15-150: Principles of Functional Programming

Some Notes on Structural Induction

Michael Erdmann*

Spring 2020

[This is a version of the notes that first appeared in Lecture 4, there specialized to integers.
Here now they are polymorphic.]

These notes provide a brief introduction to structural induction for proving properties of SML
programs. We assume that the reader is already familiar with SML and the notes on evaluation
and natural number induction for pure SML programs.

Structural inductions in SML often arise as inductions over the structure of values defined by
datatype declarations. Most datatype declarations give rise to an induction principle which may
be used to prove properties of recursive functions with arguments of the given type.

Notation Reminder: We write ¢ —= ¢/ (or e =k ¢) for a computation of k steps, e = ¢’
(or e =" ¢') for a computation of any number of steps (including 0), e < v for a complete
computation of e to a value v, and n = m or e = ¢’ for mathematical equality.

We say that two expressions e and ¢’ are extensionally equivalent, and write e = ¢/, whenever
one of the following is true: (i) evaluation of e produces the same value as does evaluation of €/, or
(ii) evaluation of e raises the same exception as does evaluation of €', or (iii) evaluation of e and
evaluation of ¢ both loop forever. In other words, evaluation of e appears to behave just as does
evaluation of €/. We say that an expression has no value if its evaluation either raises an exception
or loops forever.

Observe: If e; => e and eg = e, then e; = es. In other words, “reduction implies equivalence”.
CAUTION: The opposite implication need not hold: two expressions can be equivalent without
one reducing to the other. For instance, (1 +9) = (2 5), but neither expression reduces to the
other.

In proofs that establish equivalences, we frequently justify an equivalence e; = es by writing
something like [step, 2nd clause of f]. This means that either e = ey or e = €1, as
established by the function clause being cited. (Observe that such a reduction does indeed imply
e1 = eg, by the previous paragraph.)

*Modified from a draft by Frank Pfenning.

1 Proof By Cases

A very simple form of “structural induction” arises if the datatype declaration is not recursive,
but provides a finite number of data constructors. For such datatypes we can prove theorems by
cases, which may also be viewed as an induction with only base cases. As an example, consider the
declaration

datatype PrimColor = Red | Green | Blue

We can now prove properties of all primitive colors by distinguishing the cases of Red, Green, and
Blue.
Another form for proof by cases arises for the Booleans, since there is a pervasive definition

datatype bool = true | false
For example, it is easy to see that
(if e then ¢ else ¢/) 2% ¢

since, for instance, evaluation of e might loop forever, whereas €’ could reduce to a value. However,
if e reduces to a value, then the two expressions are extensionally equivalent, as we now prove:

Theorem 1 For every expression e (of type bool) such that e — v for some v, and for every €,
(if e then ¢ else e) = ¢
Proof: By cases on the value of e.

if e then ¢ else ¢
—> if v then € else € [by assumption on e]

Now either v = true or v = false by cases on the structure of bool. In either case, the expression
above reduces to €. O

2 Structural Induction on Lists

The pervasive type of ’a list is defined in SML by:

datatype ’a list = nil | :: of ’a * ’a list
infixr ::
The declaration infixr :: changes the lexical status of the constructor :: to be a right-

associative infix operator. That is, 1::2::3::nil should be read as 1::(2::(3::nil)) which in
turn would correspond to ::(1,::(2,::(3,nil))) if : : had not been declared infix. SML provides
an alternative syntax for lists, as follows:

[] = nil
[e1, e2, ..., en] = e :: (eg :: (- (e :: mnil)))

The recursive nature of the declaration of 1ist means that the corresponding induction principle
is not just a proof by cases. It reads:

If: 1. a property holds for the empty list nil
and
2. whenever the property holds for a value [of type t list,
it also holds for v :: [(for any value v of type t),

then: the property holds for all values of type t 1ist.

As a very simple example, consider the definition of a function to append two lists:

(* @ : ’a list * ’a list -> ’a list *)
fun @ (nil, k) =k

| @ (x::1, k) =x :: @(1,k)
infixr @

Appending two lists that are values always reduces to a value in SML. While this may seem trivial,
it is actually not the case for some other functional languages such as Haskell in which values may
be defined recursively.

Lemma 2 The function @ is total.
In other words, for any values | and k of type t 1ist, | @ k — v for some v.

Proof: By structural induction on .

Base Case: [=nil.
We need to show that for any list value k£, nil @ k reduces to some value. Well,

nil @ k =k [by the first clause of @]

Induction Step: [=z :: !’ for some values x and I’.
Induction hypothesis: Assume I’ @ k — v for some v'.
We need to show that: [@ k — v for some v.

Evaluating code, we see that:

(x :: 1) ek
= =z (I' @ k) [by the second clause of @
= 1z :: [by induction hypothesis on ']
= v (writing v for the value z :: v')
By the structural induction principle for lists, this completes the proof. O

One can also prove that [@ k takes O(]l|) steps, where |l| is the length of the list [. From this
observation one can see that (I @ k) @ m takes O(2|l| + |k|) steps, while [@ (k @ m) takes only
O(|l| + |k|) steps. This is the basis for a number of simple efficiency improvements one can make
in SML programs. It is formalized in the following lemma.

Lemma 3 For any values ly, lo, and I3 of type t 1ist,

(i ely) el = 17 @ (I, @l3)

Proof: We reformulate this slightly to simplify the presentation of the proof:
(I @ Ip) @l3 = l15 @ I3 = 93 iff 1 @ (I3 @l3) = 11 @ lag = lo3
The proof is by structural induction on [;.

Base Case: [; = nil.
We need to show that for any pair of list values [l and I3 of type ¢ 1list, (nil @ ly) @ I3 is
extensionally equivalent to a value log iff nil @ (Io @ [3) is extensionally equivalent to the
value lo3. Well,

(nil Q lg) Q l3

>~ [y Q3 [step, first clause of @]
& [og [for some value ly3, by totality of @, i.e., Lemma 2]
and
nil @ (Iy @ I3)
>~ nil @ ls3 [by totality of @]
>~ oy [step, first clause of @]
Induction Step: I =z :: [} for some values z and [].

Induction hypothesis: Assume

(p@ly) @Iy XUy @Iy X Iy iff 1] @ (g @I3) X1} @ log X ljog
We need to show that:

(Iy @ lp) @3 = l12 @ I3 = [i93 iff e (p @l3) =1 @laz = o3
Evaluating code, for the left expression we obtain:

((x 2 1)) @ly) @l

>~ (z:: (J0ly) el [step, second clause of @]
>~ (zo:: liy) @3 [for some value [},, by totality of @]
~ g o (lhy @ l3) [step, second clause of @]
> oz i o [for some value l],3, by totality of @]

For the right expression we obtain:

(x :: 1) @ (2 @I3)

> (zo:: 1) @l [for some value l23, by totality of @]
>~ g (1) @ lgg) [step, second clause of @]
> oz i o [by the induction hypothesis on /]
By the structural induction principle for lists, this completes the proof. O

We actually have the stronger and often useful result that @ is associative even for expressions
which are not necessarily values, assuming sequential code evaluation. This holds even under
extensions by arbitrary effects, since in e; @ (eg @ e3) and (e; @ ez) @ e3, the expressions eq,
e2 and ez are evaluated in the same order, with all @ computations in between reducing to values
whenever the arguments are values.

Lemma 4 For arbitrary expressions ey, es and es (of the same list type),
(e1 @ e3) @e3s=e; @ (e @ e3)
Proof: By straightforward computation and Lemma 3:

(e1 @ e3) @ e3

—> (1 @ e3) @ e3 or e; has no value
= (l1 @ [3) @ e3 or ey has no value
= lip @ e3 [by totality of @]
= Il @ I3 or ez has no value
= 23 [by totality of @]

For the right-hand side we compute:

€1 @ (62 Q 63)

— I} @ (ey @ e3) or e; has no value
= 1 @ (I2 @ e3) or ey has no value
—> [1 @ (I3 @ [3) or eg has no value
= 1 @ log [by totality of @]

= o3 [by totality of @]

>~ g3 [by proof of Lemma 3]

3 Structural Induction on Other Types

As an example for structural induction over other types we use binary trees in which the leaves
carry integer data:

datatype ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

The structural induction principle for these types of trees then reads:

If: 1. a property holds for every leaf Leaf (z), with = a value of type s,
and
2. whenever the property holds for values ¢; and to of type s tree,
it also holds for Node (t1, t9),

then: the property holds for all values of type s tree.

The following function is inefficient, since the elements of flatten t1 may end up being copied
many times when the result lists are appended.

(x flatten : ’a tree -> ’a list

REQUIRES: true

ENSURES: flatten(t) computes the inorder traversal of the leaf values.
*)
fun flatten (Leaf(x)) = [x]

| flatten (Node(t1,t2)) = flatten t1 @ flatten t2

A more efficient alternative introduces an accumulator argument.

(* flatten2 : ’a tree * ’a list -> ’a list
REQUIRES: true
ENSURES: flatten2 (t, acc) = flatten (t) @ acc
*)
fun flatten2 (Leaf(x), acc) = x::acc
| flatten2 (Node(t1,t2), acc) =
flatten2 (t1, flatten2 (t2, acc))

(* flatten’ : ’a tree -> ’a list *)
fun flatten’ (t) = flatten2 (t, nil)

We would like to prove that flatten and flatten’ define the same function. In order to do
that, we need to prove a lemma about flatten2, which requires a generalization of the induction
hypothesis: We cannot prove directly by induction that flatten2(¢, nil) = flatten({) since
recursive calls in flatten2 have a more general structure. The case of a leaf provides a clue about
the proper generalization.

Lemma 5 For any values t of type s tree and acc of type s list,

flatten2(t, acc) = flatten(t) @ acc

Proof: By structural induction on ¢.

Base Case: t = Leaf (x), for some value x : s.

We need to show that, for all values acc of type s list,
flatten2(Leaf (x), acc) = flatten(Leaf(x)) @ acc.

Showing:
flatten2(Leaf(z), acc)
>~ x :: oacc [step, first clause of flatten2|
>~ g :: (nil @ acc) [step, first clause of @]
>~ (x :: nil) @ acc [step, second clause of @]
[z] @ acc

11l

flatten(Leaf (x)) @ acc ([step, first clause of flatten]

Induction Step: ¢ = Node(t1, t2) for some values t; and ta, both of type s tree.

Induction hypothesis: Assume that
for any value acc of type s 1ist, flatten2(t;, acc) = flatten(t;) @ acc and
for any value acc of type s 1ist, flatten2(t2, acc) = flatten(ty) @ acc.

We need to show that for any value acc of type s list,
flatten2(t, acc) = flatten(t) @ acc.

Showing;:
flatten2(Node(t1, t2), acc)
= flatten2(f;, flatten2(t2, acc)) [step, second clause of flatten2]
>~ flatten2(t;, flatten(fs) @ acc) [by the IH for to]
>~ flatten(?;) @ (flatten(fe) @ acc) [by the IH for ¢; and totality of both
flatten and @ (Lemma 2)]
>~ (flatten(#;) @ flatten(ts)) @ acc [by associativity of @ (Lemma 4)]
=~ flatten(Node(t;, t2)) @ acc [step, second clause of flatten]
By the structural induction principle for trees, this completes the proof. O

Comment: We used totality of flatten in the proof above. Imagine how you might prove that.

The following theorem now follows directly:

Theorem 6 For any value t of type s tree,

flatten’ (¢t) = flatten(?).

Proof: We compute directly:

flatten’ ()

flatten2(t, nil) [by definition of flatten’]
flatten(#) @ nil [by Lemma 5]

flatten(?)

1111

Where the last equivalence holds by a property of @ which is left as an exercise. O

There are also variants of structural induction analogous to strong induction, where we need
to apply the induction hypothesis to some subexpression of the given value. We will not go into
further details here.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

