Otherwise, that player can win. *)

[parsing and printing, omitted]
end

e To satisfy a datatype declaration in a signature, you put the same datatype declaration in
the structure. Pretty boring, but necessary.

o A state is represented by a pair. The first component of the pair is an integer — the number of
pieces left. The second component of the pair is the player whose turn it is to remove pieces.
A move is represented by an integer (which must be 1, 2, or 3), describing the number of
pieces to remove.

e The types state and move are defined to be datatypes that aren’t exported, so they are

abstract. This way, no one can accidentally make an invalid state (e.g., “there are “17 pieces
left”).

The start state is 15 pieces and Maxie’s turn.
For make_move: to apply a move, we just subtract (the move is assumed to be valid).

For moves: if there are fewer than three pieces, one may only take up to the number left;
otherwise one may take 1, 2, or 3.

For status: if there are no pieces left, the game is over, and the player whose turn it is wins,
because whoever took the last piece loses.

For player: this reports the player whose turn it is. If we forget to put the player in the
state, then we would not be able to implement this function. Moral: the operations to be
provided place demands on the implementation of abstract types.

The estimator just calculates modulo 4, and says who is definitely going to win. For Nim,
the estimator never makes a Guess! In more typical games, where there may not be an easily
discoverable winning strategy.

To see how the SML structure Nim corresponds to our earlier discussion of Nim game trees,
recall the game tree we drew then:

(3,1 Maxie
/ | \
(2,-1) (1,1) (0,-1) Minnie
/ \ |
(1,-1) (0,1) (0,1 Maxie
|
(0,-1) Minnie

Using the functions defined in the Nim structure, we have the following facts, each of which has a
pictorial echo in this tree drawing. (We use the angle-bracket notation for sequences.)

moves (State(3, Maxie)) = <Move 1, Move 2, Move 3>
moves(State(0, Minnie)) = <>

make_move (State(3, Maxie), Move 2) = State(l, Minnie)
status(State(0, Minnie)) = Over(Winner Minnie)
estimate(State(3, Maxie)) = Definitely(Winner Maxie)
estimate(State(2, Minnie)) = Definitely(Winner Minnie)

estimate(State(l, Maxie)) = Definitely(Winner Minnie)

In the next lecture we will implement the minimax algorithm using recursive functions, rather
than with a perfect estimator. It will turn out that our implementation calculates the same values
for states as the ones appearing in the tree drawing above.

5 Dumb Nim

Just for contrast, and for later when we implement bounded minimax players, the next page shows
a “bad” implementation of the Nim game (with the same implementation of the types and game
operations) in which the estimator is almost useless. The code is exactly the same as the structure
called Nim above, except for the estimate function.

structure DumbNim : GAME =

struct
datatype player = Maxie | Minnie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

datatype state = State of int * player
(* The integer component is the number of pieces left. *)
(* The player component is who should take pieces next. *)

datatype move = Move of int
(* The integer is how many pieces to pick up. *)

val start = State (15, Maxie)
(* Initial state for Nim has 15 pieces, Maxie goes first. *)

fun flip Maxie = Minnie
| flip Minnie = Maxie
(* flip : player -> player *)
(* Switches the player from Maxie to Minnie or vice versa. *)

fun make_move (State (n, p), Move k) =
if (n >= k) then State (n - k, flip p)
else raise Fail "tried to make an illegal move"

fun moves (State (n , _)) = Seq.tabulate (fn k => Move(k+1)) (Int.min(n,3))

fun status (State (0, p))
| status _ = In_play

(* Nim is over when no pieces are left. *)
(* When game ends, whoever would have moved next is the winner. *)

Over (Winner p)

fun player (State (_, p)) =p

datatype est = Definitely of outcome | Guess of int

(* This estimator is intentionally fairly dumb. *)
fun estimate (State (1, p)) = Definitely (Winner (flip p))
| estimate _ = Guess O

(* If there is exactly 1 piece left, then the player
whose turn it is must lose. Otherwise, guess a draw. *)

[parsing and printing, omitted]
end

10

6 Views

The functions player and status are examples of views: functions that map an abstract type (in
this case state) into values of a datatype revealed by the signature, so that one may see it and use
it. This kind of pattern-matching on values derived from abstract types is very useful, so let’s look
at some other instances of it.

As we have discussed many times, list operations have bad parallel complexity, but the cor-
responding sequence operations are much better. However, sometimes one may want to write a
sequential algorithm (e.g., because the inputs aren’t very big, or because no good parallel algorithms
are known for the problem). As we have discussed the sequence interface so far, it is difficult to
decompose a sequence as “either empty, or a cons with a head and a tail.” To implement such a
construct using the sequence operations we discussed previously, you would have to write code that
would surely lose style points, such as:

case Seq.length s of
0 =>
| _ => ... (Seq.nth s 0) ... (Seq.tabulate (fn i => Seq.nth s (i+1)) ...)

It would be more desirable to use patterns to bind variables to pieces of s, as in

case s of
Nil => ...
| Cons(x,s’) => ...

but we cannot pattern-match on s since its value belongs to an abstract type.

We can address this problem using a view. This means that we put an appropriate datatype
in the signature, along with functions converting sequences to and from this datatype. This allows
us to pattern-match on an abstract type, while keeping the actual representation abstract. (By
analogy, we put datatypes player, outcome, status in the signature GAME, as well as the functions
player and status. Consequently, a client can pattern-match on some components of a game
state, such as Maxie versus Minnie, without needing access to the full abstract state.

For sequences we have extended the SEQUENCE signature with the following components to
enable viewing a sequence as a list:

datatype ’a lview = Nil | Cons of ’a * ’a seq
val showl : ’a seq -> ’a lview
val hidel : ’a lview -> ’a seq

(x ENSURES: showl (hidel v) = v, hidel (showl s) & s. *)
(* ENSURES: showl s
(* ENSURES: showl s

Nil if s is an empty sequence. *)
Cons(v, s’) if nth s 0 = v and s’ is the tail of s. *)

111

Because the datatype definition is in the signature, the constructors can be used outside the ab-
straction boundary. The showl and hidel functions convert between sequences and list views.
Here is an example of using this view to perform list-like pattern matching:

case Seq.showl s of
Seq.Nil => ...
| Seq.Cons (x, s8’) => ... uses x and s’

11

lview exposes that a sequence is either empty or has a first element and a rest (or tail). The tail
is another sequence, not an lview—for efficiency, we don’t want to convert the whole sequence to
a list just to peek at the first element. Thus, showl lets you do one level of pattern matching at a
time: you can write patterns like Seq.Cons(x,s’) but not Seq.Cons(x,Seq.Nil).

We have also provided hidel, which converts a view back to a sequence.

Note that Seq.hidel(Seq.Cons(x,s’)) is equivalent to (Seq.cons x s’).
Similarly, Seq.hidel(Seq.Nil) is equivalent to Seq.empty(). This relationship may be used as
the basis for an induction principle for sequences, enabling us to reason about sequences inductively,
as if they were lists. For example:

Let t be a type and P: t Seq.seq —-> bool be a predicate.
To prove “For all s : t Seq.seq, P(s)”, it suffices to show
(a) P(Seq.hidel(Seq.Nil))

(b) For all x:t and s’ : t Seq.seq,
if P(s?) then P(Seq.hidel(Seq.Cons(x,s’)))

We have also endowed SEQUENCE with a tree view that lets one pattern match on a sequence as
if it were a tree.

datatype ’a tview = Empty | Leaf of ’a | Node of ’a seq * ’a seq
val showt : ’a seq —> ’a tview
val hidet : ’a tview -> ’a seq

12

