
Introduction to Games

15-150
Principles of Functional Programming

Slides for Lecture 20
April 9, 2020

Michael Erdmann

Modular Framework for the
following kinds of games:

• 2-player (alternate turns)
• deterministic (no dice)
• perfect information (no hidden state)
• zero-sum (I win, you lose; ties ok)
• finitely-branching (maybe even finite)

Modular Framework for the
following kinds of games:

• 2-player (alternate turns)
• deterministic (no dice)
• perfect information (no hidden state)
• zero-sum (I win, you lose; ties ok)
• finitely-branching (maybe even finite)
• Examples: tic-tac-toe, connect4, …

Example: Nim

• Take 1, 2, or 3 pieces of chocolate
• Alternate turns
• Player who leaves an empty table loses

me
Cross-Out

me
Line

me
Cross-Out

me
Typewritten Text
Gummi Bears

me
Typewritten Text

Game Trees
• Nodes represent current state of game

• Edges represent possible moves

• A given level corresponds to a given
player, alternating turns

– Our players: Maxie and Minnie

Game Trees
• Nodes represent current state of game

• Edges represent possible moves

• A given level corresponds to a given
player, alternating turns

– Our players: Maxie and Minnie
Important: These trees are not predefined datatypes,

but instead are implicit representations of possible game
evolutions. We will represent them functionally, expanding

nodes as necessary using sequences to represent the
result of possible moves.

A Nim Game Tree

4

Start with 4 pieces of chocolate

me
Cross-Out

me
Typewritten Text
Gummi Bears

me
Typewritten Text

me
Cross-Out

A Nim Game Tree

MAXIE MAXIE moves firstmoves first 4

A Nim Game Tree

MAXIEMAXIE 4

3

take 1take 1

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

movesmoves

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2

take 1take 1

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2 MAXIE MAXIE movesmoves

take 1take 1

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2
MAXIEMAXIE

1

take 1take 1

take 1take 1

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2
MAXIEMAXIE

1 Minnie Minnie movesmoves

take 1take 1

take 1take 1

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2
MAXIEMAXIE

1

0

MinnieMinnie

take 1take 1

take 1take 1

take 1take 1

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2
MAXIEMAXIE

1

0

MinnieMinnie

take 1take 1

take 1take 1

take 1take 1

MAXIE MAXIE movesmoves

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3

take 1take 1

2
MAXIEMAXIE

1

0

MinnieMinnie

take 1take 1

take 1take 1

take 1take 1

MAXIEMAXIE

Maxie wins!

A Nim Game Tree

MAXIEMAXIE

MinnieMinnie

4

3 12

take 1take 1 take 2take 2
take 3take 3

2 1 0 1 0 0
MAXIEMAXIE

1 0 0

0

MinnieMinnie0

take 1take 1

take 1take 1

take 1take 1

take 1take 1take 1take 1

take 1take 1take 1take 1

take 2take 2 take 2take 2
take 3take 3

take 2take 2

MAXIEMAXIE

Maxie wins!Maxie wins!

Minnie wins!Minnie wins!

Maxie wins!Maxie wins!Maxie wins!Maxie wins!

Minnie wins!Minnie wins!

Nim game tree with leaf values

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

means Maxie wins, assign value +1+1

means Minnie wins, assign value -1-1

+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

Now compute interior node values:

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

means Maxie wins, assign value +1+1

means Minnie wins, assign value -1-1

+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

+1+1

Now compute interior node values:

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

means Maxie wins, assign value +1+1

means Minnie wins, assign value -1-1

+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

+1+1

+1+1 -1-1

-1-1

-1-1

-1-1 +1+1

Now compute interior node values:

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

means Maxie wins, assign value +1+1

means Minnie wins, assign value -1-1

+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

+1+1

+1+1 -1-1

-1-1

-1-1

-1-1 +1+1

+1+1

Maxie can win!

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE
+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

+1+1

+1+1 -1-1

-1-1

-1-1

-1-1 +1+1

+1+1
4

1

take 3take 3

take 1take 1

The other two initial Maxie moves
 would allow Minnie to win.

Estimators
• In practice, trees are too large to visit leaves.
• Instead:

– expand tree to some depth,
– use game-specific estimator to assign values

(not just ±1) at bottom-most nodes explored.

• Backchain mini-max values as before.
• Repeat after each actual move.
• Issue: horizon effect.

Estimators
• In practice, trees are too large to visit leaves.
• Instead:

– expand tree to some depth,
– use game-specific estimator to assign values

(not just ±1) at bottom-most nodes explored.

• Backchain mini-max values as before.
• Repeat after each actual move.
• Issue: horizon effect.

Our simplified presentation associates the estimator with GAME.
More generally, one would make it PLAYER-dependent.

Either way, our automated PLAYERs assume
optimal play by both Maxie and Minnie relative to the

estimator.

Nim has perfect estimator
Player making move can win for sure iff

n mod 4 ≠ 1
(n is number of pieces)

Why?

Nim has perfect estimator
Player making move can win for sure iff

n mod 4 ≠ 1
(n is number of pieces)

Why?
Player and opponent must each take 1, 2, or 3 pieces.
Given player can ensure 4 pieces total are taken after
player and opponent each has taken a turn. So, the
player can always leave opponent with 4k+1 pieces
(some k). Eventually opponent must take last piece.

Maxie can win!

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE
+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

+1+1

+1+1 -1-1

-1-1

-1-1

-1-1 +1+1

+1+1
4

1

take 3take 3

take 1take 1

me
Typewritten Text
3

me
Typewritten Text
2

me
Typewritten Text
2

me
Typewritten Text
1

me
Typewritten Text
1

me
Typewritten Text
1

Modular Framework

• Game : GAME (e.g., Nim : GAME)

• Player : PLAYER (includes a Game)

• Referee : GO (glues 2 Players to play)

• Will have automated and human players.

• Will write automated players as functors that

expect a Game. Code plays without knowing

Game details, except implicitly via estimator.

Modular Framework

GAME

MiniMax

AlphaBeta

Human

PLAYER

Referee

VerboseRef

(rough picture; there will be a few more administrative layers)

structures signature functors functorssignature

Nim

Connect4

Checkers

Chess

GAME Signature
signature GAME =

sig

end

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

end

The concrete type player models a two-person game.

We call one player Minnie and the other Maxie,

because we think of them as minimizing and maximizing

values associated with nodes in a game tree

(these values are based on some approximate estimator).

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

end

The concrete datatype outcome models the idea that

either one of the players wins or there is a draw, once a game ends.

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

end

Finally, a game is either Over (with a given outcome) or still In_play.

The concrete datatype status models this aspect of the game.

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

end

The types state and move depend on the particular game

being played, so we leave them abstract in the signature.

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

val start : state

end

This line of the signature says that every particular game

implementation must specify a value representing the start state of the game.

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

end

(REQUIRE that the state be In_play

ENSURE that the move sequence is non-empty and all moves valid)

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

end

(REQUIRE that the move be valid at the state.)

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

val status : state -> status

val player : state -> player

end

These functions are called “views”. They allow a user to see
some information about the abstract type state. (Here, the

player function returns the player whose turn it is to make a move.)

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

val status : state -> status

val player : state -> player

datatype est = Definitely of outcome | Guess of int

val estimate : state -> est

end

(REQUIRE that the state be In_play)

(CAUTION: estimate need not provide useful info)

A more general approach would place

the estimator in a separate module. It

is here for presentational simplicity.

GAME Signature
signature GAME =

sig

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

val status : state -> status

val player : state -> player

datatype est = Definitely of outcome | Guess of int

val estimate : state -> est

. . . (* functions to create string representations *)

end

structure Nim : GAME =

struct

end

Nim Structure

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

end

Nim Structure

The types player, outcome, and status

were specified in the GAME signature,

so we need to write them, i.e., implement them, exactly as there.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

end

Nim Structure

We now implement the abstract type state as a particular datatype

constructor expecting a pair. The pair specifies how many pieces are

available and whose turn it is to take one or more pieces.

Recall: The player whose turn it is must take 1, 2, or 3 pieces, but not more

pieces than are available. A player who takes all available pieces loses.

Why use constructor State rather than merely the pair int * player ?

Ascription is transparent (one reason for that is to make it easier for us in

this course to see what is happening when testing the code).

However, we do not want anyone messing with the internal representation
even though they can see it. Since State is not specified in the signature,

no one can pattern match on it.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

end

Nim Structure

We implement the abstract type move as a

datatype that specifies how many pieces to take.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

end

Nim Structure

We can make this be any positive integer.

We could even make it be an argument

to a functor that creates a Nim structure.

For simplicity, we make it 15 here.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

end

Nim Structure

Create all valid moves at a given state (as a move Seq.seq)

corresponding to taking 1 piece, 2 pieces, or 3 pieces,

but no more than are still available.

(We may assume there is at least 1 piece available.)

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

end

Nim Structure

We may assume the move is valid, so can simply subtract

the number of pieces taken. And we change whose turn it is.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

end

Nim Structure

(Type est was specified in the signature, so we need to write it as there.)

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =

if n mod 4 = 1 then Definitely (Winner (flip p))

else Definitely (Winner p)

end

Nim Structure

Recall that Nim has a perfect estimator (generally a game will not).

structure VeryDumbNim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate _ = Guess 0

end

VeryDumbNim Structure

Of course, there is no requirement that the estimator be useful.

We could trivialize it!

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =

if n mod 4 = 1 then Definitely (Winner (flip p))

else Definitely (Winner p)

end

Nim Structure

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

end

Nim Structure (cont)

We have not yet implemented the two views, so let us do that now:

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

fun player (State (_, p)) = p

end

Nim Structure (cont)

The player view of a state returns the player whose turn it is.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

fun player (State (_, p)) = p

fun status (State (0, p)) = Over (Winner p)

| status _ = In_play

end

Nim Structure (cont)

The status view of a state checks whether there are any pieces remaining.

If so, the game is In_play.

If not, then the previous player must have taken all the remaining pieces,
Therefore, the current player is the winner.

structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

fun player (State (_, p)) = p

fun status (State (0, p)) = Over (Winner p)

| status _ = In_play

. . . (* functions to create string representations *)

end

Nim Structure (cont)

PLAYER Signature

signature PLAYER =

sig

structure Game : GAME (* parameter *)

val next_move : Game.state -> Game.move

end

PLAYER Signature

signature PLAYER =

sig

structure Game : GAME (* parameter *)

val next_move : Game.state -> Game.move

end

We simply wrap one layer around the GAME signature,

now requiring a function that decides what

move to make given a particular game state.

In the next lecture we will write some automated

game playing code.

Here we show a simple interface that allows a human to play.

Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

end

The functor expects a GAME and returns a PLAYER,

meaning:

The code we write must provide a structure
satisfying the PLAYER signature

(think of that as an interface for playing games)
that will work with any game G

satisfying the GAME signature.

Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

structure Game = G

end

The PLAYER signature requires a Game structure

and a next_move function.

The game is the argument G passed to the functor.

Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

structure Game = G

(* read : unit -> string option *)

(* parse : G.state * string option -> G.move option *)

end

Next we need to write some functions to help with I/O.

(These are not visible outside the structure created.)

Here we simply give the types of these functions.

Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

structure Game = G

(* read : unit -> string option *)

(* parse : G.state * string option -> G.move option *)

end

Next we need to write some functions to help with I/O.

(These are not visible outside the structure created.)

Here we simply give the types of these functions.

reads from TexIO

Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

structure Game = G

(* read : unit -> string option *)

(* parse : G.state * string option -> G.move option *)

fun next_move

end

Now we can write next_move.

Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

structure Game = G

(* read : unit -> string option *)

(* parse : G.state * string option -> G.move option *)

fun next_move s =

let

val _ = ... (* ask human to enter move *)

in

case parse(s, read()) of

SOME m => m

| NONE => next_move s (* for instance *)

end

end

That is all.

See you Tuesday.

We will discuss the MiniMax
and ab algorithms for

automated game playing.

	NimTitle.pdf
	Introduction to Games

	NimTitle.pdf
	Introduction to Games

	NimTitle.pdf
	Introduction to Games

