15-150: Principles of Functional Programming
Some Notes on Fvaluation

Michael Erdmann*

Spring 2020

These notes provide a brief introduction to evaluation the way it is used for proving properties
of SML programs. We assume that the reader is already familiar with SML. We deal here only
with pure functional SML programs that may raise exceptions (no other side-effects).

When proving the correctness of a concrete program (when compared to the correctness of
an abstract algorithm), it is paramount to refer to an underlying definition of the programming
language. For our purposes, it is most convenient if this definition is operational, that is, we describe
how expressions evaluate.

As the language is organized around its types, so will the definition of the operational semantics.
This definition is not complete or fully formalized—for such a definition the interested and intrepid
reader is referred to the Definition of Standard SML (Revised).

1 Notation

For the sake of simplicity, we generally will not distinguish between a mathematical entity (such as
an integer or a real number) and its representation as an object in SML. Similarly, for simplicity,
our formal proofs will ignore limits of the machines realizing SML. For example, we assume that
there are SML representations of all integers and real numbers. We use a typewriter font for
actual SML code and italics more generally for mathematical or SML expressions and values.

We write e for arbitrary expressions in SML and v for values, which are a special kind of
expression. We write

e <— v expression e evaluates to value v
1 . .
e = ¢ expression e reduces to € in 1 step

k . .
e = €/ expression e reduces to €' in k steps
e = ¢/ expression e reduces to €’ in 0 or more steps

Our notion of step in the operational semantics is defined abstractly and will not coincide with
the actual operations performed in an implementation of SML. When we are mainly concerned
with proving correctness but not complexity of an implementation, the number of steps is largely
irrelevant and we will frequently simply write e = ¢’ for reduction.

Evaluation and reduction are related in the sense that if e < v then e —= el 2 ... L yand
vice versa.

Note that values evaluate to themselves “in 0 steps”. In particular, for a value v there is no
expression e such that v = .

*Modified from a draft by Frank Pfenning.

Extensional Equivalence

We say that two expressions e and €’ of the same (nonfunction) type are extensionally equivalent,
and write e = €/, whenever one of the following is true: (i) evaluation of e produces the same value
as does evaluation of €', or (ii) evaluation of e raises the same exception as does evaluation of €', or
(iii) evaluation of e and evaluation of €’ both loop forever. In other words, evaluation of e appears
to behave just as does evaluation of ¢/. NOTE: Extensional equivalence is an equivalence relation
on well-typed SML expressions, defined for pairs of well-typed expressions of the same type.

Two functions £ and g of type t —> t’ are said to be extensionally equivalent precisely when
f(v) and g(u) are extensionally equivalent for all extensionally equivalent values v and u of type
t. Formally, £ = g if and only if £(v) = g(u) for all values v:t and u:t with v = u.

Referential Transparency

A functional language obeys a fundamental principle known as Referential Transparency: in any
functional program one may replace any expression with any other extensionally equivalent expres-
sion without affecting the value of the program.

Referential transparency is a powerful principle that supports reasoning about functional pro-
grams. Roughly speaking, this is substitution of “equals for equals”, a notion so familiar from
mathematics that one does it all the time without making a fuss. While this may sound obvious, in
fact this principle is extremely useful in practice, and it can lend support to program optimization
or simplification steps that help develop better programs.

Aside: It is often said that imperative languages do not satisfy referential transparency, and
that only purely functional languages do. This is inaccurate: imperative languages also obey a form
of referential transparency, but one needs to take account not only of values but also of side-effects,
in defining what “equivalent” means for imperative programs.

For purely functional programs, because evaluation causes no side-effects, if ones evaluates an
expression twice, one obtains the same result. And the relative order in which one evaluates (non-
overlapping) sub-expressions of a program makes no difference to the value of the program, so one
may in principle use parallel evaluation strategies to speed up code while being sure that this does
not affect the final value.

2 Integers

Type: int.

Values: All the integers (given our assumptions on page 1).

Operations: e; + ey, e — €9, 1 * e, €1 div es, e; mod es, and others which we omit here.
Typing Rules: e; + ey :int if e; : int and e : int and similarly for the other operations.
Evaluation: Sequential evaluation of arithmetic expressions proceeds from left to right, until we
have obtained values (which are always representations of integers). More formally:

1 , . 1.,
e +ea = e + e ife; =€}
1 . 1 . .
ny + e = ng + € if eo = €}, and with n; an integer value
1
ny +ng — n with n the integer value representing the sum of the integer values n; and no

We ignore any limitations imposed by particular implementations, such as restrictions on the
number of bits in the representation of integers. Note that some well-typed expressions have no
values. For example, (3 div 0):int, but there is no value v such that (3 div 0) = v.

3 Real Numbers

Analogous to integers. Of course, in the implementation these are represented as floating point
values with limited precision. As a result it is almost never appropriate to compare values of type
real for equality.

(One can compare two real numbers using the function Real.== but not with =. However, this
is dangerous: Due to floating point arithmetic, two mathematically equal real numbers, such as
axb and b*a, may actually turn out not be equal in the computer.)

4 Booleans

Type: bool.
Values: true and false.
Operations: e orelse ey, e; andalso ey, if e; then ey else ez, e < eg, etc.
Typing Rules: e; orelse ey : bool if e; : bool and es : bool. (Similarly for other operations.)
if e; then ey else e3 : ¢

if e1 : bool

and e : ¢

and e3 : ¢t
Observe that the last rule applies for any type ¢t and forces both branches of the conditional to have
the same type.

Evaluation: The sequential evaluation rules for basic Boolean operations are much like they are for
integer operations, left to right, etc. So we focus here on evaluating the if-then-else expression.
First we evaluate the condition and then one of the branches of the conditional, depending on its
value:
if e; then ey else e3 = if €] then ey else ej (if eq = el)
if true then ey else e3 :1> €2

. 1
if false then ey else e3 = e3

Consequently, observe that the expression
if 3 > 4 then 10 div O else 17
has type int and value 17 whereas the expression
if 3 < 4 then 10 div O else 17

also has type int but has no value.

CAUTION: It is very easy to abuse if-then-else expressions. NEVER EVER write something
like if n=0 then true else false. Just write n=0. After all, n=0 is an expression of type bool.
Think types!

Moreover, SML’s powerful pattern matching facility makes many if-then-else expressions
unnecessary. When testing for a constant like 0, it is better to use pattern matching, either via a
case expression or function clauses. Similarly, rather than nest multiple Boolean tests, frequently
it is better to case on a tuple. See page 6.

5 Products

We only show the situation for pairs; arbitrary tuples are analogous.
Types: t; * t9 for any type t; and to.
Values: (v, wv9) for values v; and vs.
Operations: One can define projections, but in practice one mostly uses pattern matching (see
page 5).
Typing Rules:
(e1, e2) ity * tg

ife;: tg

and eg : 9.
Evaluation: Sequential evaluation of tuples is from left to right:

1 . 1

(e1, €2) = (€}, er) ife;=¢]
1 . 1

(v1, e2) = (v1, €b) if g = €}

6 Functions

We start with simple functions and later extend this to clausal function definitions.
Types: t; -> ty for any type t; and to.
Values: (fn (x:t1) => ¢p) for any type t; and expression e
(the formal parameter of the function is x and the body of the function is ep).
Operations: The only operation is application ey e;, written as juxtaposition.
Typing Rules:
e (fn (x:t1) => ¢ep) : t1 > 19
if ey : to assuming x : ¢y.
e ¢9 €1 : to
if ey : t1 => to
and e : 1.
Evaluation: Applications are evaluated by first evaluating the function, then the argument, and

then substituting the actual parameter (i.e., argument) for the formal parameter (i.e., variable)
when evaluating the body of the function:

(evaluate function) ey €1 L e e1 if ey L e
(evaluate argument) vy e = vy el if e == el
(evaluate body) (fn (x:t1) => ep) v] —= [v1/x]ep

where [v1/x] indicates a binding of value v; to variable x. When evaluating e, we may therefore
substitute vy for occurrences of the parameter x throughout e;. This substitution must respect the
rules of scope for variables.

In presentation of proofs, identifiers bound to functions (and sometimes other values) are some-
times not expanded into their corresponding value, in order to shorten the presentation. We do not
consider looking up the value of an identifier in the environment as an explicit step in evaluation.

Totality: We say that a function £ : t; -> to is total if £(x) reduces to a value for all values
x : t1. Implicit in this definition is that f itself reduces to a (function) value.

7 Patterns

Patterns p, which can be used in clausal function definitions, are either constants, variables, or
tuples of patterns. Patterns must be linear, that is, each variable may occur at most once. One
may also use a wildcard, designated by —, as a pattern. (Unlike variables, wildcards can appear
multiple times as subpatterns in a pattern.)

Comment for the future: Once we cover datatype declarations, we will see one other instance
of patterns, namely a value constructor applied to an argument.

The general form of a function definition then is: (fn p; => e
| p2 => ez
| Pn => €én)

Such a function will have type t -> s if every pattern p; matches type t and every expression
e; has type s. When we check whether pattern p; matches type ¢, we have to assign appropriate
types to the variables in p;. We may assume the types of these variables when determining the
type of e;. For example:

(fn (x,y) => (x+1) * (y-1)) : (int * int) -> int

since (x+1) * (y-1) : int assuming x : int and y : int. These assumptions arise, since the
pattern (x,y) must match type int * int. [Why is that? Because x+1 and y-1, and thus x and
y, must each have the same type as 1, namely int.]

To evaluate an application of a function to an argument, we proceed as before: we first evaluate
the function and then the argument parts of the application. If both these evaluations produce
values, then the resulting expression (fn p1 => e;

| p2 => es
| pn => ey) v

is evaluated by trying to match value v against each pattern in turn, starting with p;. If value v
matches some pattern p; (and no prior pattern), it will provide bindings of values for the variables
in the pattern. The resulting expression e; is then evaluated with those bindings. If value v fails
to match any of the patterns pi,...,pn, then the evaluation results in a runtime error called a
“nonexhaustive match failure”.

For example, given the definition

k
fact’ (n-1, nx*k)

fun fact’ (0, k)
| fact’ (n, k)

we have fact’ (3,1) = fact’ (3-1, 3%1) since
1. matching the value (3,1) against the pattern (0,k) fails,

2. matching the value (3,1) against the pattern (n,k) succeeds, resulting in bindings of 3 to n
and 1 to k,

3. substituting 3 for n and 1 for k in fact’ (n-1, nxk) yields fact’ (3-1, 3x1).

8 Case

A case expression has the form:

(case e of

p1 => e1
| p2 => ez
| pn => ey)

A case expression is an expression, not an imperative statement. A well-formed case
expression has a type and may be evaluated, resulting in either a value, an exception, or infinite
looping.

In order for a case expression to be well-typed, the expression e must have some type t’ and
each pattern p; must match that type t’. In addition, all of the expressions e; must have one
and the same type, let’s call it t. If all of these conditions are satisfied, then the type of the case
expression is t as well. In other words, the case expression has the same type as do the e;.

For evaluation of a case expression, one first evaluates the expression e. If evaluation of e
produces a value v, then one tries to match value v against patterns p1,...,p,, in order, just like
with patterns in a function application. If value v matches pattern p; (and no prior pattern), it
provides bindings for the variables in the pattern. These bindings are then used to evaluate the
expression e;. (Of course, evaluation of e or of the selected e; might raise an exception or loop
forever, in which case the same will be true for evaluation of the overall case expression.) If value
v fails to match any of the patterns pq,...,py, then the evaluation results in a runtime error.

Observe that expression e can be any SML expression, not merely a Boolean expression as found
in if-then-else expressions. Consequently, case expressions offer a powerful method for encoding
decisions based on general inputs.

For instance, the following case expression assumes that there are three variables x, y, z in the
environment (perhaps all integers). It views them as 3D coordinates and classifies the resulting
point in a particular way. The type of this case expression is string.

case (x >y, z) of
(=, 0) => "in the xy plane"
| (true, —) => "not in plane, below bisector"

| - => '"not in plane, above bisector"
e With bindings [1/x, 2/y, 0/z], the case will evaluate to "in the xy plane".
e With bindings [1/x, 2/y, 7/z], the case will evaluate to "not in plane, above bisector".

e With bindings [6/x, 2/y, 7/z], the case will evaluate to "not in plane, below bisector".

