Introduction to Games

15-150
Principles of Functional Programming
Slides for Lecture 20
April 9, 2020

Michael Erdmann

Modular Framework for the
following kinds of games:

« 2-player (alternate turns)

» deterministic (no dice)

» perfect information (no hidden state)
« zero-sum (I win, you lose; ties ok)

* finitely-branching (maybe even finite)

Modular Framework for the
following kinds of games:

« 2-player (alternate turns)

» deterministic (no dice)

» perfect information (no hidden state)
« zero-sum (I win, you lose; ties ok)

* finitely-branching (maybe even finite)
 Examples: tic-tac-toe, connect4, ...

Example: NIm

GummiBear:

» Take 1, 2, or 3 pieeces-of-chocelate

e Alternate turns

* Player who leaves an empty table loses

me
Cross-Out

me
Line

me
Cross-Out

me
Typewritten Text
Gummi Bears

me
Typewritten Text

Game Trees

* Nodes represent current state of game
» Edges represent possible moves

* A given level corresponds to a given
player, alternating turns

—OQur players: Maxie and Minnie

Game Trees

* Nodes represent current state of game
» Edges represent possible moves

* A given level corresponds to a given
player, alternating turns

—OQur players: Maxie and Minnie

Important: These trees are not predefined datatypes,
but instead are implicit representations of possible game
evolutions. We will represent them functionally, expanding
nodes as necessary using sequences to represent the
result of possible moves.

A Nim Game Tree

®

GummiBear:

Start with 4 pieees-ef-choecolate

me
Cross-Out

me
Typewritten Text
Gummi Bears

me
Typewritten Text

me
Cross-Out

A Nim Game Tree

MAXIE moves first @

A Nim Game Tree

MAXIE (4

take 1

3

A Nim Game Tree

MAXIE (4

take 1

Minnie
moves 9

A Nim Game Tree

MAXIE /@
taker

Minnie /M
tal<|e1

A Nim Game Tree

MAXIE /@
takes

Minnie /M
takg’l
@{ MAXIE moves

A Nim Game Tree

MAXIE /@
takes

Minnie /M
take’1

MAXIE

takefl

A Nim Game Tree

MAXIE /@
takes

Minnie /M
take’1

MAXIE

takefl

Minnie moves

A Nim Game Tree

MAXIE

Minnie

Minnie

A Nim Game Tree

MAXIE

Minnie

Minnie

MAXIE moves

A Nim Game Tree

MAXIE /@
takes

Minnie /M
take’1

Minnie

MAXIE

Maxie wins!

A Nim Game Tree

MAXIE Q
> el 2 ke
Minnie
MAXIE @
oJoX© 0 (D O
take o 1MaX|eW|ns'a . Maxie wins!

take 2

0 0) (o, 0, Minnie

ke 1 Minnie wins! Minnie wins!

0, MAXIE

Maxie wins!

Nim game tree with leaf values

MAXIE ()
Minnie

MAXIE

’ means Maxie wins, assign value +1

‘ means Minnie wins, assign value -1

Now compute interior node values:

MAXIE ()
Minnie

MAXIE

+1

Minnie

MAXIE
+1

‘ means Maxie wins, assign value +1

‘ means Minnie wins, assign value -1

Now compute interior node values:

MAXIE ()

-1 -1 +1
Minnie
+1 /-1 -1
MAXIE
+1
Minnie

MAXIE
+1

’ means Maxie wins, assign value +1

‘ means Minnie wins, assign value -1

Now compute interior node values:

+1
MAXIE
-1 +1
Minnie
+1 -1
MAXIE
+1
Minnie

MAXIE
+1

’ means Maxie wins, assign value +1

‘ means Minnie wins, assign value -1

Maxie can win!

+1
MAXIE take 3
-1 -1 +1
Minnie ‘ ‘

take 1
+1 /-1
MAXE () 0 ® C

+1

+1
Minnie ()C) ®
-1 -1 -1
MAXE ()
+1

The other two initial Maxie moves
would allow Minnie to win.

Estimators

In practice, trees are too large to visit leaves.

Instead:
— expand tree to some depth,

— use game-specific estimator to assign values
(not just £1) at bottom-most nodes explored.

Backchain mini-max values as before.
Repeat after each actual move.
Issue: horizon effect.

Estimators

* In practice, trees are too large to visit leaves.

* |nstead:
— expand tree to some depth,

— ugE game-specific estimator 1 assign values

(not [UStminegissaite gSt nodes explored.

Our simplified presentation associates the estimator with GAIVE.
More generally, one would make it PLAYER-dependent.

Either way, our automated PLAYERs assume
optimal play by both Maxie and Minnie relative to the
estimator.

Nim has perfect estimator

Player making move can win for sure iff
nmod4 # 1

(n iIs number of pieces)
Why"?

Nim has perfect estimator

Player making move can win for sure iff
nmod4 # 1

(n iIs number of pieces)
Why"?

Player and opponent must each take 1, 2, or 3 pieces.
Given player can ensure 4 pieces total are taken after
player and opponent each has taken a turn. So, the
player can always leave opponent with 4k+1 pieces
(some k). Eventually opponent must take last piece.

Maxie can win!

+1
MAXIE take 3
-1 -1 +1
Minnie @ @
take 1
+1 /-1
MAXIE @ e
+1
Minnie ())
-1 -1
MAXIE ()

+1

me
Typewritten Text
3

me
Typewritten Text
2

me
Typewritten Text
2

me
Typewritten Text
1

me
Typewritten Text
1

me
Typewritten Text
1

Modular Framework

« Game : GAME (e.g., Nim : GAME)
* Player : PLAYER (includes a Game)
» Referee : GO (glues 2 Players to play)

« Will have automated and human players.

« Will write automated players as functors that
expect a Game. Code plays without knowing
Game details, except implicitly via estimator.

Modular Framework

Nim .
MiniMax Referee
Connect4
GAME AlphaBeta PLAYER

Checkers

VerboseRef
Chess Human
structures signature functors signature functors

(rough picture; there will be a few more administrative layers)

GAME Signature

signature GAME =
sig

end

GAME Signature

signature GAME =
sig
datatype player = Minnie | Maxie

The concrete type player models a two-person game.

We call one player Minnie and the other Maxie,
because we think of them as minimizing and maximizing
values associated with nodes in a game tree
(these values are based on some approximate estimator).

end

GAME Signature

signature GAME =
sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw

The concrete datatype outcome models the idea that
either one of the players wins or there is a draw, once a game ends.

end

GAME Signature

signature GAME =

sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

Finally, a game is either Over (with a given outcome) or still In_play.
The concrete datatype status models this aspect of the game.

end

GAME Signature

signature GAME =

sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

type state (* abstract *)
type move (* abstract ¥*)

The types state and move depend on the particular game
being played, so we leave them abstract in the signature.

end

GAME Signature

signature GAME =

sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

type state (* abstract *)
type move (* abstract ¥*)

val start : state

This line of the sighature says that every particular game
Implementation must specify a value representing the start state of the game.

end

GAME Signature

signature GAME =

sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

type state (* abstract *)
type move (* abstract ¥*)

val start : state

val moves : state -> move Seq.seq

(REQUIRE that the state be In_play
ENSURE that the move sequence is non-empty and all moves valid)

end

GAME Signature

signature GAME =

sig

end

val make_move : state * move -> state

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

type state (* abstract *)
type move (* abstract ¥*)

val start : state

(REQUIRE that the move be valid at the state.)

GAME Signature

signature GAME =

sig
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

type state (* abstract *)
type move (* abstract ¥*)

val start : state

val moves : state -> move Seq.seq
val make move : state * move -> state

state -> status
state -> player

val status
val player

These functions are called “views”. They allow a user to see
some information about the abstract type state. (Here, the
player function returns the player whose turn it is to make a move.)

GAME Signature

signature GAME =
sig

A more general approach would place
the estimator in a separate module. It
IS here for presentational simplicity.

datatype est = Definitely of outcome | Guess of int
val estimate : state -> est

(REQUIRE that the state be In play)
(CAUTION: estimate need not provide useful info)

end

GAME Signature

signature GAME =

sig

end

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

type state (* abstract *)
type move (* abstract ¥*)

val start : state

val moves : state -> move Seq.seq
val make move : state * move -> state

val status : state -> status
val player : state -> player

datatype est = Definitely of outcome | Guess of int
val estimate : state -> est

(* functions to create string representations *)

Nim Structure

structure Nim : GAME =
struct

end

Nim Structure

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

The types player, outcome, and status
were specified in the GAME signature,

SO we need to write them, i.e., implement them, exactly as there.

end

Nim Structure

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player

We now implement the abstract type state as a particular datatype

constructor expecting a pair. The pair specifies how many pieces are
available and whose turn it is to take one or more pieces.

Recall: The player whose turn it is must take 1, 2, or 3 pieces, but not more
pieces than are available. A player who takes all available pieces loses.

Why use constructor State rather than merely the pair int * player ?

Ascription is transparent (one reason for that is to make it easier for us in
this course to see what is happening when testing the code).

However, we do not want anyone messing with the internal representation
even though they can see it. Since State is not specified in the signature,
no one can pattern match on it.

Nim Structure

structure Nim : GAME =
struct

end

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

We implement the abstract type move as a
datatype that specifies how many pieces to take.

Nim Structure

structure Nim : GAME =
struct

end

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

For simplicity, we make it 15 here.

We can make this be any positive integer.
We could even make it be an argument
to a functor that creates a Nim structure.

Nim Structure

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n,)) =
Seq. tabulate (fn k => Move (k+1)) (Int.min (n,3))

Create all valid moves at a given state (as a move Seq.seq)
corresponding to taking 1 piece, 2 pieces, or 3 pieces,

but no more than are still available.

(We may assume there is at least 1 piece available.)

end

Nim Structure

structure Nim : GAME =
struct

end

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n,)) =
Seq. tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie
| flip Minnie = Maxie

fun make move (State (n, p), Move k)= State (n-k, flip p)

We may assume the move is valid, so can simply subtract
the number of pieces taken. And we change whose turn it is.

Nim Structure

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n,)) =
Seq. tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie
| flip Minnie = Maxie

fun make move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

(Type est was specified in the signature, so we need to write it as there.)

end

Nim Structure

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n,)) =
Seq. tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie
| flip Minnie = Maxie

fun make move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =
if n mod 4 = 1 then Definitely (Winner (flip p))
else Definitely (Winner p)

end

Recall that Nim has a perfect estimator (generally a game will not).

VeryDumbNim Structure

structure VeryDumbNim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n,)) =
Seq. tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie
| flip Minnie = Maxie

fun make move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int
fun estimate = Guess 0

Of course, there is no requirement that the estimator be useful.
We could trivialize it!

Nim Structure

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n,)) =
Seq. tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie
| flip Minnie = Maxie

fun make move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =
if n mod 4 = 1 then Definitely (Winner (flip p))
else Definitely (Winner p)

end

Nim Structure (cont)

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

We have not yet implemented the two views, so let us do that now:

end

Nim Structure (cont)

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

fun player (State (_, p)) =p

The player view of a state returns the player whose turn it is.

end

Nim Structure (cont)

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

fun player (State (_, p)) =p

fun status (State (0, p))
| status = In play

Over (Winner p)

The status view of a state checks whether there are any pieces remaining.
If so, the game is In play.

If not, then the previous player must have taken all the remaining pieces,
Therefore, the current player is the winner.

end

Nim Structure (cont)

structure Nim : GAME =

struct
datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In play

datatype state = State of int * player
datatype move = Move of int

fun player (State (_, p)) =p

fun status (State (0, p))
| status = In play

Over (Winner p)

(* functions to create string representations *)
end

PLAYER Signature

signature PLAYER =
sig
structure Game : GAME (* parameter ¥*)
val next move : Game.state -> Game.move
end

PLAYER Signature

signature PLAYER =
sig
structure Game : GAME (* parameter ¥*)
val next move : Game.state -> Game.move
end

We simply wrap one layer around the GAME signature,

now requiring a function that decides what
move to make given a particular game state.

In the next lecture we will write some automated
game playing code.
Here we show a simple interface that allows a human to play.

Human Player

functor HumanPlayer (G : GAME) : PLAYER =
struct

The functor expects a GAME and returns a PLAYER,
meaning:

The code we write must provide a structure
satisfying the PLAYER signature

(think of that as an interface for playing games)
that will work with any game G

satisfying the GAME signature.

end

Human Player

functor HumanPlayer (G : GAME) : PLAYER =
struct
structure Game = G

The PLAYER signhature requires a Game structure
and a next move function.

The game is the argument G passed to the functor.

end

Human Player

functor HumanPlayer (G : GAME) : PLAYER =
struct
structure Game = G

(* read : unit -> string option ¥*)
(* parse : G.state * string option -> G.move option ¥*)

Next we need to write some functions to help with I/O.
(These are not visible outside the structure created.)

Here we simply give the types of these functions.

end

Human Player

functor HumanPlayer (G : GAME) : PLAYER =
struct
structure Game = G

reads from TexIO

el * read : unit -> string option *) _2=

(* parse : G.state * string option -> G.move option ¥*)

Next we need to write some functions to help with I/O.
(These are not visible outside the structure created.)

Here we simply give the types of these functions.

end

Human Player

functor HumanPlayer (G : GAME) : PLAYER =
struct
structure Game = G

(* read : unit -> string option ¥*)
(* parse : G.state * string option -> G.move option ¥*)

fun next move Now we can write next move.

end

Human Player

functor HumanPlayer (G : GAME) : PLAYER =
struct

structure Game = G

(* read : unit -> string option ¥*)
(* parse : G.state * string option -> G.move option ¥*)

fun next move s =
let
val = ... (* ask human to enter move *¥*)
in
case parse(s, read()) of
SOME m => m

| NONE => next move s (* for instance ¥*)
end

end

That Is all.

See you Tuesday:.

We will discuss the MiniMax
and o algorithms for
automated game playing.

	NimTitle.pdf
	Introduction to Games

	NimTitle.pdf
	Introduction to Games

	NimTitle.pdf
	Introduction to Games

