
15–150: Principles of Functional Programming

Functions are Values

Michael Erdmann∗

Spring 2020

1 Outline

• Functions as values

– anonymous, non-recursive, function expressions

– recursive function declarations

– application and composition

– extensional equivalence

• Functions as values

– functions that take functions as arguments

– functions that produce functions as results

• Maps and folds on lists and trees

– higher-order functions in action

– bulk processing of data

– potential for parallelism
∗Adapted from a document by Stephen Brookes.

1

2 Introduction

So far we have largely used functions from tuples of values to values, and
values have been integers/lists/trees. We call such functions “first-order”.
But we can also define functions that take functions as arguments. Those
are called “higher-order” functions. And we can also define functions that
return functions as results. We have already seen a few such examples, but
we are about to see many more.

Recall how we defined equivalence for first-order functions. This notion
generalizes in a straightforward way to higher-order functions.

SML has a special syntax for “curried functions” of several arguments,
which allows us to define functions that return functions using a convenient
notation.

These ideas are very powerful. We can write elegant functional programs
to solve interesting problems in very natural ways, and we can reason about
functional programs by thinking in terms of mathematical functions.

3 Functions as values

Recall that SML allows recursive function definitions, using the keyword
fun. Function definitions (or declarations) give names to function values.
If we want to apply the function to a variety of different arguments, it is
convenient to use the name over and over, rather than having to write out
the function code every time.

Nonetheless, we can also build “anonymous”, non-recursive, function
expressions, using fn. This can also be convenient, especially when we want
to supply the function as an argument to another function! For example,
the expression

(fn x:int => x+1)

is well-typed, has type int -> int. This expression (since it begins with
fn) is called an abstraction.1

We can use it to build other expressions, by applying it to an expression
of the correct argument type, as in

(fn x:int => x+1) (20+21)

1Also known as a λ-expression for historical reasons: fn x => e is the SML analogue
to λx.e from the λ-calculus. λ is pronounced “lambda”.

2

and this particular expression evaluates to 42.
We can also build other expressions out of abstractions. For example,

(fn x:int => x+1, fn y:real => 2.0 * y)

is an expression of type (int -> int) * (real -> real).
If we so desire, we can even give a name to a non-recursive function,

using a val declaration, as in the declaration

val (inc, dbl) = (fn x:int => x+1, fn y:real => 2.0 * y)

which binds inc to the function value fn x:int => x+1 and dbl to the
function value fn y:real => 2.0*y.

The SML interpreter treats functions as values: evaluation of an ex-
pression of type t->t’ stops as soon as it reaches an abstraction, i.e., a
fn-expression or a function name that has been declared (and hence bound
to) a function value.

Programmers can use functions as values, either as arguments to func-
tions, or as results to be returned by functions.

Composition

Function composition is an infix operator written as o. Using the op keyword
we can also use o as a function

(op o) : (’a -> ’b) * (’c -> ’a) -> (’c -> ’b).

For all types t1, t2, t3, when f:t2 -> t3 and g:t1 -> t2, (f o g) has
type t1 -> t3, and satisfies the equivalence

(f o g)(x) ∼= f(g x)

for all values x of type t1. Some examples of function values built using
composition:

val inc = fn (x:int) => x+1;
val double = fn (x:int) => 2*x;
val add2 = inc o inc;
val add4 = add2 o add2;
val shrink = fn (x:int) => case Int.compare(x, 0) of

EQUAL => 0
| LESS => x+1
| _ => x-1;

3

Equivalence for basic values and first-order functions

Suppose, for the moment, that we only consider basic types, such as int,
bool, string, etc., along with product types and user-defined datatypes
built from these basic types. Now let us consider functions on those types,
such as functions of type int -> int in the code above. We call these
functions first-order functions because their arguments and results are simple
data values, in this case integers, not functions.

For the code given above, the following equivalences hold:

inc 2 ∼= 3
(double o inc) 4 ∼= 10
(inc o double) 4 ∼= 9
add2 2 ∼= 4
add4 2 ∼= 6
shrink 2 ∼= 1
shrink (~2) ∼= ~1
(fn y:int => add4(add4 y)) (add2 15 + add4 13) ∼= 42

Each of the expressions above has type int. Recall, in our discussion of
extensional equivalence (see Lecture 1), we said that two expressions of type
t are equivalent if and only if they evaluate to the same value (necessarily
of type t), or they both raise the same exception, or they both loop forever.
That is how one should interpret the equivalences above: each equivalence
says that the expression on the left evaluates to the value on the right.

This notion of equivalence extends to first-order functions. We say that
two function values f and g of type t -> t’ are extensionally equivalent
if and only if, for all values v of type t, f(v) and g(v) are extensionally
equivalent. Symbolically, f ∼= g iff f(v) ∼= g(v) for all values v:t.

Here are some examples of equivalence for function expressions of type
int -> int:

(inc o double) ∼= (fn x:int => (2*x)+1)
(double o inc) ∼= (fn x:int => 2*(x+1))
add2 ∼= (fn y:int => inc(inc y))
add4 ∼= (fn z:int => add2(add2 z))
(fn x:int => x+1) ∼= (fn w:int => w+1)

4

4 Higher-order functions

In the previous section we presented some first-order functions from integers
to integers. In contrast, the composition function, also discussed above as

(op o) : (’a -> ’b) * (’c -> ’a) -> (’c -> ’b)

has a (most general) type of the form t -> t’, with argument type t being

(’a -> ’b) * (’c -> ’a),

built from function types. A function type like this in which the “argument
type” is itself a function type, is classified as a higher-order type.2 Observe
that every instance of a higher-order type is also a higher-order type, since
the arrows don’t go away.

Consider a higher-order function f of type t -> t’, with t itself being
some function type. Applying f to a function g of the required argument
type t will produce an application expression f(g) with the corresponding
result type t’, just as with first-order functions. There is nothing special
here, as far as SML is concerned. The underlying reason is that an expression
with a function type is much like any other expression with a well-defined
type, and function values are much like other values: they may be passed as
arguments to function calls and/or returned as results from function calls.

Equivalence for higher-order functions

The notion of extensional equivalence applies to higher-order function types.
Intuitively, this is much as before: two functions are equivalent iff they map
equivalent arguments to equivalent results.

There isn’t really anything else we need to say, but perhaps we should be
careful about base cases when defining equivalence in order to avoid circu-
larity in the definition. The base cases are given by defining equivalence for
SML’s basic types, just as we did earlier. One can then proceed inductively:

Assume that we already have a definition of equivalence on some collec-
tion of types. We may extend that definition to include product types and
user-defined datatypes built from that collection of types.

2More formally, the order of a type is defined recursively, by regarding basic
types to have order 0, then defining the order of a function type by ord(t1->t2) =
max{ord(t1) + 1, ord(t2)}. In this document, “higher-order” means a function with a
type whose order is at least 2. Functions that return higher-order functions are therefore
also classified as higher-order. Be aware that some authors also consider functions to be
higher-order if the return type t2 is any function type, i.e., has order at least 1.

5

Now suppose we have a definition of equivalence in particular for expres-
sions of type t and expressions of type t’. Consider two functions F and G
of type t -> t’. We say that F ∼= G if and only if, for all values x of type
t, F(x) ∼= G(x). Observe as well: Because of referential transparency, this
is also the same as saying that F ∼= G iff, for all values x and y of type t, if
x ∼= y then F(x) ∼= G(y). (Recall: referential transparency is the property
that replacing a sub-expression by an equivalent sub-expression produces an
equivalent expression.)

It may not be obvious, but equivalence satisfies the usual mathematical
properties one expects for a sensible notion of “equality”. In particular, for
every type t, equivalence for expressions of type t is an equivalence relation:

• For all expressions e:t, e ∼= e.
• For all expressions e1, e2 : t, if e1

∼= e2, then e2
∼= e1.

• For all expressions e1, e2, e3 : t, if e1
∼= e2 and e2

∼= e3, then e1
∼= e3.

Referential Transparency

Now that we’ve spoken more generally about equivalence, we can state a
more precisely formulated version of referential transparency, as follows.
Here we use the notation E[e] for an expression E having a sub-expression
e; then E[e′] for the expression obtained by replacing the sub-expression e
by e′; and we implicitly refer to equivalence on type t (in e ∼= e′) and on
type T (in E[e] ∼= E[e′]).

Further, as we have done in class already, here we represent binding of
value v to identifier x by writing [v/x].

(Referential Transparency)
If E[e] is a well-typed expression of type T, with a sub-expression
e of type t, and e′ is another expression of type t such that e ∼= e′,
then E[e] ∼= E[e′].

Another way to say the same thing is that equivalence is a congruence.
That’s a fancy way to say that “Every syntactic construct in SML respects
equivalence”.

For example, to say that

(op +) : int * int -> int

respects equivalence means that for all well-typed expressions e1, e2, e′1, e′2
of type int, if e1

∼= e′1 and e2
∼= e′2 then e1 + e2

∼= e′1 + e′2.

The next page has some simple examples, to help clarify these ideas.

6

• Consider the function checkzero:(int -> int) -> int given by:

fun checkzero (f:int -> int):int = f(0)

If f,g:int->int and f ∼= g, observe that checkzero(f) ∼= checkzero(g).
Hence, checkzero ∼= checkzero according to the definition of equiv-
alence for type (int -> int) -> int.

• Recall the composition operator, as discussed above. One may check
that, for all types t1, t2, t3, if f,f’:t2 -> t3 and g,g’:t1 -> t2,
and f ∼= f’ and g ∼= g’, then f o g ∼= f’ o g’. This is the same
as saying that (op o) respects equivalence.

• We saw that expressions fn x:int => x+x and fn y:int => 2*y are
equivalent. It follows that

40 + (fn x:int => x+x) 1 ∼= 40 + (fn y:int => 2*y) 1

Although in this particular example we can see that the value of the
overall expression is 42 in both cases, in a more complex expression
we could make the analogous deduction even without knowing what
the value of the entire expression is!

Before moving on, notice that equivalence on function expressions is NOT
the same as “both evaluate to the same value, or both raise the same ex-
ception, or both loop forever, which was how we characterized equivalence
on basic types like int and int list. Instead, two function expressions e
and e’ are equivalent iff they both loop forever or they both raise the same
exception or they evaluate to function values f and f’ that are extensionally
equivalent.

For example, the expressions fn x:int => 2*x and fn y:int => y+y
are (already) function values (of type int -> int) that are extensionally
equivalent. But they don’t evaluate to the same function value: each eval-
uates to itself and the expressions are syntactically different. Nevertheless,
each of these expressions can be said to compute the same function from
integers to integers, and that’s why we are comfortable saying that they are
equivalent.

7

Equivalence and evaluation to a value

For each type t there is a set of SML values (or “syntactic values”) of type
t. We can connect SML evaluation-to-a-value (written e ↪→ v, where v is
an SML value) and extensional equivalence (written e ∼= e’), as follows:

• If e:t and e ↪→ v, then e ∼= v (according to our notion of equivalence
on type t).

• If e ∼= e’ (both of type t) and there is an SML value v (of type t)
such that e ∼= v, then there is an SML value v’ (again, of type t)
such that e’ ↪→ v’ and v ∼= v’.

Make sure you notice that (and understand why) we did not say here that if
e ∼= e’ and e ∼= v then e’ ↪→ v. (Such a conclusion would be correct for
so-called observable values, such as values of type int, string, bool, etc.,
but it is not true for all types of values.)

Recursive function definitions and equivalence

In the scope of a recursive function definition of the form

fun f(x:t):t’ = e’

the function name f satisfies the equivalence f ∼= fn x:t => e’.

We also have this equivalence law:

If v is a value such that e ∼= v, then

(fn x:t => e’) e ∼= [v/x]e’.

We have thus far interpreted [v/x] as an environment binding. How-
ever, from the perspective of extensional equivalence, it is also legitimate
to interpret [v/x]e’ as the expression built by substituting v for the free
occurrences of x in e’. In that form, this law is sometimes called the β-value
reduction law, for historical reasons having to do with the λ-calculus. Note:
Since SML functions are call-by-value, i.e., functions always evaluate their
arguments, one cannot substitute into a function body unless the argument
expression has been evaluated down to a syntactic value.

Functions evaluate their arguments

Let (fn x:t => e’) be well-typed expression of type t->t’. If e:t is a
well-typed expression and v is an SML value such that e ↪→ v, then

(fn x:t => e’) e ==> [v/x]e’.

8

Looping forever and equivalence

We have been very careful in the above account of evaluation and equivalence
to avoid accidentally concluding erroneous “facts” by sloppy reasoning. For
example, consider the recursive function given by

fun silly (n:int) : int = silly n

This declaration binds silly to the function value
(fn n:int => (silly n)), of type int -> int. As we said above, in the
scope of this declaration, we have the equivalence

(*) silly ∼= (fn n:int => (silly n))

What can we prove about the “value” of the expression silly 0? (It isn’t
hard to see that evaluation of this expression loops forever.) We can make
a sequence of logical steps, such as:

silly 0
∼= (fn n:int => (silly n)) 0 by (*)
∼= [0/n] (silly n) by the value-reduction law
∼= silly 0

but one cannot find a value v such that silly 0 ∼= v is provable!

9

5 Higher-order functions on lists

Filtering a list

A total function p of type t -> bool represents a “predicate” on values of
type t. A value v:t such that p(v) ==> true is said to satisfy the predicate;
when p(v) ==> false the value v does not satisfy the predicate. Totality
of p means that for all values v there is a definite answer.

We can define a recursive SML function with the following specification:

(* filter : (’a -> bool) -> (’a list -> ’a list) *)
(* REQUIRES: p is a total function *)
(* ENSURES: filter p L ==> a list of the values in L that satisfy p, *)
(* in the same order as in L. *)

fun filter p [] = []
| filter p (x::L) = if p(x) then x::filter p L else filter p L

Actually some of the parentheses that we included in the type specifica-
tion above for filter are superfluous, because the SML function type
constructor -> associates to the right. We could just as well have said

(* filter : (’a -> bool) -> ’a list -> ’a list *)

The only reason we didn’t do that was because we wanted to emphasize the
fact that, when applied to a predicate p, filter p returns a function. You
don’t have to always apply filter to a predicate and a list. It’s perfectly
reasonable to apply it to just a predicate and to use the resulting function
as a piece of data to be passed around, used by other functions, or just
returned.

Consider for example the following first-order function

(* divides : int * int -> bool *)
(* REQUIRES: x>0 *)
(* ENSURES:

For all y>0, divides(x, y) ==> true if y mod x = 0, false otherwise *)

fun divides (x, y) = (y mod x = 0)

Because of its type, the only way we can apply this function is to a pair of
integers. For example, divides(2,4) ↪→ true.

10

But if we introduce a closely related function as follows, with the type
int -> (int -> bool) we will be able to “partially apply” it to one integer
and get back a predicate that checks for divisibility by that integer.3

(* divides’ : int -> (int -> bool) *)
(* REQUIRES: x>0 *)
(* ENSURES:

For all y>0, divides’ x y ==> true if y mod x = 0, false otherwise *)

fun divides’ x y = (y mod x = 0)

For example, we can apply divides’ to 2 and get a function that tests for
evenness:

(* even : int -> bool *)
val even = divides’ 2

We can use divides’ to help us build lists of prime numbers:

(* sieve : int list -> int list *)
fun sieve [] = []

| sieve(x::L) = x::sieve(filter (not o (divides’ x)) L)

(* primes : int -> int list *)
fun primes n = sieve (upto(2, n))

Here we have used the built-in SML function

not : bool -> bool

whose behavior is completely determined by

not true ==> false
not false ==> true

In addition, upto : int * int -> int list is the function given by

fun upto(i:int, j:int):int list = if i>j then [] else i::upto(i+1,j)

3This is an example of “currying” a function of two arguments to obtain a function of
one argument that returns another function. We will return to this idea at a later date
when we talk about “staging” computation.

11

Thus upto(2, n) returns the list of integers from 2 to n, inclusive. So,
for n>1, primes n returns the list of prime numbers between 2 and n, in
increasing order. For example, primes 10 = [2,3,5,7].

Now, admittedly, we could have developed the primes function and the
sieve function differently, without insisting on the use of divides’ and
filter. But we feel this is an elegant example that shows the potential
advantages of functional programming with higher-order functions.

Transforming the data in a list

A very common task involves taking a list of some type and performing some
operation on each item in the list, to produce another list, of a possibly
different type. Typically, we have some function that we wish to apply to
all items in the list. We can encapsulate this process very naturally as a
higher-order function

map : (’a -> ’b) -> (’a list -> ’b list)

Again, some of the parentheses are redundant here, but we want to empha-
size that map takes a function as argument and returns a function as its
result. SML has a built-in function like this, and its definition is:

fun map f [] = []
| map f (x::L) = (f x)::(map f L)

So map f [] ∼= []
and map f [x1, . . ., xn] ∼= [f(x1), . . ., f(xn)].

As a simple example using map, the function

addtoeach’ : int -> (int list -> int list)

defined by

fun addtoeach’ a = map (fn x => x+a)

is the “curried” version of the function

addtoeach : int * int list -> int list

defined by

fun addtoeach (x:int, L:int list) =
case L of

[] => []
| (y::R) => (x+y)::addtoeach(x,R)

12

Consider now the function sum:int list -> int given by:

fun sum [] = 0
| sum (x::L) = x + sum L

For an integer list L, sum L returns the sum of the integers in L. We can use
sum and map to obtain a function

count : int list list -> int

that adds all the integers in a list of integer lists:

fun count R = sum (map sum R)

In reasoning about code that uses map, we can typically use induction
on the length of lists.

For example, as an exercise, prove the following properties:

• If f:t1 -> t2 is total, then for all L:t1 list, map f L evaluates to
a list R such that length(L) = length(R).

• If f:t1 -> t2 is total, then for all lists A and B of type t1 list,

map f (A @ B) ∼= (map f A) @ (map f B).

The assumption that the function being “mapped along the lists” is
total was made here to simplify the problem. (We could also simplify
the problem by merely assuming that f(x) reduces to a value for all
values x that occur in the lists.) The result holds more generally.

13

Combining the data in a list

Another common task involves combining the values in a list to obtain some
composite value: for example, as we have seen, adding the integers in a
list to obtain their sum. Other examples include concatenating a list of
lists to get a single list, and counting the number of items in a list (to
get its length). Again we can encapsulate the general idea using higher-
order functions. Since lists are inherently sequential data structures there
are actually two distinct and natural sequential orders in which we might
combine items: from head to tail, or vice versa. SML has two built-in
functions, accordingly:

foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

and their definitions are

fun foldl g z [] = z
| foldl g z (x::L) = foldl g (g(x,z)) L

fun foldr g z [] = z
| foldr g z (x::L) = g(x, foldr g z L)

For all types t1 and t2, all functions g:t1 * t2 -> t2, and all values
z:t2,

foldl g z : t1 list -> t2
foldr g z : t1 list -> t2

are functions that can be applied to a list and will combine (using g) the
items in the argument list with z. Assuming that g is total, for all integers
n > 0 and all values x1, . . . , xn of type t1, the following equivalences hold:

foldl g z [x1,. . .,xn] ∼= g(xn, g(xn−1, . . . , g(x1, z) . . .))
foldr g z [x1,. . .,xn] ∼= g(x1, g(x2, . . . , g(xn, z) . . .)).

For the empty list, foldl g z [] ∼= z and foldr g z [] ∼= z.

As examples, we can add the integers in an integer list using either of
these fold functions:

fun suml L = foldl (op +) 0 L
fun sumr L = foldr (op +) 0 L

14

And we’ll get, for all n ≥ 0 and all integer lists [x1, . . . , xn],

suml [x1,. . .,xn] ∼= xn + (xn−1 + . . . + (x1 + 0) . . .)
sumr [x1,. . .,xn] ∼= x1 + (x2 + . . . + (xn + 0) . . .)

Since addition of integers is an associative and commutative operation, the
sums on the right-hand sides of these equivalences are equal. Since x+0 ∼=
x for all integers x, we therefore have

suml [x1,. . .,xn] ∼= ∑n
i=1 xi

∼= sumr [x1,. . .,xn].

And since every value of type int list is expressible in the form [x1,. . .,xn]
for some n ≥ 0 and some integer values xi (i = 1, . . . , n), this shows that the
functions suml and sumr are extensionally equivalent, i.e., suml ∼= sumr.

Given our earlier comments about sum (as defined on page 13), we have
also shown here that suml ∼= sum ∼= sumr.

It follows, then, that the functions

fun countl R = suml (map suml R)
fun countr R = sumr (map sumr R)

are also extensionally equivalent. Moreover, countl ∼= countr ∼= count.

Caution: Functions foldl and foldr are not extensionally equivalent. To
see this, compare foldl (op -) 0 L with foldr (op -) 0 L.

Exercise

Suppose g is a total function of type t1 * t2 -> t2, such that for all values
x:t1, y:t1, z:t2, g(x, g(y, z)) ∼= g(y, g(x, z)). Prove that for all
values z:t2 and lists L:t1 list,

foldr g z L ∼= foldl g z L.

Explain how this result, along with the given assumptions, implies that
foldr g ∼= foldl g.

Insertion sort, revisited

Recall that we defined a function

ins : int * int list -> int list

15

with the specification that for all integer values x and all integer list values
L, if L is sorted, then ins(x,L) reduces to a sorted permutation of x::L.

Using this function, we can obtain an implementation of insertion sort,
by defining:

(* isortl : int list -> int list *)
val isortl = foldl ins []

Indeed, one may prove, by induction on L, that for all integer list values L,

foldl ins [] L ∼= a sorted permutation of L.

(In this proof the only information about ins that you need is the prior
result that ins satisfies its specification.)

Equally well we could have used the other fold function:

(* isortr : int list -> int list *)
val isortr = foldr ins []

And we could prove, by induction on L, that for all integer list values L,

foldr ins [] L ∼= a sorted permutation of L.

Further, since for an integer list L there is exactly one sorted permutation
of L (assuming we don’t distinguish between identical duplicate integers),
we could then conclude that isortl ∼= sortr.

Exercise

If you did the exercise above, you can use its result here.
Using the definition of ins, show that for all values x,y:int and
sorted L:int list, ins(x, ins(y, L)) ∼= ins(y, ins(x, L)).
Deduce that isortl ∼= isortr.

6 Higher-order functions on trees

Lists are just one way to collect data into a data structure. All of the ideas
in the previous sections can be adapted to deal with other data structures,
such as trees. The ideas of performing an operation on all items in a list, and
combining all the items in a list, generalize to many other settings: any time
we have a collection of data. Here we will discuss some analogous operations
invoking the (parameterized) datatype of binary trees. We will see later that

16

every time we introduce a new datatype for structured collections of data
there will be a way to design analogous operations.

Recall the parameterized datatype definition for binary trees with values
at the internal nodes.

(* Binary trees with values at internal nodes *)
datatype ’a tree = Empty | Node of ’a tree * ’a * ’a tree

(* Empty : ’a tree *)
(* Node : ’a tree * ’a * ’a tree -> ’a tree *)

Filtering a tree

Given a predicate p:t -> bool and a tree value T: t tree, we can build a
tree consisting of the items in T that satisfy p.

Give specs for the following functions:

(* insert : ’a * ’a tree -> ’a tree *)
fun insert (x, Empty) = Node(Empty, x, Empty)

| insert (x, Node(l, y, r)) = Node(insert(y, l), x, r)

(* trav : ’a tree -> ’a list *)
fun trav Empty = []

| trav (Node(l, x, r)) = (trav l) @ (x :: trav r)

(* combine : ’a tree * ’a tree -> ’a tree *)
fun combine (A, B) = foldr insert B (trav A)

For all types t and all values A and B of type t tree, combine(A, B)
returns a tree value consisting of all of the items from A and all of the items
from B. Using this function we can define a tree-filtering function.

(* filtertree : (’a -> bool) -> (’a tree -> ’a tree) *)
(* REQUIRES: p is a total function *)
(* ENSURES: filtertree p T ==> a tree consisting of all items from T *)
(* that satisfy p, in the same order as in T. *)

fun filtertree p Empty = Empty
| filtertree p (Node(l, x, r)) =

if (p x) then Node(filtertree p l, x, filtertree p r)
else combine(filtertree p l, filtertree p r)

17

Transforming the data in a tree

fun treemap f Empty = Empty
| treemap f (Node (l, x, r)) = Node (treemap f l, f x, treemap f r)

A function for adding an integer to the integers in an int tree:

fun addtonodes(x:int): int tree -> int tree = treemap (fn y => x+y)

Combining the data in a tree

If we have a t tree, a base value z:t, and a combining function g:t*t->t,
we can combine all the data in the tree with z using a “treefold”. Here is
one way to do this, encapsulated as a higher-order function:

(* treefold : (’a * ’a -> ’a) -> ’a -> ’a tree -> ’a *)
fun treefold g z Empty = z
| treefold g z (Node (l, x, r)) = g(x, g(treefold g z l, treefold g z r))

Actually, this is not the only possible way to combine the data. We could
have used instead the function

(* treefold’ : (’a * ’a -> ’a) -> ’a -> ’a tree -> ’a *)
fun treefold’ g z Empty = z
| treefold’ g z (Node (l, x, r)) = g(treefold’ g z l, g(x, treefold’ g z r))

and there are other alternatives. Sometimes when we use folding on trees
we have an associative and commutative operation g, and the “base value”
z is a “zero” for g, so that g(x, z) = x for all values x. In such cases
we get the same combined result, no matter what order we combine the
data. Otherwise we may need to pay attention to the order in which the
combinations happen!

Using treefold we can obtain a function for adding the integers in an
integer tree:

(* sum_tree : int tree -> int *)
val sum_tree = treefold (op +) 0

Similarly, a function for adding all the integers in a tree of integer trees(!):

fun count_tree T = sum_tree (treemap sum_tree T)

Contrast this with the analogous function for adding the integers in a list of
integer lists from page 13.

18

Doing two things at once

Often we have a collection of data in a tree and we need to apply some
function to all of the data items and then combine the results. We could do
this by applying a treemap followed by a treefold. Notice that we would
be constructing, as an intermediate data structure, the entire tree produced
by the map phase, merely to “consume” this tree in the fold phase. We may
wish to skip that step by performing the mapping and folding in one fell
swoop. Here is one possible function designed to encapsulate this situation:

(* mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a tree -> ’b *)
fun mapreduce f z g Empty = z
| mapreduce f z g (Node(l, x, r)) =

g (f x, g(mapreduce f z g l, mapreduce f z g r))

As intended, mapreduce does behave applicatively like a treemap fol-
lowed by a treefold. We can prove that for all suitably typed, total func-
tions f and g, and all suitably typed values z and T,

mapreduce f z g T ∼= treefold g z (treemap f T).

Contrast this with the following function that actually does the treemap
and then the treefold:

fun mapreduce’ f z g t = treefold g z (treemap f t)

A tree folding function with three arguments

For binary trees with data at the nodes, it is natural to fold a three-argument
function over the tree. We then obtain a treefolding function like this:

(* treeFold : (’a * ’b * ’a -> ’a) -> ’a -> ’b tree -> ’a *)
fun treeFold g z Empty = z
| treeFold g z (Node (l, x, r)) = g (treeFold g z l, x, treeFold g z r)

We may now implement a function to sum all the elements in an int tree
as follows:

(* sumTree : int tree -> int *)
val sumTree = treeFold (fn (a,x,b) => a + x + b) 0

19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

