
On the Complexity of MAX/MIN/AVRG Circuits

Manuel Blum Rachel Rue Ke Yang

March 29, 2002

CMU-CS-02-110

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We study the complexity of a class of circuits, namely, the MAX/MIN/AVRG circuits. On the wires of these circuits
are real values between 0 and 1; the functions each gate performs are MAX, MIN, and AVERAGE of fan-in 2; there
can be feed-backs in the circuit. It can be shown that every such circuit has at least a \stable" solution, meaning that
there is a way to set each wire to a particular value such that each gate is satis�ed. However, �nding a stable solution in
polynomial time seems to be a tricky problem and remains unsolved. We discuss some results concern this computation
model, as well as its applications.

Partially supported by the NSF Aladdin center.

Keywords: circuits, complexity, NP, co-NP, two-person game

1 Introduction

We consider a family of circuits which di�er from conventional boolean circuits in three ways: (1) We allow feed back;
(2) instead of logic gates we have fan-in 2 MAX, MIN, and average gates; (3) we allow real values between 0 and 1 on all
wires, although we assume that the inputs to the circuit are either 0 or 1. All circuits we consider will be in this family.
This model was �rst introduced by Condon [C92, C93].

Without loss of generality, we may assume that our circuits also have gates setting their outputs to constants between
0 and 1.

De�nition 1 A gate of a circuit is satis�ed if its output is correct, given its inputs. An assignment to a circuit is
a mapping from the set of all the gates to the interval [0; 1], s.t. each gate is assigned a real value. An assignment is
stable if every gate is satis�ed. A solution to a circuit, given �xed boolean inputs, is any stable assignment of values
to its output wires. For any circuit C, let XC be the set of output wires in C.

Next, a (natural) de�nition of sub-circuits.

De�nition 2 (Sub-circuits) Given a circuit C with an assignment and a subset S of all the gates, the sub-circuit
de�ned by S consists all the gates in S and all the wires within S. For wires whose outputs are in S and inputs not in
S, we replace its input by a constant value.

Now, the distance.

De�nition 3 (Distance) If we view each assignment as a vector in Rn, we de�ne the distance between any two
assignments to be the L1 norm, namely, the distance between two assignments is the maximum value di�erence between
them at each gate.

Domination and comparisons.

De�nition 4 (Domination) Given two assignments A1, A2 to the same circuit, and we represent them as vectors:
A1 = ha11; a

2
1; :::; a1i and A2 = ha12; a

2
2; :::; a

n
2i. We say A1 dominates A2, or A2 is dominated by A1, if a

i
1 � ai2 for

all i = 1; 2; :::; n, and we denote that by A1 � A2.

De�nition 5 (Monotone sequence) Given a sequence of assignments A1; A2; :::; An, we say the sequence is mono-
tone, if A1 � A2 � :::An, or A1 � A2 � ::: � An. We can be more speci�c by saying the sequence is increasing or
decreasing.

2 How to Converge

A central question for the circuit is: does it have a solution? It turns out that the answer is always YES:

Theorem 1 For any MMA-circuit, it always has at least one solution.

Then the next question is: how do we �nd it? A natural intuition is: if we somehow \run" the circuit, will it converge
to a solution? Intuitively, suppose we give a circuit an arbitrary assignment, which might not be stable, if we let the
circuit \run" for a while, it should be able to \converge" to a stable one, or a solution. This question is much more
subtle than we �rst thought.

2.1 Synchronous Update

If we are not careful, things might get tricky: observe the following \ip-op" type circuit. If we let both gate update
simultaneously, the assignment might not converge.

So, \synchronous" transition is bad, and we want a way to run the circuit very asynchronously, so that it will bound
to converge. The intuition is we want to change one gate at a time, and we want to do that in a pre-de�ned order.

2.2 Gate-by-gate update

If we update the circuits gate-by-gate, we might be able to converge if we are careful about the starting-point.
One easy observation is that if you start from 0, or the all-zero assignment, simply running the circuit in any arbitrary

order will lead to a solution: actually this is the minimal solution. Also if we start from all-one assignment, we will end
up with the maximal solution:

1

MAXMAX

0 1

Figure 1: Bad case: circuit might not converge

Lemma 1 (Convergence for gate-by-gate update) For any MMA-circuit, if we start the assignment with 0 (resp.
1),and update the gates (namely, change the output of a gate according to its current input) in any arbitrary order,
the assignments we are getting converge to a solution, and the solution is the minimal (resp. maximal) solution for the
circuit.

Proof 's sketch: Notice that all the gates (MAX, MIN, AVG) are monotone gates, and thus if we start from all-zero, no
gate will decrease its output. Therefore when we are updating the circuit, we get monotonically increasing assignment,
and since we have the apparent upper bound for the assignments, we know the assignments will converge to a solution
| denote this solution by S0.

To see that S0 is the minimal one, think of the following experiment: we take two copies of the circuit, give the
all-zero assignment to one copy | call it C1, and give an arbitrary solution, S0 to the other | call itC2. Then we run
the two circuits simultaneously in the same order. We know that C1 will converge to the solution S0, while C2 will
remain to be S0 since all the gates are already satis�ed. But again since the circuit is monotone, we know at any time
the assignment at C2 dominates the assignment at C1 and therefore S0 dominates S0. This is true for any S0 and thus
S0 is truly the minimal solution.

The same argument shows that the solution we get from the all-one assignment is the maximal solution.

2.3 Converging the hard way

We describe a complicated way that converges any original assignment to a solution.

Operation 1 (Converging an arbitrary assignment to MMA-circuit to a solution) We describe how to oper-
ate on the circuit in the certain way to make sure it converges1.

� CONVENTION We arbitrarily order the gates by G1; G2; :::; Gn, and name their output values by X1; X2; :::; Xn.

� INPUT The input is an assignment ha1; a2; :::; ani, where 0 � ai � 1; 8i = 1; 2; :::; n, meaning Xi = ai; i =
1; 2; :::n.

� OUTPUT After the operation, the circuit will stay in a solution s1; s2; :::; sn. The solution is uniquely determined
by the input assignment.

� ACTION The actual actions are hierarchical, and we will de�ne them in terms of \level"s.

{ Level 1
The action of level 1 is very simple: given an arbitrary assignment, we �x the values at the outputs of gate
G2; G3; :::; Gn, and change the output of gate G1 according to its input.

{ Level i (i = 2; 3; :::; n)
For action of level i, it is recursively de�ned as the following: we �x the outputs of gates Gi; Gi+2; :::; Gn, do
actions of level i� 1 continuously, until the sub-circuit consisting of G1; G2; :::; Gi�1 converges to a solution,
assign the outputs of gates G1; :::; Gi�1 to the solution, and then change the output of gate Gi according to
its input.

The operation is just continuously doing action of level n, until the assignment converges to a solution.

Intuitively, the operation we perform is: each time we run gate Gi for one step, we will let all gates G1; G2; :::; Gi�1

run for many (maybe in�nitely) steps to make sure they converge, and then run Gi for one step, then G1; :::; Gi�1 for
many steps, and so on, and so to let Gi converge also.

The reason our operation is valid is guaranteed by the following lemma:

1We don't use the term \algorithm" here, since the operation is only mathematically (and physically) well-de�ned, and might take in�nite
amount of time to simulate on a digital computer.

2

Lemma 2 At each level of action, the following properties are preserved:

1. The operation is \shrinking", namely, given any two assignments A1 and A2 for the same circuit, and then after
one step of level i, suppose the values become B1 and B2, respectively. Then we have dist(A1; A2) � dist(B1; B2).

2. The operation is monotone, i.e., if we perform a sequence of actions of level i, and get a sequence of assignments
A1; A2; :::; An; :::, then the sequence is monotone.

3. At each level i, the sequence of actions will converge to s solution for the sub-circuit of gates G1; G2; :::; Gi.

Proof: We prove lemma 2 by induction.
Base case: i = 1. Notice each individual gate (MAX, MIN, AVRG) is a \shrinking" function, i.e., for any x1; x2; y1; y2,

we have
jg(x1; y1) � g(x2; y2)j � MAXfjx1; x2j; jy1; y2jg

where g is MAX, MIN, or AVRG. For level 1, we only need one step, and then the sub-circuit (of only the gate G1) is
satis�ed. So the operation is shrinking, monotone, and it converges trivially.

Inductive case: suppose we have proved the lemma for up to level (i � 1), now we look at level i. Since for actions
of up to level i, the gates Gi+1; :::Gn are all �xed, we only need to look at the sub-circuit of G1; G2; :::; Gi. Suppose
we start with an arbitrary, we �rst converge the gates G1; G2; :::; Gi�1 to a satis�ed assignment | this is guaranteed to
succeed by the induction hypothesis. Say now the assignment is A = ha1; a2; :::; aii. Then we change the output of Gi

according to its input: say we change it from ai to bi. Then we let gates G1; :::; Gi�1 run again to converge to solution
b1; b2; ::::; bi�1.

Here is the observation: in the process, we are changing one gate at a time, and thus it is easy to see the \shrinking"
property is preserved. A bit formal: given two di�erent original assignments, if we perform actions of level (i� 1), then
by induction hypothesis, their distance will not increase. Notice we might do level (i � 1) for in�nitely many times,
but the point is when both converges to a solution, then the distance between the two solutions is still bounded by
the distance of the original assignments. So however many steps, and however many levels of actions we perform, the
operation is always a \shrinking" one.

Next is to show the monotonicity. WLOG we assume that bi > ai, i.e., the output of Gi increases in this step.
Then gates G1; G2; :::; Gi1 start to change only because of the change of Gi (in other words, if Gi doesn't change,
G1; G2; :::; Gi�1 wouldn't change either, since they are already stable). Then observe all the gates are monotone gates,
so any gate that takes in Gi as input will also increase since Gi increased, and any other gate will also increase (or
stay put). Since in this step, Gi is the only source that makes the change2, the overall changes for all gates are all
non-negative. In other words, the new solution for gates G1; :::; Gi�1, b1; b2; ::::; bi�1, will dominate the old one, namely,
a1; a2; :::; ai�1. Thus overall, the assignment after the step dominates the assignment before the step. Then again by
the monotonicity of each gate, the next step will bring the assignment to an even higher position, and the assignment
sequence is monotone.

Now the converging is obvious: since we have an monotone assignment sequence, and the assignment is clearly
bounded (the value of any gate is always between 0 and 1), it must converge.

Now it is easy to see the solution we are converging to is indeed unique and well-de�ned.

2.4 Time-average convergence

We discuss another way to converge the circuit from ANY assignment to a solution. The idea came from Avrim Blum
and a large part of the proof comes from Adam Kalai.

The operation is very simple: we do synchronous update, i.e., we update all the gates simultaneously, but the trick
is: we don't update the gates \all the way to the new value", rather we take a convex combination of the old value and
the new value. To be more precise, we can use a function f : [0; 1]n ! [0; 1]n to denote the mapping that \update the
output of each gate according to its input", then our update scheme is:

g(An) := �An�1 + (1� �)f(An�1)

We will always use f(�) and g(�) to denote the \direct update" operation and the time-average operation, respectively.
Notice that when � is a rational, the convergence can be simulated by a MMA-circuit that has some more AVG gates

attached to the original gates. In this case, we call the original gates the primary gates and the added AVG gate the
secondary gates. Figure 2 shows an example for the case � = 1=2. Also notice the new circuit and the old circuit have
exactly the same solution set.

2This is actually the core property of our operation that guarantees the convergence | the reason the ip-op example fails is exactly
some gates changes simultaneously, and some goes up, and some goes down.

3

AVE

BA

C

 Foo

BA

C

 Foo

Cn = Foo(An−1, Bn−1) Cn=(Cn−1 + Foo(An−1, Bn−1))/2

Figure 2: Time-average convergence: case � = 1=2

We show that this update scheme will guarantee to converge regardless where is starts from. We �rst make some
observations.

Observation 1 The operation g(�) is a shrinking, monotone, and continuous mapping.

Proof 's sketch: Since g(X) = � �X + (1 � �) � f(X), and f(�) is shrinking, monotone, and continuous.

For this subsection, we will use X0 to denote an arbitrary assignment and de�ne

Xn = g(Xn�1; n > 0

namely, Xn are the assignments we get after applying g repeated. We will show that fXng converges to a solution.

Observation 2 For all n � 1,
jXn+1 �Xnj � jXn �Xn�1j

Proof 's sketch: Notice g is shrinking.

Now we will give a proof that fXng converges.
Notice that if the MMA circuit doesn't have any MAX/MIN gates, things are much easier: we are only left with AVG

gates, and then both f and g are non-negative linear functions. We love linear functions. However, f and g not far from
linear functions | they are piece-wise linear.

Observation 3 Suppose an MMA-circuit contains k MAX/MIN gates, then we can partition the whole space [0; 1]n into
2k polytopes, such that f when restricted on each of these polytopes is a linear function.

Proof 's sketch: We can view each MAX/MIN gate as a LEFT/RIGHT gate, according to their input values. Notice
that LEFT and RIGHT are both linear functions. There are totally k MAX/MIN gates, and therefore totally 2k possible
LEFT/RIGHT settings of these gates, which correspond to 2k di�erent linear functions. Also notice each setting gives
a set of linear constrains (e.g. if A = MAX(B;C) and this MAX gate is set to LEFT, then the constraint is B � C). We
include the constant gates 0 and 1 in our circuit so as to make sure the function is indeed a linear function, instead of
an a�ne one.

Then we can write down all these 2k linear functions as f1; f2; ::::; f2k and then we know that

8X 2 [0; 1]n; 9i 2 f1; 2; :::;2kg; s:t: f(X) = fi(X)

We can write down the matrices for each of these linear functions: we use Fi to denote the matrix for the i-th linear
function fi. Then we have:

Observation 4 For each i 2 f1; 2; :::;2kg, the matrix Fi satis�es:

1. Each entry of Fi is non-negative.

2. Each row of Fi adds up to 1.

Then notice that we can express the Gi's in terms of Fi's:

Gi = �I + (1� �)Fi

and thus we have

4

Observation 5 For each i 2 f1; 2; :::;2kg, the matrix Gi satis�es:

1. Each entry of Gi is non-negative.

2. Each row of Gi adds up to 1.

3. Each entry on the diagonal of Gi is at least �, and if it is not 1, it is at most (1 + �)=2.

Since when we apply g, we are applying the same linear function on each polytope | we use Pi to denote the i-th
polytope. Then we can ask what happens to a polytope as a whole under the function g? Notice it is a linear function
and thus the result is another polytope.

Then we will prove this nice lemma:

Lemma 3 For each polytope Pi under the operation g, either one of the following events is true:

1. Pi remains unchanged, in which case all the points in Pi are solutions.

2. Pi is mapped to a new polytope Qi, s.t.
jjQijj � � � jjPijj

for some constant �. Where we use jjXjj to denote the measure of polytope X.

Proof: We start by stating some facts about determinants.

Fact 1 Suppose a polytope P is mapped to another polytope Q under the matrix M , then

jjQjj = j det(M)j � jjP jj

Fact 2 A matrix A has determinant at most 1, if for each row, the absolute values of the entries add up to be at most
1. Moreover, if there is a row whose entries' absolute values add up to be 1 � �, then the determinant of A is at most
1� �. More formally (and more concisely), we have

det(A) � min

8<
:

nX
j=1

jaijj

9=
;
i

Proof 's sketch: By induction on n, break the determinant down into sums of smaller determinants.

Now we look at the polytope �P and the matrix �G that operates on �P . If �G is the identity matrix, then apparently �P
remains unchanged under �G and thus it remains under the operation g, which means all points in �P is a solution |
this is the case 1 in the lemma.

If �G is not the identity matrix, then we use Aij to denote the (i; j)-th entry of �G. WLOG we can assume that

0 < a11 < 1

Then from the observation, we know that a11 � (1 + �)=2.

a11

akk

a1k

Figure 3: Determinants

5

Then we can compute the determinant of �G by expanding it in the �rst row, and the crucial observation is that akk
is guaranteed to be at least � for each k, and thus for the determinant we get by removing the 1st row and the k-th
column, it has determinant at most 1� �, since akk is removed from the sub-matrix. Now we have

det(�G) =
nX
i=1

�a1i � det(G1i)

� a11 � det(G11) +
nX
i=2

a1i � det(G1i)

� a11 +
nX
i=2

a1i � (1� �)

= a11 + (1� a11)(1� �)

= 1� (1� a11) � �

= 1� (1� �)�=2

and 1� a1k � � is a constant also. So in either way, when �G is not identity, its determinant is strictly smaller than 1 |
which translates to Pi's measure gets reduced by a constant factor. This is the case 2 in the lemma.

Intuitively, what the lemma says is: the polytope that's not the solution will keep strictly shrinking. One immediate
results from the lemma is:

Corollary 1 We call all an assignment X \bad", if gn(X) doesn't converge as n!1. Then the set of bad assignments
has measure 0.

Proof: Notice if X got mapped to itself, then it is a solution. So each bad point is in a shrinking polytope.

But we really something stronger: we want to say the bad set is the empty | a set of measure zero might be bad,
since all the points we can operate on, namely all the rational points, have measure zero.

It turns out it is not hard to amplify the Corollary 1 to the following theorem:

Theorem 2 From any assignment X, gn(X) converges as n!1.

Proof: Suppose to the contrary, there exists an X0, such that fXn = gn(X0)g doesn't converge. But we know some
sub-sequence of fXng converges | say there is a subsequence fXing converging to A. Take an � > 0 and look at all
the Xn's that's at least � away from A | if there are only �nite left, we pick a smaller �. Since fXng doesn't converge,
there exists an � such that there are in�nitely many assignments in fXng that are � away from A. There these points
have a subsequence that converges to another point B. We know that jjA�Bjj > �. We also know that for any � > 0,
there exists N1 and N2, such that jjXN1

�Ajj � � and jjXN2
� Bjj � �.

Now since all points that don't converge have measure zero, we know there exists a Y which converges and jjX�Y jj �
�=5 | otherwise the ball centered at X with radius �=5 contains all the bad points: that's positive measure. We use
fYng to denote the sequence of points when applying g. Now fYng converges, and thus there exists an N , such that for
all m > n > N , jjYn � Ymjj � �=5.

Then take M1 > N and M2 > N , such that jjXM1
�Ajj � �=5 and jjXM2

�Bjj � �=5. Then we have

� < jjA�Bjj

� jjA�XM1
jj+ jjXM1

� YM1
jj+ jjYM1

� YM2
jj+ jjYM2

�XM2
jj+ jjXM2

�Bjj

� �=5 + �=5 + �=5 + �=5 + �=5

= �

Contradiction.

Actually this gives another way to converge the circuit, and this also gives a continuous mapping that's as good as
the one we got in the last section.

3 Topology of the Solution Space

We discuss the topological properties of the set of the solutions to a circuit.

6

3.1 Continuous Mapping

Now we have a way to start from any initial assignment, and converges to a unique solution. We can view this as a
mapping, from the space of initial assignments, i.e., f0; 1gn, to the space of solutions { call it �. We write this as

� : f0; 1gn 7! �

Observation: it is a \shrinking" mapping, namely,

dist(�(A); �(B)) � dist(A;B)

for any A;B 2 f0; 1gn. It is a monotone mapping, namely, if A � B, then �(A) � �(B), for any A;B 2 f0; 1gn. It
derives directly from the lemma in last section.

We use 0 and 1 to denotes the points h0; 0; :::;0i and h1; 1; :::;1i. Remember � is a lattice3, and it has a minimal
solution and a maximal one. Use MIN and MAX to denote them. We have the following observations:

Lemma 4 For any s 2 �, �(s) = s.

It is intuitively obvious, since the converging won't change any satis�ed gate.

Lemma 5 �(0) =MIN and �(1) =MAX

Proof 's sketch: Notice MIN dominates 0, we have �(0) � �(MIN) =MIN. But MIN is the minimal point in �,
and thus MIN � �(0). Therefore we have �(0) =MIN.

The same proof goes for �(1) =MAX.

The next one is important:

Lemma 6 � is continuous4.

Proof: The shrinking property of � already guarantees the continuity: take any � > 0 small enough and any P;Q 2
f0; 1gn, dist(P;Q) < �, we have dist(�(P); �(Q)) � dist(P;Q) < �. That means: any neighbor of point P will be mapped
into the neighbor of �(P).

3.2 Path-connectness and One-Or-In�nite Theorem

Now, � is a continuous and onto mapping from f0; 1gn to �, and by the well-known fact (say, page 265 of [C66], or page
16 of [J84]), we know � is path-connected, since f0; 1gn is path-connected. Intuitively, that means if you arbitrarily pick
two points P;Q from �, then there is a continuous path that connected P and Q, and the path is completely in �.

So, we have

Theorem 3 � is path-connected.

This turns out to be pretty powerful, since one trivial corollary is:

Corollary 2 (One-Or-In�nite Theorem) If � contains more than one point, then it contains uncountably many.

Proof: If � contains two distinct points P and Q, then there is a path connecting them, and all points on the path
are in � | this is a continuum.

4 Much Ado About Rationals

In this section we are interested in rational values, and especially the \simple" rational numbers | those with small
denominators.

3This is from Manuel.
4Pedantically, or more strongly, it is uniformly continuous.

7

4.1 Complexity of Circuit vs. Complexity of Rational

Notice that given a circuit, both its max and min solutions are rationals, and from [C92], we know all values are rationals
with denominator less than or equal to 4n.

Now we prove a converse result: for any rational number p=q, where 0 < p < q < 2n, we are build a circuit using
O(n) gates, and the output of one gate is p=q. Actually we will just play with a little algebra and we only need AVG
gates.

First, let's prove some lemmas:

Lemma 7 For any integer n and integer x, 0 < x < 2n, one can compute x=2n using no more than n gates.

Proof: By induction on n. The base case is n = 1, trivial.
Now if the lemma is true for n � 1, then we look at the case for n. If x < 2n�1, then x=2n = AVG[x=2n�1; 0],

otherwise x=2n = AVG[(x� 2n�1)=2n�1; 1].

Okay, given one can compute x=2n, we can actually do x=2n �A, given any input A.
Next we look at the linear combination of 1 and A:

Lemma 8 For any integer n and integer x > 0; y > 0, x+ y < 2n, one can compute (x+ y �A)=2n using no more than
2n gates, when given the input A.

Proof: Again by induction, base case (n = 1) is trivial.
Now if the lemma is true for n� 1, we look at the case for n.

� If x > 2n�1, then (x+ y �A)=2n = AVG[1; ((x� 2n�1) + y �A)=2n�1].

� If y > 2n�1, then (x+ y �A)=2n = AVG[(x+ (y � 2n�1) � a)=2n�1; y].

� Otherwise both x and y are less than 2n�1 and thus (x+ y �A)=2n = AVG[x=2n�1; y �A=2n�1]. by Lemma 7, we
can compute each part using n� 1 gates. So that's 2n� 1 gates in total.

Now we are ready to prove the main thing:

Theorem 4 For any integer n, and rational p=q, where 0 < p < q < 2n, we can construct a circuit with O(n) gates,
which have a unique solution. In the unique solution, one of the outputs of the circuit is p=q.

Proof: WLOG assume q > 2n�1, since otherwise we can �nd a smaller n. Let X = p=q and k = 2n � q. Then notice
x is the only solution to the linear equation

k �X + p = 2n �X

or
k �X + p

2n
= X

But notice k+p = 2n�q+p < 2n, and thus by Lemma 8, givenX, one can construct a circuit that outputs (k �X+p)=2n.
Then we feed this output back to X, and we are done. The number of gates is still bounded by 2n.

Here is a �gure illustrating the construction.

So we can relate the complexity of rational numbers (de�ned as number of bit required to describe such a number)
to the complexity of the circuit: basically, all the values on the gates of a size n circuit are of complexity O(n), and all
rational numbers between 0 and 1, and of complexity n, can be contracted by a circuit of size O(n).

Next, we look at a more complicated theorem:

Theorem 5 Suppose we have a circuit, C, of size n, and a rational number x = p=q, where 1 < p < q < 2m. If there
is a solution to the circuit (not necessarily the minimal/maximal solution), and one gate g has value x, then there must
exist a solution where g still has the value x, and all other gates have rational values of complexity O(m+ n).

This is actually saying the circuit is \inherently rational" | even when we �x a gate with a speci�ed value, we can
still have a \reasonably simple" rational solution, whenever there is a solution.

Proof 's sketch: The proof is actually easy: notice if we �x each of the MAX and MIN gates to one direction (namely,
let each MAX or MIN gate output of speci�ed inputs), we get a circuit consists of only AVG gates. But then this is a
linear system, and if it has a solution, then it must have a rational solution.

Since we know the circuit has a solution with the value of g be x, we just �x the MAX and MIN gates as in the
solution. Now we get a linear system that has a solution even if we add one more constraint: g = x. Since it has a
solution, it must has a rational solution, and each number in this rational solution has complexity at most m+ 2n.

8

X

(k*X+p)
n 2

2n Gates

e

b
a

k
c

d

f
e

Figure 4: Building a n-bit rational using O(n) gates

5 The Recon�guration Lemma

We prove a lemma, namely the Recon�guration Lemma in this section. We feel that this lemma is very useful in proving
things about the circuit and it provides a lot of insights to MMA circuits.

De�nition 6 (Recon�guration) Let g be a gate in an mma circuit C. We may recon�gure g by

� changing the inputs to g;

� changing the function g computes. In particular, we allow the output of g to be set to any constant in the interval
[0; 1].

Let C be an MMA circuit; let R = fg1; : : : ; gkg be a subset of the gates in C; let C� be a circuit obtained from C
by recon�guring the gates in R. Suppose that the unique minimum solutions of C and C� are S and S�, respectively.
De�ne �C;C� := MAXg2RfjgS � gS� jg.

Lemma 9 (Recon�guration Lemma) Let C be an MMA circuit; let C� be a circuit obtained from C by recon�guring
a subset R of the gates in C; Assume C and C� have minimum solutions S; S�, and let m 2 R be such that jmS�mS� j =
�C;C� . Let G be the set of all gates in C. Then MAXg2GfjgS = gS� jg = �C;C�.

Proof: Let C�� be the circuit obtained from C by recon�guring each gate g 2 R by �xing its ouputs to the constant
gS� . Then S� is also a solution to C��. We assume without loss of generality that C� = C��.

De�ne starting assignments Cstart and C�start as follows:

� For all g 2 G nR; gCstart
= 0.

� For all g 2 G nR; gC�

start
= 0.

� For all g 2 R, gCstart
= gS.

� For all g 2 R, gC�

start
= gS� .

Imagine the following experiment: Start C and C� in their starting assignments Cstart and C�start, respectively.
Now run the circuits in tandem, in each time step updating the same individual gate in both circuits. Let the value of
gate g in time step i be gi in C and g�i in C�. The sequence < gn > converges to gS; < g�n > converges to g�S . The
sequence < jgn � g�nj > converges to �C;C� .

Base case: for g 2 R, jg�0 � g0j � � by de�nition. For g 2 G n R, jg�0 � g0j = 0 � �. Inductive step: let z 2 G
compute the function f(x; y), where x; y are the inputs to z, and f is a max, min, or average function.

Claim: For any p; q 2 <, jf(x; y) � f(x + p; y + q)j � MAXfjpj; jqjg. Suppose that z is the gate to be updated in
step i+ 1. By hypothesis, after step i, 8g 2 G; jg�i � gij � �. By the Claim and hypothesis, jf(ai; bi) � f(a�i ; b

�
i)j � �.

Thus we have
jzi+1 � z�i+1j = jf(ai; bi) � f(a�i ; b

�
i)j � �:

We have shown that for all n, jzn � z�nj � �. In addition, 8z 2 G; limn!1 jzn � z�nj = jzS �ZS� : So jzS � zS� j � �:

9

Next, we show how one can use this lemma to prove that the stable circuit problem is in NP \ co-NP.
Let C be an MMA circuit; let S be a solution to C; let M be the minimum solution to C. Let MAX be the set of

max gates in C; let MIN and AVG be the sets of min and average gates, respectively. Let LP be the linear program

MIN
X

i2MAX

i

subject to

x � afor all x 2MAX; a an input to x

x =
a+ b

2
for all x 2 AV G; a; b inputs to x

We use the phrase "�x min gate x left or right according to S" to mean, "if in S, x is equal to its left input,
recon�gure x by making it equal to its left input, and similarly set X to its right input if in S x is equal to its right
input. Let C� be the circuit obtained from C by �xing the output of each min gate according to S.

Claim 1 If S = M , then LP run on C� will return S.

Proof: Let M� be the minimum solution to C�. LP returns M�. S is a solution to C�, so M� � S. Suppose
M = S 6= M�. Then M� cannot be a solution to C. The constraints of LP guarantee that all max and average gates
are satis�ed, so any unsatis�ed gates must be min gates �xed to the higher of their two inputs. But in that case, all
unsatis�ed gates want to go down, and by monotonicity, there is a solution M 00 < M� < M . Contradiction.

Claim 2 If S 6= M , then LP run on C� may return S. In that case, there must be a min gate x with inputs a; b such
that xS � xM = �C;C� and S(a) = S(b).

Proof: Since S is a solution to C�, every min gate y is less than or equal to both of its inputs in S. Suppose that y
is a min gate with an input w such that yS < wS , and yM = wM . (There must exist such a y; otherwise all min gates
would be set as in M , and LP would have returned M .) Then

� � wS �wM > yS � yM

The Claim follows, by the Recon�guration Lemma.

Tweaking

Let D be any set of min gates known to contain the set of min gates fx : jxS � xM j = �g. The algorithm TWEAK
applied to the pair (C�; D) does two things:

1. Recon�gures every gate x 2 D by �xing x to the constant xS � �, for some � < 4�n�1;

2. Uses LP to �nd the minimum solution for the recon�gured circuit.

Let CT and ST be the circuit and minimum solution obtained by applying TWEAK to (C�; D).

Claim 3 If S = M , then for some x 2 D with inputs a; b, xST < MINfaST ; bST g.

Proof: By the Recon�guration Lemma, yS� � yST � � for every gate y. It follows that for every tweaked gate x 2 D
with inputs a; b, xST � MINfaST ; bST g. Suppose this were satis�ed at equality for every x 2 D. Then every x 2 D
would be satis�ed by ST . By monotonicity, any unsatis�ed gate in C would be too high; again by monotonicity, it
follows that there must be a solution to C lower than S = M . Contradiction.

Claim 4 if S 6= M , then for any x such that xS � xM = �, xST � MINfaST ; bST g, where a; b are the inputs to x.

Proof: By de�nition, xM = MINfaM ; bMg. By the Recon�guration Lemma, aST � aM +� and bST � bM +�. The
Claim follows.

The Claims above establish that the following algorithm correctly decides whether or not S = M .
Iterated Tweaking

1. Run LP on C�. If S� 6= S, halt and output S 6=M .

2. Set D := fxi 2MIN : xiS� = aiS� = biS� , where ai; bi are inputs to xi.

10

3. apply TWEAK to (C�; D).

� If 8x 2 DxST � MINfaST ; bST g, halt and output S 6=M .

� If 8x 2 DxST < MINfaST ; bST g, halt and output S =M .

4. Set D := D n fx 2 D : xST < MINfaST ; bST g. Go to Step 3.

Analysis. By Claims 1, 3, and 4, the output of Iterated Tweaking is always correct. Since D shrinks by at least
one element in each iteration, the algorithm must halt after calling the TWEAK subroutine at most jMIN j times. So
iterated tweaking decides whether S =M after solving O(n) linear programs, each of size linear in n.

Corollary 3 Fix a canonical way of expressing a (circuit, solution) pair in binary. Given a circuit C whose minimum
(possibly unknown) solution is M , the decision problem, "Is the �rst bit of the canonical description of (C;M) a 1?" is
in NP\co-NP.

Proof: Guess M . Use Iterated Tweaking to prove that M is the minimum solution to C. Look at the �rst bit of
(C;M) and decide whether or not it is a 1.

6 Multiplication

This section is to investigate the computing power of the MAX/MIN/AVG circuit. We will show 3 results on doing
multiplication | two negative and one positive, all concerning di�erent models of doing multiplication.

There are two ways to look at the multiplication: one is the traditional digital way: we encode each number in binary
(or wherever), and do the multiplication in binary, like 101�11 = 1111 | this is the computer science way; the other is
the analogous (probably more traditional) way: take two real numbers a and y, and output their product xy | notice
our circuit can have real numbers on the wires, so it make sense to look at multiplication in this way. Sadly we will see
neither way would work here.

6.1 Binary Multiplication

Let's �rst de�ne the binary multiplication model:

De�nition 7 (Binary Multiplication Circuit) a Binary Multiplication Circuit of size n is a MAX/MIN/AVG
circuit with 4n special wires, denoted by A0; A1; :::; An�1, B0; B1; :::; Bn�1, and C0; C1; :::; C2n�1, along with 2 distinct
real numbers 0 � a < b � 1 | think of a and b as encodings of 0 and 1. If we set each Ai and each Bi to be either a
or b, then the circuit has a unique solution with each Ci also set to be either a or b. What's more, then we read these
wires as binary encodings of integers, and get two n-bit numbers A := An�1 � � �A1A0,B := Bn�1 � � �B1B0, and a 2n-bit
number C := C2n�1 � � �C1C0. We should have C = A �B.

The �gure below is an illustration.

A B

C

Binary Mutiplication

Figure 5: A binary multiplication circuit

Unfortunately, we have the following negative result:

Theorem 6 Binary multiplication circuit of size n � 2 doesn't exist.

Proof: Assume to the contrary there exists such a circuit with m gates. Set wires A0 = A1 = B0 = b, and the rest Ai
and Bi to be a. Then we are computing 11� 01 = 0011, and we should have C0 = C1 = b. Denote the current setting
by P . Since P is a solution, �(P) = P .

Next we change wire B1 from a to b | denote the new setting by Q, and let the circuit converge to another solution
{ denoted by �(Q).

11

Notice now we are computing 11� 11 = 1001, and we should have C0 = C3 = b and C1 = C2 = a in �(Q).
Notice we raise the value of wire B1 from a to b to obtain Q from P , and thus Q dominates P . By the monotonicity

of �, we have �(Q) � �(P) = P . But in P , the wire C1 = b, while in �(Q), the wire C1 = a < b. This is a contradiction.

Notice we have proved a muchmore general statement: in general, any boolean function that is not bit-wise monotone,
cannot by computed by the MAX/MIN/AVG circuit. Multiplication is a monotone function in general, but not monotone
in each bit in binary representation.

It also should be noticed that we are pretty strict in de�ning the binary multiplication circuit. There are many
ways we can loosen the de�nition, for example: the length of the two inputs need not to be the same, the length of the
output need not to be twice of the input length; we can use di�erent encodings for di�erent wires; we can even compute
multiplication in Zn for some integer n instead of multiplication in Z... But in general, it is always impossible to do
non-trivial binary multiplication in the MAX/MIN/AVG circuit.

6.2 Real-valued Multiplication

The impossibility of the binary multiplication motivates us to look at the alternative: since each wire can have real
values, is that possible that we construct a circuit that directly computes multiplication in real values? Multiplication,
as a whole, is a monotone function anyway.

Let's be precise by what we mean:

De�nition 8 (Real-valued Multiplication Circuit) A Real-valuedMultiplication Circuit is a circuit with two
special input wires A and B, and a special output wire C, along with a constant � and a sub-rectangle � := [a; b]� [c; d]2
[0; 1]� [0; 1] with positive measure. For any (x; y) 2 �, if we set wire A to x, and B to y, then the circuit will have a
unique solution, with � � xy on the wire C.

The �gure below is an illustration.

Real-valued

Multiplication

A=x B=y

λC= xy

Figure 6: A real-valued multiplication circuit

Unfortunately, this real-valued multiplication circuit is still impossible.

Theorem 7 There doesn't exist a real-valued multiplication circuit

Proof: Assume to the contrary, there exists a circuit with n gates, and a rectangle � that computes real-valued
multiplication.

Notice we can view each MAX gate and each MIN gate as a \multiplexer" that outputs one of its inputs. Each gate
has two choices, and so there are 2n possible settings in the whole circuit. We can thus partition � into 2n partitions,
each one corresponds to a setting of all the MAX and MIN gates.

But since � has positive measure, one of its partitions must have positive measure, too. Denote this partition by
.
Take two points in
,(x1; y1) and (x2; y2). So they should cause the same setting for the circuit, and the circuit

should compute the correct product for both points.
Now we claim the circuit would be linear to the input, i.e, if we feed (� � x1 + (1� �) � x2; � � y1 + (1� �) � y2) to the

circuit, where � is a real number between 0 and 1, the circuit will remain in the same setting, and each wire will also be
the linear combination of the value when we feed (x1; y1) and the value when we feed (x2; y2). This is easily veri�ed by
the following facts:

1. If both a1 > b1 and a2 > b2, or both a1 < b1 and a2 < b2, then � � a1 + (1� �) � a2 > � � b1 + (1 � �) � b2, and

MAX(� � a1 + (1� �) � a2; � � b1 + (1� �) � b2) = � �MAX(a1; b1) + (1 � �) �MAX(a2; b2)

12

2. If both a1 > b1 and a2 > b2, or both a1 < b1 and a2 < b2, then � � a1 + (1� �) � a2 > � � b1 + (1 � �) � b2, and

MIN(� � a1 + (1� �) � a2; � � b1 + (1� �) � b2) = � �MIN(a1; b1) + (1� �) �MIN(a2; b2)

3. For any a1; b1; a2; b2,

AVG(� � a1 + (1� �) � a2; � � b1 + (1� �) � b2) = � �AVG(a1; b1) + (1� �) �AVG(a2; b2)

So if we feed in (� �x1+(1��) �x2; � �y1+(1��) �y2) in wires A and B, we will get the � �� �x1y1+(1��) �� �x2y2)
at wire C.

But when does that equal the product of the input? i.e., when does

� � � � x1y1 + (1 � �) � � � x2y2 = (� � x1 + (1� �) � x2)� (� � y1 + (1� �) � y2)

This is true only when x1 = x2, or y1 = y2.
So that means whenever there are two points P;Q 2
 that don't have the same x- or y- coordinates, then any point

on the line interval PQ (i.e., the points taking the form � �P + (1� �) �Q) is not in
. Then
 only has measure zero5.

6.3 Hybrid Multiplication

It seems we are pretty dead here: in general there is no way to do multiplication in either binary or real value. But, it
turns out we can do the hybrid: if one input is a real, while the other is a binary, then we can do the multiplication,
and pretty easily. This is due to Manuel Blum.

De�nition 9 (Hybrid Multiplication Circuit) A Hybrid Multiplication Circuit is a circuit that has n+1 input
wires: one wire A takes in a real value x, while the other n input wires, denoted by B0; B1; :::; Bn�1 takes in either 0 or
1. And it has an output wire C. For any input to A and Bi, if we view the Bi's as the encoding of an n-bit number, y,
then the value of C is � � x � y=c, where � is a constant independent to the input.

And we have the following positive result:

Theorem 8 (Blum's hybrid) For any n, there exists a hybrid multiplication circuit of size n.

Proof 's sketch: We only show an example for n = 4.
The key observation is that when a is either 0 or 1, and x is between 0 and 1, MIN(a; x) = a � x.
So in the construction, we can use a sequence of AVG gates to get all the \shifts" of x, and then use a sequence of

MIN gates to do the multiplication on each line. Finally we use logn AVG gates to add the partial multiplications up
and get the result.

We only use (n+ logn) AVG gates and n MIN gates, and the constant � = 2�dlogne.

So it turns out the hybrid model works for this kind of MAX/MIN/AVG circuit.

7 New angels { Simulating boolean circuits

7.1 P-hardness: simulating any circuit

Notice if we only allow binary values, then MAX and MIN are like OR and AND gates. Therefore we could use the
MAX/MIN/AVG circuit to simulate a boolean circuit. The problem is no NOT gates are allowed here, and therefore
we can only simulate monotone boolean circuit, which isn't very fun.

However, there is a way to use monotone circuits to simulate a normal, non-monotone circuit. The idea is: for each
input, we take the complement of that input also, and for each output, we also output its complement. So by introducing
the non-monotonicity at the input level, we can eliminate all the NOT gates in the computation.

Let's do an example: suppose we want to compute :(x^y), so we take 4 input wires: x, �x, y, and �y. When computing
x ^ y, we also compute �x _ �y, which is the NOT of x ^ y. As shown in the �gure.

Actually we just keep track of all gates along with all their complements.
In this way, we can simulate all polynomial-size circuits. And also we can do multiplication and all sorts of things.

Even more, it is easy to verify that transforming a normal circuit to such a monotone circuit can be done in log space.
Therefore we have

Theorem 9 MAX/MIN/AVG circuit evaluation is P-hard.

5I am pretty sure that it is the case, but I still don't have an easy topological proof for that.

13

AVG

AVG

AVG

AVG

MIN

MIN

MIN

MIN

AVG

AVG

0 A=x B3B2B1B0

x/2

x/4

x/8

x B3

x B2/2

x B1/4

x B0/8

C = x (B3 + B2/2 + B1/4 + B0/8)/4

Figure 7: A construction for hybrid multiplication of size 4

X X Y Y

F(X,Y) F(X,Y)

AND OR

Figure 8: Using monotone circuit to simulate any circuit

14

7.2 NP-completeness: di�erent formulation of the problem

Since we have the circuit, we can now encode some hard problems, like SAT.

Theorem 10 The following problem is NP-complete: Given a MAX/MIN/AVG circuit, two gates in the circuit, G1,
G2, and two real (or rational) numbers x1, x2, whether there is a solution to the circuit where the output of G1 and G2

are x1 and x2.

The proof is not hard: we will reduce SAT to this problem.

Proof 's sketch: Given any instance of SAT, i.e., a boolean formula �, we will construct a MAX/MIN/AVG circuit
such that � is satis�able, i� the circuit has a solution with two gates having the speci�ed value.

So what we do is we simulate the formula �, that is, we start with all inputs and their complements, and for every
output, we compute its complement also. So our circuit would consists 2n inputs (suppose that � has n variables),
denoted by x1, �x1, x2, �x2, ..., xn, �xn, and 2 outputs, denoted by S and �S. Denote this circuit by C.

Then the SAT problem is transformed to the problem: does the circuit C has a solution, where for each i = 1; 2; :::; n,
the set fxi; �xig = f0; 1g, S = 1, and �S = 0.

But the requirements above can be transformed into:

MAX fMINfx1; �x1g;MINfx2; �x2g; :::MINfxn; �xng; �Sg = 0

MIN fMAXfx1; �x1g;MAXfx2; �x2g; :::MAXfxn; �xng; Sg = 1

We can add more MAX and MIN gates to compute the left hand sides of the above two equations | denote these
two results (represented by two gates) G1 and G2. Then we know � is satis�able, i� there is a solution the circuit such
that G1 = 0 and G1 = 1.

7.3 NP \ co-NP: another way to look at the problem

So if we �x two gates with their desired values, the problem of the existence of a solution is NP-complete. However, we
will see if we just �x one gate with its desired value, and problem is not as hard: actually we will show it is in NP \
co-NP.

Theorem 11 The following problem is in NP \ co-NP: Given a MAX/MIN/AVG circuit C, one gate G in the circuit
C, and a real (or rational) number x, whether there is a solution to the circuit where the output of G is x.

Proof: One direction is easy: that if there exists a solution with the particular gate at the particular value, then
simply showing the solution su�ces the proof.

By Theorem 5, a concise solution (i.e., a solution where each rational number only needs polynomials many bit to
represent) can be shown.

The other direction is a little bit harder. First we utilize the fact that the set of all solutions, �, is path-connected
(Theorem 3). So the projection of � on any of its coordinates is continuous. That means when we look at an arbitrary
gate g, and if its values in the maximal and minimal solutions are vmax and vmin, respectively, then we know for any
v 2 [vmin; vmax], there is a solution with value v at gate g.

So if we are given an x, and there is no solution to the circuit that the value of gate g is x, then x must be either
greater than the maximal value or less than the minimal value at this gate. We can proof this fact e�ciently.

We will use several facts from [C92]:
For any circuit C with n gates and any integer m, there exists a correspondent circuit CMIN, such that:

� The size of CMIN is polynomial in maxfm;ng.

� CMIN has a unique solution.

� For any gate g in C, CMIN contains a correspondent gate g0 of the same type.

� In the minimal solution of C and CMIN, we have g � 1=2m � g0 � g.

So to prove x is smaller than the minimal value at gate g, one simply construct a circuit CMIN, with proper m, and
shows the (unique) solution to CMIN, where the value at gate g

0 i greater than x, and therefore we know the minimal
value of g is also smaller than x

We can do the same thing to show x is greater than the maximal value.
Therefore the problem is also in co-NP.

15

8 Extended model: MMAN-circuit

In this section, we focus on an extended model of the MMA-circuit, namely the MMAN-circuit: we add a new type
of gate, the NOT gate. A NOT gate is a gate with a single input, and the output is 1 minus the input | kind of the
\extension" of the NOT in boolean logic.

X

1−X

Figure 9: A NOT gate

Apparently the MMAN-circuit should have more computation power than the MMA-circuit since the NOT gate
breaks the monotonicity of the MMA-circuit. And it is even not obvious whether the circuit now has a stable solution
at all.

We will show the following results in this section:

1. Any MMAN-circuit has at least one stable solution.

2. There exists a continuous mapping that maps any assignment to a solution. This implies that the One-Or-In�nite
Theorem is still true for the MMAN-circuit.

3. For any MMAN-circuit C , there exists a corresponding MMA-circuit C0, s.t. every stable solution inC corresponds
to a solution in C0.

4. The following problem is NP -complete: given a MMAN-circuit C, one gate in the circuit G and a rational number
x, whether there exists a stable solution to C where the output of G is x. (Notice the corresponding problem in
MMA-circuit is in NP\ co-NP).

8.1 Converging the MMAN-circuit

We discuss an operation on the MMAN-circuit that will take any assignment to a solution. As in the MMA-circuit,
this \operation" is not an algorithm since it might take in�nitely many steps to �nish. However, it can be de�ned
mathematically.

Operation 2 (Converging an arbitrary assignment to MMAN-circuit to a solution) We describe how to op-
erate on the circuit in the certain way to make sure it converges.

� CONVENTION We arbitrarily order the gates with the only restriction that the NOT gates are all at the
beginning: suppose there are n gates in total and there are m NOT gates, there the gates G1; G2; :::; Gm are the
NOT gates and the rest gates are ordered as Gm+1; :::; Gn.

� INPUT The input is an assignment ha1; a2; :::; ani, where ai is the assigned output value for gate Gi, and 0 �
ai � 1 for i = 1; 2; :::; n.

� OUTPUT After the operation, the circuit will stay in the solution 6 s1; s2; :::; sni, such that each gate is satis�ed
if si is the output value of gate Gi. The solution is uniquely determined by the input assignment.

� ACTION The actual actions are hierarchical, and we will de�ne them in terms of \levels"s.

{ Level 0

The action of level 0 is: we �x the values of all the NOT gates and let the rest circuit (which is now an
MMA-circuit) converge to a solution.

{ Level i (i= 1, 2, ... m).

The action of level i is recursively de�ned as follows: �x the gates Gi; Gi+1; :::; Gm, and let the rest of the
circuit (containing i � 1 NOT gates) converge to a solution (we will prove later that the rest of the circuit
will actually converge to a unique solution). Now if gate Gi is satis�ed, namely, the input to Gi equals 1
minus the output of Gi, we are done; otherwise we will continuously change the output of Gi while �xing
Gi+1; :::; Gm | each time Gi changes, the rest of the circuit might change and so is the input to Gi. We �rst

16

move the output of Gi up until 1 and then move it down from 1 to 0 (see �gure 10) | during the move, the
gates that are not �xed are changed as well so as to make sure they are always satis�ed. We will prove later
that in the process of changing Gi, there is at least a moment that Gi is also satis�ed. We stop at the �rst
time Gi is satis�ed and we are done.

0 1

start

Figure 10: The way to change the output value of Gi

Intuitively, the operation is to rank all the NOT gates and then inductively \turn the knob" for each NOT gate to �nd
a solution | but to turn a knob at a higher level would require all the knobs at lower levels to be turned continuously.
This operation is more complicated than the one for MMA-circuit.

The reason our operation is valid is guaranteed by the following lemma:

Lemma 10 At each level i of action, the following properties are preserved:

1. The operation is deterministic, i.e., the value of the gates after one step of level i is uniquely de�ned, and that
naturally de�nes a function for mapping an assignment before one step of level i to an assignment after the step
of level i. We denote this function by � : [0; 1]n 7! [0; 1]n.

2. The function � is \shrinking", namely, given any two assignments A1 and A2 for the same circuit to start with,
then after one step of level i, suppose the values become B1 and B2, then we have dist(A1; A2) � dist(B2; B2).

3. The function � is (uniformly) continuous.

4. The function is piece-wise a�ne. In other words, one can break the domain into �nitely many sub-domains, such
that in each domain, function is a�ne, i.e., it can be written as

�(X) = M �X +C

where M is a constant matrix and C is a constant vector.

Proof: We prove lemma 10 by induction on the number of the NOT gates.
Base case: i = 0. The circuit is actually an MMA-circuit and the lemma follows directly from lemma 2 and lemma 6.

The a�ne-ness needs proof, but this is can be done by straight-forward induction.
Inductive case: Suppose we have proved the lemma for all the MMAN-circuits with no more than (i�1) NOT gates,

now we look at an MMAN-circuit of i NOT gates.
We �rst show that the operation will deterministically map an arbitrary assignment to a solution.
The i NOT gates are, by the convention, ordered as G1; G2; :::; Gi. Now if we \break" the gate Gi, namely, we

�x the output of Gi to an arbitrary value X, and let the input to Gi be a \oating wire" (see �gure 11), we get an
MMAN-circuit of (i� 1) NOT gates.

X

1−X

Y

X

Gi

Figure 11: Breaking the gate Gi

By inductive hypothesis, the operation will take any assignment and map the assignment to a solution, and the
mapping is shrinking and continuous. No consider the following experiment: we give the operation di�erent assignments
as input | all these assignments only di�er on the value of X (i.e., the value of the original output of Gi) and are the
same else-where. The operation will give back a solution for each of these assignments, and if we only focus on the value
of Y , (i.e., the value of the \oating wire" which was the input of the original gate Gi), we get a function

Y = f(X)

17

10

1

1−X

Y

Y=f(X)

Figure 12: The input to gate Gi as the function of the output from gate Gi

The function f is a \restricted version" of the mapping given by the inductive hypothesis: we �x all other inputs except
X, and we only look at Y of the output. This restricted function is still shrinking and continuous. Both the domain of
the range of f are the interval [0; 1]: see �gure 12.

Notice we have f(0) � 1 and f(1) � 0, and since f is continuous, it must intersect with the line Y = 1 � X, i.e.,
there must exist at least a point a, such that if we assignment X to be a, then Y = 1 � a and thus we \put back" the
gate Gi, it will be satis�ed. In the operation, one �nds such a point a by movingX back and forth (�rst all the way up
to 1 and then all the way down to 0), and therefore guarantees this will produce a unique solution.

Now we show the mapping de�ned by the operation on MMAN-circuits of i NOT gates is shrinking and continuous.
In other words, we show that given two assignments A1 and A2 to the same MMAN-circuit of i NOT gates, the solution
we end up getting, B1, B2, satisfy:

dist(B1; B2) � dist(A1; A2)

We write A1 and A2 as:
A1 = ha11; a

1
2; :::; a

1
ni

and
A2 = ha21; a

2
2; :::; a

2
ni

Then after one step of level i� 1 operation, we should get two assignments:

C1 = hc11; c
1
2; :::; c

1
ni

and
C2 = hc21; c

2
2; :::; c

1
ni

where the gates G1; G2; :::; Gi�1; Gm+1; :::; Gn are all satis�ed and we have c1k = a1k, c
2
k = a2k, k = 1; 2; :::; i. Also by

inductive hypothesis, we know that
dist(C1; C2) � dist(A1; A2)

and we will show that
dist(B1; B2) � dist(C1; C2)

For C1 and C2, each of them determines a function from the output of gate Gi to the input of gate Gi | we use f1
and f2 to denote the two functions, as shown in �gure 13. Suppose that X1 and X2 are the intersection points.

We use D to denote dist(C1; C2). Then by inductive hypothesis, we know that for any X, jf1(X) � f2(X)j � D |
think of the two assignments where they agree on gates G1; G2; :::; Gi�1; Gm+1; :::; Gn (value doesn't matter), they both
have X at gate Gi and their values on Gi+1; :::; Gm are those of C1 and C2, respectively. They will converge so that
gate Gi has value f1(X) and f2(X), respectively, while the original distance is bounded by D.

Now let's prove that jX1 �X2j � D. Otherwise we assume that X1 < X2, as shown in �gure 13. We pick another
point X0 such that X1 + D < X0 < X2. Then notice that since both f1 and f2 are \shrinking" by the inductive
hypothesis and thus we know

f2(X
0) � f2(X2) + (X2 �X00) = 1�X0

and since f1(X1) = 1�X1, we have
jf1(X1)� f2(X

0)j > jX1 �X0j

But this is bad | now we pick two assignments E1 and E2: Let E1 and E2 agree on gates G1; ::::; Gi�1; Gm+1; :::; Gn,
let the Gi of E1 be X1 and the Gi of E2 be X

0, and let the gates Gi+1; :::; Gm of E1 be the same as C1 and the gates
Gi+1; :::; Gm of E2 be the same as C2. Then after one operation of level i � 1, the gate Gi should turn to f1(X1 and
F2(X0), respectively, violating the shrinking property.

Therefore jX1 �X2j � D and thus the function is shrinking and thus continuous. The inductive case is done.

18

X_1 X’ X_2

D+ε

f_2(X’)

0

1

Y

Y=f_1(X)

Y=f_2(X)

1

Figure 13: The two functions

8.2 Another way to converge

It turns out that the \time-average" operation for the MMA-circuits can also be used here and also converges. The
proof needs minor changes:

Theorem 12 The time-average operation g also converges in the MMAN-circuits.

Proof: Notice that g is still shrinking and continuous. But it is not monotone any more. We follow the proof 2, the
linear algebra proof. The partition still holds, and we need to modify the proof about the determinant a little, namely,
lemma 3. Notice if we don't include the constants in the vectors, it is still true that for each of the linear (should be
a�ne, to be more precise) function, each row of the matrix adds up to be at most 1. But it is no longer true that each
entry along the diagonal is at least �: think of what happens if a NOT gets its input from itself. However, we can still
bound the determinant | all we want to show is: If there is a row that adds up to be less than 1, then it is at most
(1 + �)=2 and the whole determinant is at most (1 + �)=2. Otherwise we still have each entry in the diagonal is at least
� and at most (1 + �)=2 if not 1, and all the rest proof follows.

8.3 One-or-In�nite Theorem

Now that we have a way to converge the circuit, we got the following theorems:
Continuous:

Lemma 11 There exists a mapping �, that takes an arbitrary assignment to any MMAN circuit and outputs a solution.
The mapping is uniformly continuous.

Theorem 13 The set of all the solutions, denoted by �, is path-connected.

Corollary 4 (One-Or-In�nite Theorem, MMAN circuit) If � contains more than one point, then it contains
uncountably many.

8.4 Relations between MMA-circuits and the MMAN-circuits

Here we show that there is a relation between the MMA-circuits and the MMAN-circuits. Or to be exact, we show how
to construct an MMA-circuit C0 from any MMAN-circuit C, such that any solution in C corresponds to a solution in
C0.

The idea is like the one of simulating any boolean circuit using the MMA-circuits we mentioned before. Below is an
outline of what we do:

Given an MMAN-circuit C, we do the following:

1. Break all the NOT gates First we break all the NOT gates as in �gure 11. Thus we get a \broken" MMA-circuit
| denote it my C1.

19

2. Create a mirror circuit Then we create a \mirror" circuit for C1 | we �rst create a clone of C1, then replace
all the MAX gates by the MIN gates while replacing all the MIN gates by the MAX gates in the clone, and replace
all the 0's by 1's and replace 1's by 0's. Name the resultant circuit by C2.

3. Cross-link Now we want to connect the two \mirrored" circuits: for each NOT gate in C, it corresponds to one
input wire and an output wire in both C1 and C2. We connect the input wire in C1 to the output wire in C2, and
connect the input wire in C2 to the input wire in C1.

MIN MAX

AVG

01

MIN MAX

AVG

01

AVG

0 1

MAX MIN

The Circuit with NOT removed The "mirrored" cricuit

C1 C2
C’

NOT gates removed, cross-link added

C

The original Circuit

Figure 14: How to convert an MMAN-circuit to an MMA-circuit

Figure 14 shows an example of such construction.
Now we show that any solution in C have a corresponding solution in C0. Actually this is not hard: for each gate Gi

in the original circuit, C, we use G1
i and G

2
i to denote the corresponding gates in circuit C0 | G1

i is in the circuit with
NOT removed and G2

i is in the \mirrored" circuit. Then we look at a solution S for circuit C | we use si to denote the
value of the output of gate Gi. Then we claim that if we assign si to gate C

1
i and (1� si) to gate C

2
i , we get a solution

for the corresponding circuit C0.
The proof is omitted.
Notice this construction gives a one-way mapping from a solution for a MMAN-circuit to a solution for the MMA-

circuit and we don't know if it is true in general.

8.5 Unique-solution Circuit

Circuits with unique solutions are always interesting. One common trick to convert an arbitrary circuit to a circuit
with a unique solution is to insert a (1� �) \gate" (actually a sequence of gates) after each of the original gates. In the
MMA-circuit, it is shown that it will always make a unique-solution circuit and the solution in the new circuit is very
close (can be arbitrarily close if you make � very small) to the minimal solution in the original circuit. Now the question
is what happens if we play the same trick to an MMAN-circuit?

We will show that we still get a unique-solution circuit back, and the solution to the new circuit is close to a solution
in the original one | it is not clear what solution it looks like to us now.

Actually the uniqueness is not hard to show, if not trivial. One can use Ann Condon's original proof | one just
\runs" the circuit and it is easy to see that the \change" one makes in each round is shrinking and thus the \running"
will converge to a unique solution. But my favorite proof is the one by Manuel and Rachel: If we �x a MIN/MAX
setting, we get a linear equation like X = A �X +B, which has a unique solution since jjAjj � 1� � < 1 and thus there
is at most one solution for each MIN/MAX setting. Therefore the total number of solutions is bounded by the total
number of MIN/MAX settings, which is �nite. By the one-or-in�nite theorem, there can only be a unique solution.

Now we can have another interesting observation (this is due to Rachel):

Lemma 12 Given a oracle that can solve the unique-solution MMA-circuit, we can solve any unique-solution MMAN-
circuit that is generated by the (1 � �) trick (aka. \stopping game").

Proof 's sketch: Suppose we are given an MMAN-circuit C, we can construct its corresponding MMA-circuit C0. The
crucial observation is that C0 is also a unique-solution circuit since still every gate is followed by a (1� �) gate. Now we

20

NOT

AVG

7/8

AVG

7/8

AVG

7/8

0

7/8

0

0

7/8

1

1

1

NOT

AVG

0 0

7/8

0

0 a

x * r + a * (1-r)

x

r

"Linear Combination" Gate

Original Circuit Unique-solution MMA-circuitUnique-solution MMAN-circuit

x

y

x

y

x1 x2

y1 y2

y = 1/3 y = 112/177

x = y/2 x = 7/8 * y/2 x1 = 7/8 * y1 / 2

y1 = 7/8 * x2y = 7/8 * (1-x)y = 1-x

x2 = 7/8 * (1 + y2) / 2 + 1/8

y2 = 7/8 * x1 + 1/8

x = 2/3 x = 49/177
y1 = 112/177 y2 = 65/177
x1 = 49/177 x2 = 128/177

Figure 15: Finding the unique solution for an MMAN-circuit

can use the oracle to �nd the solution for C0. Notice C0 must have a solution that's corresponding to the solution for
C, and since C0 only has one solution, this solution is the corresponding solution for C! And we can just \read o�" the
solution for C.

Figure 15 shows an example | how one starts with an MMAN-circuit, transform it into a \stopping-game" circuit
and further transfer that to a unique-solution MMA-circuit. One can see that we can \read o�" the solution for the
\stopping-game' MMAN-circuit from the solution of the MMA-circuit.

Notice the following distinction between MMA-circuits and MMAN-circuits:

� For MMA-circuits, if a circuit has a unique solution, then it is a \stopping-game", i.e., for every gate, there exists
a path from a constant input (either 0 or 1) to this gate. The reason being that otherwise we can �nd a closed
\sub-circuit" that doesn't link to any constant gates. Then for any real number between 0 and 1, assigning every
gate in the sub-circuit that value would give us a solution back | notice that MAX(x; x) = MIN(x; x) = AVG(x; x).

� For MMAN-circuit, it is possible for a circuit to have unique solution yet not being stopping. The simplest example
is x = 1� x. Actually the NOT gate does introduce a constant into the circuit.

We actually have the following theorem:

Theorem 14 Given an oracle S that can solve any unique-solution MMA-circuit, there exists a polynomial-time algo-
rithm A, such that AS solves any MMAN-circuit. Namely, AO takes an MMAN-circuit and outputs one solution.

Proof: The algorithm A �rst converts the MMAN-circuit (denoted by C) to a stopping game C0 and uses Lemma 12
to �nd the unique solution for C0. Now what remains to be shown is that there exists a solution for C that is very close
to the solution for C0 (we use S(C0) to denote the solution for C0), and thus we can simply \read o�" the solution for
C from S(C0), if we choose C0 to be very close to C.

So the idea is: we do a series of experiments for C0: in the k-th experiment, we pick the � to be 2�k, and we get
a (unique) solution Sk. Now look at the sequence fSkg, and we know a sub-sequence of fSkg will converge, say, to �S.
Now we show that �S is the solution for the original circuit C.

It is actually basic analysis: We look at the converging sequence fSkng. We know that

8� > 0 9N s:t:8n > N; jjSkn � �Sjj < �

Now take an n > N such that 2�kn < �. We now that gk(Skn) = Skn , where gk denotes the function for the stopping
game when � = 2�k. We also know that jjgk(X) � g(X)jj � 2k for any X. Therefore we know that

jjg(�S) � Sjj � jjg(�S)� g(Skn)jj+ jjg(Skn)� gk(Skn)jj+ jjgk(Skn) � Skn jj+ jjSkn � �Sjj

� � + 2�k + 0 + �

� 3�

21

This is true for any �, and thus we have g(�S) = �S. Therefore we know a subsequence of fSkg converges to a solution
for C, and then we can show the whole sequence actually converges. This is a simple exercise in analysis and is left to
the reader :-).

So in this sense, adding a NOT gate doesn't give you a lot of computation power, since an MMA-circuit oracle can
solve any MMAN-circuits.

9 Another Extended Model: MMCC

We study another extended model for the MMA circuit, which also turned out to be useful. This section is self-contained
and be read independent from the rest of the paper.

9.1 De�nitions and Notations

An MMA circuit is a circuit with fan-in two max, min, and average gates. An input to a gate g in an MMA circuit may
be 1, 0, or the output of any gate in the circuit, including g itself. To avoid excessive notation, we often use the same
variable to denote both a gate and its output.

An assignment to a circuit is a function from its gate set to the interval [0; 1], specifying a value for the output of
each gate. Suppose g is a gate with inputs a; b and output c, that computes a function f . Then g is satis�ed under
assignment A if f(A(a); A(b)) = A(c). An assignment which satis�es all gates in a circuit C is a solution to C.

An MMCC circuit is a circuit with fan-in two max and min gates, and convex combination (cc) gates. Convex
combination gates compute a rational convex combination of 1, 0, and the outputs of all gates in the circuit. MMA
circuits are clearly a special case of MMCC circuits; we prove elsewhere that if the coe�cients in the convex combinations
in an MMCC circuit C are all of the form p=q, with p; q � 2n, then C can be simulated by an MMA circuit with O(n)
gates.

The simple stochastic game (ssg) corresponding to an MMCC circuit is a directed graph with one node for each gate,
and a node each for 0 and 1. There is an arc in the graph from x to y i� y is an input to x in the circuit. Each node in
the graph is labelled as max, min, or convex combination, according to the gate it represents.

A stopping game is an ssg with the property that, for any subgraph G in which each max and min node has outdegree
one, and for any node v 2 G, there is a directed path in G from v to either 1 or 0 (or both). If the ssg corresponding to
an MMCC circuit C is a stopping game, we also call C a stopping game.

A gate g in an MMA or MMCC circuit may be recon�gured by (possibly) changing the function g computes,
and adding or deleting inputs to g. The function the recon�gured gate computes may be max, min, or any convex
combination; note that any rational constant c between 0 and 1 may be computed by a convex combination gate.

We may think of an assignment to the n gates of a circuit as a vector. The feasible polytope for an MMCC circuit
C is a subset of the n-dimensional hypercube de�ned by inequalities of the form xj � xk for each min gate with input
xk and output xj; xj � xk for each max gate with input xk and output xj; and xj = �0 +

Pn

i=1�ixi for a convex
combination gate g with output xj, where �0 +

Pn

i=1�ixi is the convex combination of 0, 1, and the outputs of gates
x1; : : :xn computed by g.

An assignment U is an upper bound on a solution S to an MMCC circuit C if, for every gate x, U (x) � S(x). A
Ho�man-Karp upper bound is an upper bound in which all gates other than min gates are satis�ed, and each min gate
is equal to one of its inputs. A Ho�man-Karp lower bound is a lower bound in which all gates other than max gates are
satis�ed, and each max gate is equal to one of its inputs.

9.2 Geometry

We claim, but do not prove here, that

� without loss of generality, the feasible polytope F has full dimension;

� if a circuit has a unique solution v, then v is a vertex of F ;

� every stopping game has a unique solution.

Theorem 15 Let C be an MMCC stopping game. Let F be the feasible polytope for C. Let v 2 F be the vertex of F
which is the unique solution to C. Let k 62 F be a Ho�man-Karp lower bound for v. Then for any real p, 0 < p � 1, the
point pk + (1� p)v 62 F .

22

Proof: Assume without loss of generality that in the solution point v, all max gates are set to the left.
Let Xr be the set of max gates fx : xk = rk 6= lkg, where xk is the value of x at k, and l and r are the left and right

inputs to x, respectively. We partition Xr into two sets Xr;MAX and X
r;MIN ; a gate x is in X

r;MAX if xk = rk > lk; it

is in X
r;MIN if xk = rk < lk. We consider the solutions to three circuits C, C1, and C2. C1 is obtained from C by �xing

all max gates not in Xr to the left, leaving the gates in Xr as max gates. C2 is obtained from C by �xing the max gates
not in Xr to the left, and the gates in X

r;MIN to the right, leaving the gates in X
r;MAX as max gates. Alternatively,

C2 can be obtained from C1 by setting all the gates in X
r;MIN to the right.

Since C is a stopping game, C1 and C2 are also stopping games and so have unique solutions. The solution to C is
the vertex v. v is also a solution to C1, since in v all max gates are set to the left. Let v2 be the solution to C2. Notice
that k = v2; since k is a solution to C2. Since k 62 F , X

r;MIN 6= ;. Let x 2 X
r;MIN , and let l and r be the left and right

inputs to x. Then

pxk + (1� p)xv < plk + (1� p)xv
= plk + (1� p)lv

Since c = pk+(1� p)v has a max gate x which is strictly lower than one of its inputs, c is not in F . Thus no convex
combination of a Ho�man-Karp lower bound point and v is in F , other than v itself.

We say a point p 62 F can "see" a point f 2 F if the line between f and p lies entirely outside F , except for the
point f . The above theorem says that every Ho�man-Karp lower and upper bound can see the solution vertex.

Corollary 5 Let C be an MMCC stopping game with unique solution v, where v is a vertex of the feasible polytope
for C. If there is any bounding plane of F which cannot be seen by some Ho�man-Karp lower or upper bound, the
dimension of the problem can be reduced by one.

Proof: If some bounding plane x � y cannot be seen by some Ho�man-Karp point, then the solution vertex cannot
be on that plane. It follows that, if the inputs to x are y and z, x must equal z at the solution vertex. Thus we can set
x = z, reducing the dimension by one.

9.3 MMA circuits are equivalent to MMCC circuits

An MMA circuit is an MMCC circuit in which all convex combination gates compute the average of just two inputs.
The following theorem shows that MMA and MMCC circuits are essentially equivalent.

Theorem 16 Let C be an MMCC circuit with m gates, n of which are convex combination gates. If the convex
combinations in C all have rational coe�cients of the form p=q, with 0 � p � q � 2n, then C can be simulated be an
MMA circuit with O(m + n4) gates.

Proof: Lemma 13 Let C be an MMA circuit with gates x1; : : :xn. and let k = �0 +
Pn

i=1 �ixi, where �i � 0,
i = 0; : : : ; n and

Pn

i=0 �i � 1, and for each �i, �i = pi=qi, with 0 � pi � qi � 2n. Then a circuit C0 can be constructed
from C by adding O(n2) average gates, such that one of the new average gates will have the convex combination k as its
output.

Proof: Let x; y be any two gates of C. By Theorem 4, it is possible to add O(m) average gates to any MMA circuit
C in such a way that one of the new gates computes any convex combination of x and y, provided all coe�cients in the
convex combination have numerator and denominator bounded by 2O(m). We construct the convex combination k one
coe�cient at a time, producing the following sequence of convex combinations:�

�0

1�
Pn

i=1 �i

�
� 1 +

�
1�

Pn

i=0 �i
1�

Pn

i=1 �i

�
� 0�

1�
Pn

i=1�i
1�

Pn

i=2�i

��
�0

1�
Pn

i=1 �i

�
+

�
�1

1�
Pn

i=2 �i

�
� x1�

1�
Pn

i=2�i
1�

Pn

i=3�i

��
�0 + �1x1
1�

Pn

i=2 �i

�
+

�
�2

1�
Pn

i=3 �i

�
� x2

:

:

:

23

1�

Pn

i=j �i

1�
Pn

i=j+1�i

!
�0 + �1x1 + � � �+ �j�1xj�1

1�
Pn

i=j �i

!
+

�j

1�
Pn

i=j+1 �i

!
� xj

:

:

:

(1� �n)

�
�0 + �1x1 + � � �+ �n�1xn�1

1� �n

�
+ (�n) � xn

The last line is the convex combination k. Each coe�cient in each convex combination has numerator and denominator
bounded by 22n

2

, so by Theorem 4, each of the n+1 convex combinations requires O(n2) new average gates to be added
to C.

We construct an MMA circuit C0 to simulate C as follows: for each max or min gate in C there is a corresponding
max or min gate in C0. Using Ke's method, we add O(n4) average gates, n of which output the n convex combinations
computed by the cc gates in C. The inputs to the max and min gates are the same in C0 as in C. It is easy to see that
from any solution to C a solution to C0 can be computed in linear time, and vice versa.

9.4 MMCC Circuits and 2-SAT

We now show that, under an unrealistically strong assumption, the stable circuit problem can be reduced to 2-SAT.

Lemma 14 Let C be an MMCC stopping game with unique solution S. Let x and y be two max gates in C. Let A be
an assignment to C in which x and y are both set to the lower of their two inputs, and all other gates are satis�ed. Let
xl; xr, and yl; yr be the inputs to x and y, respectively. If A(x) = A(xl) and A(y) = A(yl), then either S(x) = S(xr) or
S(y) = S(yr).

Proof: Call xl and yl the left inputs to x and y. Consider the circuit C0 obtained from C by setting both gates x and
y equal to their left inputs. C0 must be a stopping game, since C is a stopping game. A satis�es all gates of C0, so A is
the unique solution to C0. If in S both x and y are set to the left, then S is a solution to C0, so S = A. Thus either A
is a solution to C, or at least one of x and y is set to the right in S.

Theorem 17 Suppose we have a polynomial time algorithm TwoGate which takes as input an ordered pair fC;Kg,
where C is an MMCC stopping game, and k is a Ho�man-Karp lower bound on the solution to C, and outputs a
Ho�man-Karp lower bound K0 which dominates K, and in which at most two max gates are unsatis�ed. Then there is
a polynomial time algorithm to �nd a solution to C.

Proof: Using TwoGate as an oracle, we reduce the problem of �nding a solution to C to 2-SAT. Number the max
gates of C x1; : : :xk. Let S be the unique solution to C. We construct a 2-DNF formula F one clause at a time, using
variables x1; : : :xk, where xi = 1 i� gate xi is equal to its right input in S. We maintain the property that the the
settings of the max gates in S must satisfy F . After at most 4

�
k

2

�
rounds, any satisfying assignment to F agrees with S

on all max gates. For any assignment A, de�ne xAi to be xi if xi is equal to its right input in A; otherwise xAi = :xi.
Let S0 be an arbitrarily chosen Ho�man-Karp lower bound.

Step 0. Set F :=
Vk

i=1(xi _ :xi); set i := 0; set C0 = C.

Step 1. Using TwoGate, �nd an assignment Ai � Si, with at most two unsatis�ed max gates xj and xk. Add the

clause (:xAi

j _ :xAi

k) to F .

Step 2. Find a satisfying assignment T to F . T corresponds to a right-left setting of the max gates in C. Recon�gure C
by setting each max gate right or left according to T . Set Ci to be the recon�gured circuit. Use linear programming
to �nd the unique solution Si to Ci. If Si satis�es C, halt. Otherwise, go to 9.4 Step 3.

Step 3. For every max gate x unsatis�ed by Si, reset x to its other input. Set Ci to be the resulting circuit.Use linear
programming to �nd the unique solution Si to Ci. If Si satis�es C, halt. Otherwise, go to 9.4 Step 1.

Proof that the above algorithm halts: Any solution found in 9.4 Step 2 is a Ho�man-Karp lower bound. If the

solution found in the jth iteration in 9.4 Step 2 is not a solution to C, then 9.4 Step 3 �nds a strictly higher Ho�man-
Karp lower bound. In round j + 1 the TwoGate algorithm then also �nds a Ho�man-Karp lower bound which strictly
dominates the one found in round j. Since C and all of the recon�gured circuits Ci are stopping games with unique
solutions, the circuits C0; : : :Cj+1 must all be distinct. It follows that the clause added to F in round j is distinct from

all clauses added to F in earlier rounds. Since there are only 4
�
k
2

�
possible clauses, the algorithm must halt in at most

4
�
k

2

�
rounds. It halts only when it �nds a solution to C, so the algorithm �nds a solution to C in time polynomial in

the number of max gates in C.

24

10 Application: Real-life games

Wouldn't that be boring if we just talk about something theortically that had nothing to do with our daily life? This
section we discuss how the MMA-circuit can be used in real life, and especially, 2-person, stochatic games.

10.1 Two-person, stochastic games

We are interested in the games that are two-person, zero-sum, have randomness (namely, where the players toss coins
or dice), and have polynomially many states.

Notice some typical games like GO are proven to be PSPACE-hard and it's hopeless to use our MMA-circuit to solve
them. If the game further has randomness, it might be NEXP-hard. One intuition why these games are hard is that
they have exponentially many states (possible board con�gurations) and it takes exponential time just to examine them
all (notice the �� � pruning is basically enumerating all the states and evaluating the game.

Here we are looking at games that are \easier" | those that only have polynomially many states. Then if the game
doesn't have randomness, a simple �� � algorithm can solve the problem in polynomial time. However, when the game
has randomness in it, it is not clear if there is a polynomial time algorithm to �nd the value of the game { actually
in this case the MMA-circuit becomes a handy model to analysis these games. Typical games like that are Pacheese,
Backgammon, Sorry, etc.

10.2 Pachisi, Backgammon, and more

Pachisi is called \The National Game of India" but nobody in our department that comes from India claims that he/she
played in India :-). Here is a webpage that describes the game comprehensively: http://web.ukonline.co.uk/james.masters/T

We have the following theorem.

Theorem 18 MMCC circuits are Parchisi-hard.

Proof: Generalized two-player Parchisi is played on a board with n squares in a cycle, plus a constant number of special
start and destination squares for each player. Each player has k tokens, for some constant k. At each turn a player rolls
two dice, and has a constant number of legal moves to choose from. The number of possible board positions is O(nk).
Parchisi can be simulated by a simple stochastic game as follows. For each of the m =0(nk) possible board positions,
there are two convex combination nodes, representing the two players. A convex combination node representing player
1 (the max player) has nonzero coe�cients for max nodes representing the 21 possible sets of legal moves available to
choose from, depending on which of the 21 possible rolls comes up, with coe�cients equal to the probability of each
roll. Each max node as represents the pair (board position, roll of the dice). There is a constant number of arcs out
of each max node, one to each of board positions to which the max player can legally move, given the current board
position and roll of the dice. (Strictly speaking, we should have at two arcs out of each max node, but we can replace
any constant number a of arcs with a series of log(a) max nodes, each with at most two outward arcs.) Similarly, a
convex combination representing player 2 (the min player) has nonzero coe�cients for min nodes representing sets of
legal moves for all possible rolls of the dice. A node representing a board position which is a win for the max player
is labelled 1, and a win for the min player is labeled 0. The total number of nodes is O(nk). Constructing the circuit
takes time polynomial in n. The minimum solution to the MMCC circuit corresponding to the ssg represents optimal
strategies for the max and min player; thus if a solution to an MMCC circuit can be found in time polynomial in n,
then an optimal strategy for each player in a game of Parchisi may be found in time polynomial in n.

Backgammon seems to be a much more popular game in the US and there is an entire website devoted to that:
http://www.bkgm.com and the machine learning people also seem to have a great interest in that.

Some common features shared by Pacheese and Backgammon are:

1. Each player has constant number of tokens (polynomially many states).

2. The players take turns and compete with each other (MAX=MIN gates).

3. The players toss dice (AVG gates).

4. One player can send a token of the other player back and thus progresses can't always be made (feedback).

These properties make the MMA-circuit a good model for the games. There are other similar games like this that
can also be solved by the MMA-circuit. Therefore an immediate result says:

Theorem 19 Parcheese and Backgammon are both in NP \ co-NP.

Notice this is NOT a new result | Ann Condon already proved this in her paper [C92].

25

10.3 Some results about convergence

We did computer simulations on various versions of pacheese and there are some interesting results.

10.3.1 Straight-line parchisi

The simplest version of parchisi we study is the Straight-line Parchisi: There are n cells lined up and we number them
from 0 to n�1. Each of the both players has two tokens that originally placed at cell 0. The players take turns: in each
turn, a player tosses a fair coin and interpret the result as \move forward 1 step" and \move forward 2 steps". Then the
player chooses which token to move, and move that token the number of steps as indicated by the coin-toss. A token
can't be moved outside the board: that means if a token is at cell n� 2 and the coin-toss comes out with \move forward
2 steps", then this token can't be moved. If a player's both tokens are at cell n� 2 and the coin-toss gives a 2, then he
simply has no play.

If player A's token lands on a cell which is occupied by 1 or 2 of player B's tokens, the tokens of player B are sent
back (there is no \protection" as in the real parcheese) while player A's token remains.

The game terminates when a player moves both of his tokens into cell n� 1, and the �rst player that does this wins.
We found that this game is very easy to solve, in the sense that the most na��ve value-updating algorithm works well,

and so does the time-average algorithm. Our computer simulation also shows that algorithms converge very quickly to
a solution.

Here is an idea why this is the case (not a formal proof yet): One way to look at the value-update problem is to
think of the circuit as a directed graph, which each arc has the reverse direction as in the circuit, and then both players
perform random walks on the graphs { they start from the node that corresponds to the initial con�guration and try
to move to one of the constant nodes (0 and 1). One can prove that this is exactly equivalent to solving the game.
Notice still each player has di�erent \policies", namely the setting of the MAX=MIN gates. However, if we can prove
that if for each pair of policies, the random walk �nishes in polynomial time with reasonably high probability, then the
value-updating algorithm converges fast | this can be viewed as a generalization of Rue's convergence lemma.

Lemma 15 Given an MMA-circuit, if, for any way of setting the MAX=MIN gates, a random walk starting from the
output node (i.e., the intial state) will hit one of the constant node within P (n) steps with probability as least 1=Q(n),
where both P (n) and Q(n) are polynomials, then the simple value-updating algorithm will �nd an �-approximation of the
solution in time poly(n; 1

�
).

11 Some Open Problems and interesting ideas

We present some interesting problems and ideas we have collected.

11.1 Reducing natural question to the circuit problem

Say, can we show factorization can be reduced to the circuit problem? Factoring is in NP \ co-NP anyway. But the
intuition is: probably not! Since the circuit is bitwise monotone. But can we still �nd something interesting?

11.2 Structure of �

Remember � is the set of the solutions to the circuit. We know it is path-connected, and it is the �nite union of
simplexes, and it is NOT necessarily convex | thanks to Adam Kalai. Can we say more about that?

11.3 Structure of the pre-images

We know for any point P 2 �, ��1(P) is closed, since � is a continuous mapping, but is that convex?
The answer is NO!
See the �gure above: all three gates are MIN gates, and we converge the circuit in the order A, B, C.
Now set P1 = fA = 0:5; B = 0; C = 1g.Obviously the circuit will converge to the minimal solution, or h0; 0; 0i.
Then set P2 = fA = 0:5; B = 1; C = 0g, and the circuit will also converge to the minimal solution h0; 0; 0i.
But if we take the convex combination of P1 and P2, say, P = 1

2P1 +
1
2P2 = fA = 0:5; B = 0:5; C = 0:5g, then the

circuit will converge to h0:5; 0:5; 0:5i.
Therefore the pre-image of h0; 0; 0i is NOT convex.

26

B C

A

All gates are MIN gates
Converging sequence: A, B, C

Figure 16: An example for non-convex pre-image

11.4 Flipping MAX/MIN gates

One main constraint to the MAX/MIN/AVG circuit is when you look at the outputs of the gates, they are monotone
and piece-wise linear. So we can't, in general, do a lot of things with them.

However, Rachel has the idea that we can look at the MAX/MIN gates as multiplexers and \read o�" the directions
as one-bit information: i.e., which input the MAX/MIN gate is outputing. This very precious one-bin information is
not monotone in general. So the hope is: can we treat the \direction" here as part of the output of the circuit, and can
that help us?

So now we are trying to study the \ipping" behavior of the circuit.
Here is one result: we can construct a circuit, and if we let it \run" from 0, one MIN gate will ip for in�nitely many

times. Notice the way we \run" the circuit is to update the gates one by one, in a pre-ordered fashion, rather than
the converging operation mentioned in section 2. 6 In general this kind of simple \update one gate at a time" method
doesn't guarantee convergence, but if we run the circuit from 0, convergence is guaranteed.

Here is the circuit.

AVG

AVG

AVG AVG

AVG

AVG

AVG

AVG

AVGAVG

1

0.25

01

3

4

2

9

11

10

86

7

5

MIN

Figure 17: A circuit that ips forever

There is only one MIN gate in the circuit, and all the rest gates are AVG gates. On the right corner of each
gate, a number indicates the order the gates get updated. Actually gates 2, 4, and 6 are \delay" gates: they delay
the propagation of the values by one step. Gates 1, 2, and 3 is a small unit that will converge to 2/3, 1/3, and 1/3,

6I still don't know how to construct a circuit whose MAX or MIN gate ips many times under the converging operation.

27

respectively. But since there is a delay at gate 2, the converging happens every two rounds. Gates 5, 6, 7 are the same.
But gate 4 delays the converging of gates 1, 2, 3 by one step, and thus the output of gate 2 is one step later than gate
6, and thus gate 6 is always greater than or equal to gate 2.

Gate 8 acts as a \perturbation": it starts at 0 and converges to 0.25 gradually. So gate 6 always dominates gate 2,
but gate 8 is always smaller than 0.25. Taking the average of gate 2 and 0.25, and the average of gate 6 and gate 8, we
got two values that interleaves each other: that are gate 9 and gate 10. So gate 11 ips in every round, and it will ip
forever.

We can replace 0.25 by any real number between 0 and 0.5.
Now we have more questions to ask:

� Can we build a circuit that will ip even under the converging operation described in section 2, or under the
Blum-converging operation?

� Can we build a clock of n bits with polynomially many gates? A clock of n bits has n MAX (or MIN) gates, and
the �rst MAX ips every round, the second MAX ips every 2 rounds, ... the i-th MAX ips every 2i�1 rounds,
and the last MAX ips every 2n�1 rounds. This is due to M. Blum.

� Can we encode any naturally hard problem into the circuit and use a polynomial-time post-processing algorithm
to \read o�" the directions of he MAX/MIN gates and give the result? In other words, can the direction of the
MAX/MIN gates help?

11.5 Quadratic Programming

Another fantasy towards solving the problem is: since Linear Programming isn't strong enough, can quadratic program-
ming help?

Notice quadratic forms can describe the system perfectly: say we have a gate with x and y as input, and z and
output: z = g(x; y). If g is AVG it is trivial. If g is MIN, then was can write as: z � x, z � y, and (z � x)(z � y) = 0.
Notice under the �rst two inequalities, we know (z � x)(z � y) � 0. So 0 is the maximum value that (z � x)(z � y)
could obtain. Thus we can sum this (z � x)(z � y) over all MIN and MAX gates and let the sum be zero. The the only
possible solution to the quadratic form gives a solution to the circuit.

Now the question is: is such quadratic programming solvable?

11.6 Unique-solution vs. non-unique solution circuits

As we have shown in Corollary 2, a circuit has either a unique solution or uncountably many. Also Condon [C92] showed
a conversion from any circuit to a circuit with a unique solution which is close to the MIN solution of the original circuit.

We also have the observation that: for a circuit with a unique solution, if somehow we know the value of a gate in
the solution, we can simply change the gate to a constant gate with that value, and the remaining circuit still has a
unique solution, since otherwise we can \run" the original circuit on another solution of the new circuit and get another
solution for the original.

However, this is not true for circuits with in�nitely many solutions: one can change a gate to a constant gate with
the value that is in one of the solutions and get a new gate. However, the new circuit might as well have many solutions,
and it is not clear how one can transform a solution in the new circuits \back" to a solution in the original one.

Now the question is: does it show that unique-solution circuit is the essential computation model?

11.7 Brouwer �xed-Point Theorem and the power of di�erential topology

This is due to the observation of John Langford. So there is a Brouwer Fixed-Point Theorem that's actually very
strong in asserting the �xed-point exists. Here is the theorem:

Theorem 20 (Brouwer Fixed-Point Theorem) Any smooth map f of the closed unit ball Bn � Rn into itself must
have a �xed point; that is, f(x) = x for some x 2 Bn.

This is cited from [GP74], and the proof is believed to carry to continuous functions as well (a smooth mapping is a
di�erentiable function) | actually the exercise 6 at page 66 shows that. So this theorem instantly says that both MMA-
circuits and MMAN-circuits have solutions. Thus this is a very powerful theorem. However the proof is non-constructive
and doesn't provide any intuition where to �nd the �xed-point.

Anyway, the big question is: how useful the di�erential topology is in this circuit problem?

28

11.8 Reduction, Reduction, Reduction

Here is a reduction result: given an oracle that can answer the question \is the value of this gate (in the solution) higher
than 1/2?", we can solve the circuit in polynomial time. Idea: Binary Search.

Here is another one: if we have the guarantee that all the gates have value either 0 or 1, we can solve the circuit in
polynomial time.

Acknowledgement

We need to thank lot of people: Avrim Blum, Anne Condon, Alan Frieze, John Langford, Adam Kalai, Steven Rudich,
Dana Scott, Wei Xu, Li Zhang.

References

[C66] Eduard �Cech, Topological Spaces, Revised edition by Zden�ek Frol��k and Miroslav Kat�etov, Publishing House of
the Czechslovak Academy of Sciences and Interscience Publishers, a division of John Wiley & son., 1966.

[C92] Anne Condon. The Complexity of Stochastic Games, Information and Computation, vol. 96, No. 2, February 1992,
page 203-224.

[C93] Anne Condon. On Algorithms for Simple Stochastic Games, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, Volume 13, edited by Jin-Yi Cai, American Mathematical Society, 1993, pages 51-73.

[GP74] Victor Guillemin, Alan Pollack, Di�erential Topology, Prentice-Hall, 1974.

[J84] Klaus J�anich, Topology, Translated from German to English by Silvio Levy, Springer-verlag, 1984.

29

