
15–150: Principles of Functional Programming

Exceptions

Michael Erdmann∗

Spring 2020

1 Topics

• Exceptions

• Extensional equivalence, revisited

• Examples to be discussed:

– Dealing with arithmetic errors

– Making change

2 Introduction

So far we have for the most part dealt only with well-typed expressions, which when evaluated
either terminate (by reducing to a value), or loop forever. However, when writing code even for
simple problems we have already seen that this isn’t the full story. We have seen examples such as
1 div 0 and fact 100. If we try to evaluate 1 div 0 (a well-typed expression of type int) SML
says “uncaught exception Div”; no value is produced and evaluation stops. If we try to evaluate
fact 100 (again an expression of type int, assuming we have defined fact : int -> int as we
did a while ago) SML will complain about exception Overflow.

2.1 Built-In Exceptions

SML has some “built-in” exceptions with suggestive names that signal runtime errors caused by
common problems – e.g., division by zero, or integer value too large. There is also an exception that
happens when you try to apply a function to an argument value for which the function’s definition
doesn’t include a suitable clause (so there is no pattern that matches the argument value). Here is
an example, albeit a pretty silly function.

- fun foo [] = 0;
stdIn:1.5-1.16 Warning: match nonexhaustive

nil => ...
∗Adapted from a document by Stephen Brookes.

1

val foo = fn : ’a list -> int
- foo [1,2,3];

uncaught exception Match [nonexhaustive match failure]

A “Warning: match nonexhaustive” comment isn’t fatal, i.e., SML will let you keep going.
Indeed, SML also says that foo is well-typed, with the type ’a list -> int.

But it should prompt you to examine your code to see whether you have missed some cases and
your function isn’t going to work for all values of its intended argument type. As we show above,
using foo on any non-empty list causes a runtime error. (And since SML can’t tell just by looking
at syntax whether or not a well-typed expression of type t list represents an empty list, there
is no reasonable way to expect the SML type system to treat this kind of error as “compile time”
rather than “runtime”.)

Here again are some familiar functions and some uses that cause runtime errors.

- fun fact n = if n>0 then n*fact(n-1) else 1;
val fact = fn : int -> int
- fact 100;

uncaught exception Overflow [overflow]

- fun divmod(x,y) = (x div y, x mod y);
val divmod = fn : int * int -> int * int
- divmod(2,0);

uncaught exception Div [divide by zero]

2.2 User-Defined Exceptions

SML also allows programmers to declare their own exceptions (and give them names), and to
design code that will “raise” a specific exception in order to signal a particular kind of runtime
error (e.g., an inappropriate index into an array of some kind). You can also “handle” an exception
by providing some expression to be evaluated “instead” if a given exception gets raised. In short,
exceptions can be declared (given names, available for use in a syntactically determined scope),
raised, and handled. We will introduce you to the SML syntax for these constructs, by writing
some simple SML functions for which it is natural to want to build in some error handling.

3 Extensional Equivalence Revisited

Functional programs that may use exceptions have a potential for a more dangerous range of
behaviors than completely pure programs: a well-typed expression may, when evaluated, either
terminate (reduce to a value), or fail to terminate (loop forever), or it may instead raise an exception.

We have already included the possibility of raising exceptions in our definition of extensional
equivalence but have never emphasized it. So let us recall the definition:

2

• Two expressions, e and e’, of type t, with t not a function type, are extensionally equivalent
(written e ∼= e’) iff either both e and e’ evaluate to the same value, or both loop forever,
or both raise the same exception.

• Two expressions of type t -> t’ are extensionally equivalent iff either they evaluate to func-
tion values that are extensionally equivalent, or both loop forever, or both raise the same
exception.

• Two function values f,g: t -> t’ are extensionally equivalent (again written as f ∼= g) iff,
for all values v of type t, f(v) ∼= g(v). This means that for all values v of type t, either
f(v) and g(v) both evaluate to extensionally equivalent values, or both loop forever, or both
raise the same exception.

Importantly, we have referential transparency:

Replacing a sub-expression by an extensionally equivalent sub-expression produces an
expression that is extensionally equivalent to the original one.

4 Using Exceptions

4.1 Declaring and Raising

You can declare and name an exception, with a declaration such as

exception Negative

which introduces an exception named Negative. In the scope of this declaration you can then
“raise” this exception by (evaluating) the expression

raise Negative

– evaluation of this expression causes an error stop and SML reports the name of the exception.
Just like any other declaration, we can use exception declarations in let-expressions and local-
declarations, e.g.,

let exception Foo in e end
local exception Foo in fun f(x) = e end

In the let-expression above, e may contain occurrences of raise Foo. In the local-declaration
above, e may contain occurrences of raise Foo, and the function f defined by this declaration
may raise Foo when it is applied to an argument.

- local
exception Neg

in
fun f(x) = (if x<0 then raise Neg else 1)

end;
val f = fn : int -> int
- f 2;
val it = 1 : int
- f (~2);

uncaught exception Neg

3

The specification of a function that may raise an exception should explain the circumstances in
which the exception gets triggered. For example, consider the following code fragment:

exception Negative
(* an exception named Negative is now in scope *)

(* inc : int -> int -> int *)
(* REQUIRES: true *)
(* ENSURES: If n >=0, then for all x:int, (inc n x) evaluates to x+n. *)
(* If n < 0, inc n raises Negative. *)
fun inc (n:int) : (int -> int) =

if n<0 then raise Negative else (fn x:int -> x+n)

Raising an exception is not like returning a value. Raising an exception signals a runtime error.
For example, the expression

0 * (raise Negative)

is well-typed (with type int), but its evaluation raises the exception Negative. It does not magically
return 0.

Typing Why does the previous expression have type int? Because of the following typing rules:

• An exception has type exn, which is short for “extensible” (not “exception”). Extensible
means that one can add constructors (i.e., new exceptions) at runtime. So Negative : exn.

• Raising an exception has most general type ’a. For instance, the most general type of the
expression raise Negative is ’a. That type specializes to int in the expression 0 * (raise
Negative) above. Thus that expression is well-typed, with type int.

4.2 An Example: gcd, revisited

To illustrate the design issues involved when we plan to write code that uses exceptions, let’s go
back to the gcd function. Here is one possible implementation, based on subtraction:

(* gcd : int * int -> int *)
(* REQUIRES: x>0, y>0 *)
(* ENSURES: gcd(x, y) computes the greatest common divisor of x and y. *)
fun gcd (x, y) =

case Int.compare(x,y) of
LESS => gcd(x, y-x)

| EQUAL => x
| GREATER => gcd(x-y, y)

If the values of x and y are positive integers, gcd(x,y) evaluates to the g.c.d. of x and y. The
spec says this, and exactly this. Once can prove that the function satisfies this spec. But if x
or y is 0 or less, gcd(x, y) either loops forever (e.g., gcd(1,0)) or causes integer overflow (e.g.,
gcd(100, ~1)). Since this bad behavior is easy to predict, simply by checking the sign of x and y
before doing any arithmetic, we could introduce an exception with a suitably suggestive name, and
modify the function and spec accordingly:

4

exception NotPositive
(* GCD : int * int -> int *)
(* REQUIRES: true *)
(* ENSURES: GCD(x,y) ∼= gcd(x,y) if x>0 and y>0. *)
(* GCD(x,y) ∼= raise NotPositive if x<=0 or y<=0. *)
fun GCD (x, y) =

if x <=0 orelse y <= 0 then raise NotPositive else gcd(x,y)

What we have done is to take a function gcd which only works “properly” on positive arguments,
and built a “bullet-proof” version GCD that also deals gracefully with bad arguments. Given bad
arguments, the code raises a specific exception which surrounding code will be able to “handle”, as
we will see shortly.

Question

What is bad about the following function definition?

exception NotPositive

(* GCD : int * int -> int *)
fun GCD (x, y) =

if x <=0 orelse y <= 0 then raise NotPositive else
case Int.compare(x,y) of

LESS => GCD(x, y-x)
| EQUAL => x
| GREATER => GCD(x-y x)

Answer: it pointlessly re-checks the signs in every recursive call.

Another way to define an exceptional version of gcd is given below. In this version (which we
name GCD’ so that we can contrast it with GCD as defined above) the “original” gcd function is kept
local, so isn’t exported for use elsewhere – only GCD’ is available in the scope of this declaration:

local
fun gcd (m,n) =
case Int.compare(m,n) of

LESS => gcd(m, n-m)
| EQUAL => m
| GREATER => gcd(m-n, n)

in
fun GCD’ (x, y) =
if x>0 andalso y>0 then gcd(x, y)

else raise NotPositive
end

The two functions

GCD : int * int -> int
GCD’ : int * int -> int

are extensionally equivalent.

5

4.3 Handling Exceptions

Now that we have shown you how to declare your own exceptions and raise them to signal runtime
errors, you may be looking for a way to design code that recovers gracefully from a runtime error
by performing some expression evaluation. For instance, maybe if there is a runtime error the code
might return a “default” value.

The SML syntax for “handling” an exception named Foo is

e1 handle Foo => e2

This is well-typed, with type t, if e1 and e2 have the same type t. We explain the evaluation
behavior of this expression as follows:

• If e1 evaluates to a value v, so does e1 handle Foo => e2, without even evaluating e2.

• If e1 fails to terminate (loops forever), so does e1 handle Foo => e2.

• If e1 raises Foo, then

(e1 handle Foo => e2) ==> e2

and e1 handle Foo => e2 behaves like e2 in this case.

• If e1 raises an exception other than Foo, so does e1 handle Foo => e2.

In e1 handle Foo => e2 we refer to “handle Foo => e2”
as a “handler” for Foo attached to e1. This handler has a “scope” – it is only effective for catching
raises of Foo that occur inside e1.

In the following examples, figure out the evaluation behavior:

exception Foo

fun loop x = loop x

val a = (42 handle Foo => loop 0)
val b = (loop 0) handle Foo => 42
val c = ((20 + (raise Foo)) handle Foo => 22)

We can also build handlers for several differently named exceptions, as in

e handle Foo => e1
| Bar => e2

Again, this is well-typed with type t if e, e1, and e2 all have type t.
Exercise: describe the evaluational behavior of the previous expression, based on how e evaluates.
(Comment: We may define handlers with more than two alternatives, using pattern matching on
exceptions, much like in a case statement.)

As an example, consider again the gcd code. We might want to handle an argument error by
returning the default value 0 (although this doesn’t qualify as a “greatest common divisor”), and
we could do this by defining

fun GCD’’ (x, y) = GCD(x,y) handle NotPositive => 0

6

5 Case Study: Making Change

To put all these ingredients together, we will implement a function to find a way to make change
for a given amount of money, using (arbitrarily many) coins from a fixed list of denominations (coin
sizes). This is a classic example of a problem (“How can you make change for $A using coins of sizes
[$c1, . . . , $cn]?”) We use the word “coins” even though in reality we might be thinking of paper
money. When it is impossible to make change we want a definite “no”, and when it is possible we
want some combination of coins that adds up to the desired amount.

We assume that coin denominations are strictly positive integers and that we make change for
nonnegative amounts.

Recall the function sum : int list -> int that adds up the integers in a list. Here is one
possible implementation:

fun sum (C:int list):int = foldr (op +) 0 C

So let’s start by defining

exception Change

and giving the specification

(* change : int list * int -> int list *)
(* REQUIRES: L is a list of strictly positive integers and A >= 0. *)
(* ENSURES: *)
(* EITHER change(L, A) ==> C, *)
(* where C is a list of items drawn (possibly with duplicates) *)
(* from the list L, such that sum C ∼= A; *)
(* OR change(L, A) raises Change and there is no such list C. *)

First attempt

Before starting to write our function, we make some simple suggestions. (We are suggesting here
a greedy algorithm.) Remember that we assume L is a list of strictly positive integers, and A is
non-negative.

• If A is zero, we can make change for A using no coins.

• If A>0 and the coin list is c::R,

– if c is bigger than A, then we can’t use it;

– otherwise, we use c and make change for A-c.

The following function definition is based very closely on the above sketch of an algorithm. It is
called a greedy algorithm because in the interesting case it assumes that we can use the first coin
in the list.

(* change : int list * int -> int list *)
fun change (_, 0) = []

| change (c::R, A) =
if A<c then change(R, A)

else c :: (change(c::R, A-c))

7

Do you see a problem? Well, SML does. We get this message in the REPL:

stdIn:60.5-63.41 Warning: match nonexhaustive
(_,0) => ...
(c :: R,A) => ...

val change = fn : int list * int -> int list

The function does have the intended type, but SML warns us that the clauses are not exhaustive,
i.e., there might be some coin lists and/or amounts for which the function won’t be applicable.
Looking again at the function definition, we see that there is no clause for change ([], n)
except for n=0. We forgot to deal with the situation in which the function is supposed to make
change for a positive dollar amount using no coins.

Second attempt

Here is a second attempt, based on the following extension of the algorithm outline from above:

• If A is zero, we can make change for A using no coins.

• If A>0 and the coin list is c::R,

– if c is bigger than A, then we can’t use it;
– otherwise, we use c and try to make change for A-c.

• If A>0 and the coin list is empty, then there is no way to make change for A, so we raise the
previously declared exception Change.

(* change : int list * int -> int list *)
fun change (_, 0) = []

| change ([], _) = raise Change
| change (c::R, A) =

if A<c then change (R, A)
else c :: (change (c::R, A-c))

Now the “match nonexhaustive” warning goes away. And we get the following:

- change([], 42);

uncaught exception Change

so the intended exception is getting raised.

However, we still get wrong results. For example,

- change ([2,3], 9);

also produces

uncaught exception Change

We really wanted to get a list such as [3,3,3] or [2,2,2,3] instead. The problem is that the
algorithm is too greedy. If it turns out that there is a way to make change for A but only by not using
the first coin, the existing code will not discover it. Since we are focused here on exceptions, let’s
consider compensating by using a handler that allows the code to recover from these unintended
exceptions.

8

Third and final attempt

Here is a third amended outline of the algorithm:

• If A is zero, we can make change for A using no coins.

• If A>0 and the coin list is c::R,

– if c is bigger than A, then we can’t use it;

– otherwise, we try to use c and try to make change for A-c. If that works, fine; if not, we
handle the exception that winds up being raised, now by trying to make change without
using c.

• If A>0 and the coin list is empty, then there is no way to make change for A, so we raise
Change.

Here is the re-revised function definition:

(* change : int list * int -> int list *)
fun change (_, 0) = []

| change ([], _) = raise Change
| change (c::R, A) =

if A<c then change (R, A)
else c :: (change (c::R, A-c))

handle Change => change(R, A)

The handler is attached to the else branch of the third clause:

c :: (change (c::R, A-c)) handle Change => change(R, A)

Would it make any difference if we used instead

c :: (change (c::R, A-c) handle Change => change(R, A))?

Yes, this would give incorrect results. Figure out why.

If we test this function on the examples from before, we will get the correct responses. In
particular,

- change ([2,3], 9);
val it = [2,2,2,3] : int list

Now we have, finally, a function that satisfies the intended specification. And we can use it to
obtain a function

mkchange : int list * int -> (int list) option

as follows:

fun mkchange (coins, A) =
SOME (change (coins, A)) handle Change => NONE

Exercise: give a suitable spec for mkchange.

9

6 Exception Equivalences

Assuming that e and e1, ..., ek are well-typed expressions of type t, and v is a value of type t,
and E1,..., Ek are (distinct) exception names currently in scope, the following equivalences hold:

(1) If e ∼= v, then
e handle E1 => e1 | . . . | Ek => ek ∼= v

(2) For 1 <= i <= k,
(raise Ei) handle E1 => e1 | . . . | Ek => ek ∼= ei

(3) If E is an exception not in {E1, . . ., Ek} then
(raise E) handle E1 => e1 | . . . | Ek => ek ∼= raise E

We also have the following equivalences:

If e, e’, e1,...,ek, e1’,...,ek’ are all well-typed expressions of type t, then

(4) If e ∼= e’ then
(e handle E1 => e1 | . . . | Ek => ek)

∼= (e’ handle E1 => e1 | . . . | Ek => ek)

(5) If e1 ∼= e1’, . . ., ek ∼= ek’, then
(e handle E1 => e1 | . . . | Ek => ek)

∼= (e handle E1 => e1’ | . . . | Ek => ek’)

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

