Integrating Web-based and Corpus-based Techniques
for Question Answering

Boris Katz, Jimmy Lin, Daniel Loreto, Wesley Hildebrandt,
Matthew Bilotti, Sue Felshin, Aaron Fernandes, Gregory Marton, Federico Mora
MIT Computer Science and Artificial Intelligence Laboratory
200 Technology Square
Cambridge, MA 02139

1 Introduction

MIT CSAIL’s entry to this year’s TREC Question
Answering track focused on merging answers mined
from the World Wide Web with answers extracted
from the AQUAINT corpus of news articles. Our
multi-source approach to question answering neces-
sitates tight integration of different techniques that
capitalize on different characteristics of the Web and
closed corpora.

The advantages that the Web provides for ques-
tion answering are well known and have been ex-
ploited in previous systems (Brill et al., 2001; Clarke
et al., 2001; Dumais et al., 2002; Lin et al., 2002).
The immense amount of freely available unstruc-
tured text provides data redundancy, which can be
leveraged with data-driven techniques. In many
ways, we can utilize huge quantities of data to
overcome many thorny problems in natural lan-
guage processing such as lexical ambiguity and para-
phrases. Furthermore, Web search engines such as
Google provide a convenient front end for accessing
and filtering enormous amounts of Web data. We
have identified this class of techniques as the knowl-
edge mining approach to question answering (Lin
and Katz, 2003).

In addition to viewing the Web as a repository of
unstructured documents, we can also leverage pock-
ets of structured and semistructured sources avail-
able on the Web using knowledge annotation tech-
niques (Katz et al., 2002; Lin and Katz, 2003).
These sources can be employed to directly answer
factoid questions or “distilled” into knowledge bases
to assist in answering list and definition questions.

While the Web is undeniably a useful resource
for question answering, it is not without drawbacks.
Useful knowledge on the Web is often drowned out
by the sheer amount of irrelevant material, and
statistical techniques are often insufficient to sep-
arate right answers from wrong ones. Outstand-
ing issues in question answering include anaphora,
paraphrases, temporal expressions, lexical ambigu-
ity, and reasoning. Solving these problems will re-
quire major advances in language processing capa-
bilities. Furthermore, the setup of the TREC eval-

uations necessitates an extra step in the question
answering process for systems that extract answers
from the Web, typically known as answer projection.
For every Web-derived answer, a system has to find
a supporting document from the AQUAINT corpus,
even though the corpus itself may not have ever been
used in the question answering process.

We attempt to address some of the above is-
sues by integrating Web-based question answering
techniques with more traditional corpus-based tech-
niques driven by information retrieval and informa-
tion extraction technology. The dominant paradigm
in question answering over the last few years has
been to employ document retrieval to first narrow
down the corpus to a candidate set of documents,
and then apply named-entity extraction technology
to identify phrases that match the expected answer
type derived from the original question. Previously,
our entries to the TREC evaluation exclusively relied
on Web-based techniques (Lin et al., 2002); however,
corpus- and Web-based strategies should play com-
plementary roles in an overall question answering
framework.

2 List Questions

For answering list questions, our system employs a
traditional pipeline architecture with distinct states
for document retrieval, passage retrieval, answer
extraction, and duplicate removal (see Figure 1).
The general idea is to successively narrow down the
AQUAINT corpus to manageable-sized passages,
and then employ knowledge of fixed lists to extract
relevant answers. The following subsections describe
this process in greater detail.

2.1 Document Retrieval

In response to a natural language question, our doc-
ument retriever provides a set of candidate docu-
ments that are likely to contain the answer; these
documents serve as the input to additional process-
ing modules. As such, the importance of document
retrieval cannot be underestimated: if no relevant
documents are retrieved, any amount of additional
processing would be useless.



Document Retrieval

i

Passage Retrieval

!

Answer Extraction

i

Duplicate Removal

Figure 1: Architecture for answering list questions.

For our document retriever, we relied on Lucene, a
freely available open-source IR engine.! Lucene sup-
ports a weighted boolean query language, although
it performs ranked retrieval using a standard tf.idf
model. We have previously discovered that for the
purpose of passage retrieval, Lucene performs on par
with state-of-the-art probabilistic systems based on
the Okapi weighting (Tellex et al., 2003).

One way to boost document retrieval performance
is to employ query expansion techniques. In our
TREC entry this year, we implemented two separate
query generators that take advantage of linguistic re-
sources to expand query terms. Lucene provides a
structured query interface that gives us the ability
to fine tune our query expansion algorithms.

2.1.1 Method 1

Our first query generator improves on a simple bag-
of-words query by taking inflectional and deriva-
tional morphology into account: queries are a con-
junction of disjuncts, where each disjunct contains
morphological variants of the keywords. Base query
terms are extracted from a natural language ques-
tion after dropping all stopwords. Assuming we have
three query terms, A, B, and C, arranged in increas-
ing idf, our first query method would generate the
following queries:

AANBAC
e(A) ANe(B) Ne(C)
e(B) Ne(C)
e(C)
e(A) A e(B)
e(B)
e(A)
where

e(z) = x V inflect(x)% 7 V derive(z)°-*°

where inflect(z) and derive(z) indicate inflectional
and derivational morphological forms of z, respec-
tively. The first query is simply a conjunction of all

ljakarta.apache.org/lucene/docs/index.html

non-stopwords from the question. The second query
is a conjunction where each of the conjuncts is a
disjunct of morphologically expanded query terms.
Inflection variants are generated with the assistance
of WordNet to handle irregular forms. Deriva-
tional variants are generated by a version of CELEX
that we manually annotated. Using Lucene’s query
weighting mechanism, inflected forms are given a
weight of 0.75, and derivational forms a weight of
0.5. Subsequent queries drop disjuncts successively
starting with the lowest idf term until all the terms
have been dropped. After that, the highest idf term
is dropped, and the generator starts a fresh cycle of
successively dropping the lowest idf terms.

Our document retriever is given a target hit list
size, and successively executes queries from the
query generator until the target number of docu-
ments has been found. This insures that down-
stream modules will always be given a consistently
sized set of documents to process.

2.1.2 Method 2

Our second query generation algorithm takes ad-
vantage of named-entity recognition technology and
other lexical resources to chunk natural language
questions so that query terms are not broken across
constituent boundaries. To identify relevant enti-
ties, we use Sepia (Marton, 2003), an information
extraction system based on Combinatory Catego-
rial Grammar (CCG). In particular, personal names
are recognized so that inappropriate queries are not
generated, e.g., a name such as “John Fitzgerald
Kennedy” can give rise to legitimate queries in-
volving “John F. Kennedy”, “John Kennedy”, and
“Kennedy”, but never “John Fitzgerald” or simply
“John”. For certain classes of named-entity types,
we have encoded a set of heuristic rules that gen-
erates the acceptable variants. Our query generator
takes advantage of Lucene’s ability to execute phrase
queries to ensure that the best matching documents
are returned.

Our second query generator also leverages Word-
Net to identify multi-word expressions that should
not be separated in the query process. Multi-token
collocations such as “hot dog” should never be bro-
ken down into hot and dog, since the two interpre-
tations have dramatically different meanings. Be-
cause these multi-word expressions can not be pre-
dicted by syntax (e.g., compare “hot dog” with “fast
car”) one practical solution is to employ a fixed list
of such lexical items. If a query term is neither a
recognized entity nor a multi-word expression, our
second query generator expands the term with in-
flectional and derivational variants using the same
technique as the first method.

We discovered that our first query generation
method traded off precision for recall with its elabo-
rate term dropping strategy. The result is often a hit



list that has simply been “padded” with irrelevant
documents; loose queries with few terms are simply
not precise enough to retrieve good candidate docu-
ments. As an alternative, we implemented a slightly
different strategy for our second query generator. It
simply drops query terms in order of increasing idf
until no terms are left and then stops. As a simple
example, if a query has three (non-stopword) terms,
A, B, and C, arranged in increasing idf, our second
query generator would produce the following queries:

e(A) Ne(B) Ae(C)
e(B) N e(C)
e(C)

where e(x) represents the expansions of individual
query terms described above.

2.2 Passage Retrieval

The next stage in the processing pipeline is passage
retrieval, which attempts to narrow down the set
of candidate documents into a set of candidate pas-
sages, which are sentences in our architecture.

In a separate study of passage retrieval algo-
rithms (Tellex et al., 2003), we determined that
IBM’s passage scoring method (Ittycheriah et al.,
2000; Ittycheriah et al., 2001) produced the most ac-
curate results. To determine the best passage (sen-
tence in our case), our system breaks each candidate
document into sentences and scores each one based
on the IBM algorithm.

The IBM passage retrieval algorithm computes a
series of distance measures for each passage. The
“matching words measure” sums the idf values of
words that appear in both the query and the pas-
sage. The “thesaurus match measure” sums the idf
values of words in the query whose WordNet syn-
onyms appear in the passage. The “mis-match words
measure” sums the idf values of words that appear in
the query and not in the passage. The “dispersion
measure” counts the number of words in the pas-
sage between matching query terms, and the “clus-
ter words measure” counts the number of words that
occur adjacently in both the question and the pas-
sage. These various measures are linearly combined
to give the final score for a passage.

We modified the IBM passage scoring algorithm
to take into account linguistic knowledge provided
by our query generator. The modified algorithm
includes scores for matching hyponyms, inflectional
variants, derivational variants, and antonyms (neg-
ative weight). In addition, our modified algorithm
takes advantage of multi-word expressions tokenized
from the question, that is, occurrences of “hot” and
“dog” within a passage will not match “hot dog”.

One of our goals is to determine the effects of addi-
tional linguistic knowledge on performance, and for
our TREC submissions, we set up a matrix exper-
iment with two query generators and two passage

retrievers. The results will be discussed later in Sec-
tion 5.

2.3 Answer Extraction

The first step of the answer extraction process is to
determine the question focus (which was also used in
other stages of the processing pipeline); that is, the
type of entity asked about in the list question. For
this, we enlisted the parser of the START question
answering system (Katz, 1997).

Separately, we have compiled offline a large knowl-
edge base of entities, mostly in the form of fixed lists.
For example, we have gathered lists of U.S. states,
major U.S. cities, major world cities, countries, per-
son names, etc. If the question focus is among one
of these types for which we have a fixed list, our an-
swer extractor simply extracts instances of the target
type from the top ranking passages collected from
the previous stage.

As a simple example, consider the following ques-
tion:

In which U.S. states have there been fatal-
ities caused by snow avalanches? (q2183)

Our system correctly identifies the question fo-
cus as “U.S. state”, and extracts all instances of
U.S. states from top ranking passages. Since the
passage retrieval algorithm returns passages that al-
ready have occurrences of terms from the question,
instances of the question focus are likely to be the
correct answer.

If the question focus is not in our knowledge base,
we employ two backoff procedures. Occasionally, an-
swers to list questions have the question focus di-
rectly embedded in them, e.g., “littleneck clam” is
a type of clam, and in the absence of any additional
knowledge, noun phrases containing the focus are
extracted as answer instances. Finally, if no noun
phrases containing the question focus can be found,
our answer extraction module simply picks the noun
phrase closest to the question focus in each of the
passages.

After collecting all the answer candidates, we dis-
card ones that have query terms in them. Noun
phrases containing keywords from the query typi-
cally repeat some aspect of the query and make lit-
tle sense as answers. This heuristic worked well in
our previous question answering system (Lin et al.,

2002).

2.4 Duplicate Removal

Answer instances extracted from the previous stage
typically contain duplicates, which our system re-
moves using a thresholded edit-distance measure.
Finally, our system computes the number of answer
instances to return based on a relative threshold-
ing scheme. Each answer candidate is given a score
equal to the score of the passage from which it was



Target Extraction

'

b

Database Lookup

Dictionary Lookup

Document Lookup

Answer Merging

Figure 2: Architecture for answering definition questions.

extracted, and all candidate answers below 10% of
the maximum score are discarded. The remaining
instances are returned as the final answer.

3 Definition Questions

Our architecture for answering definition questions
is shown in Figure 2. The target extraction module
first analyzes the natural language question to de-
termine the unknown term. Once the target term
has been found, three parallel techniques are em-
ployed to retrieve relevant nuggets that define the
term: lookup in a terminological database created
from the AQUAINT corpus, lookup in a Web dic-
tionary followed by answer projection, and lookup
directly in the AQUAINT corpus with information
retrieval techniques. Answers from the three differ-
ent sources are merged to produce the final system
output. The following subsections will describe each
of these techniques in greater detail.

3.1 Target Extraction

We developed a pattern-based parser to analyze def-
inition questions and extract the target term to be
defined using simple regular expressions.

If the natural language question does not fit any
of our patterns, the parser heuristically extracts the
last sequence of capitalized words in the question
as the target. Our simple definition target extractor
was tested on definition-style questions from the pre-
vious TREC evaluations and performed quite well on
those training questions.

3.2 Database Lookup

The use of surface patterns for answer extraction has
proven to be an effective strategy for question an-
swering. Typically, surface patterns are applied to a
candidate set of documents that have been returned
by traditional document retrieval systems. While
this strategy may be effective for factoid questions,
it generally suffers from low recall. In the case of fac-
toid questions, where only one instance of an answer

is necessary, recall is not a primary concern. How-
ever, definition questions require a system to find
as many relevant nuggets as possible, making recall
very important.

Instead, we employ an alternative strategy: by ap-
plying a set of surface patterns offline, we are able
to “precompile” from the AQUAINT corpus knowl-
edge nuggets about every entity mentioned within
it. In essence, we have automatically constructed
an immense knowledge base containing nuggets dis-
tilled from every article within the corpus. The task
of answering definition questions becomes a simple
database lookup.

Our surface patterns operate both at the word
level and part-of-speech level. We utilize pat-
terns over part-of-speech tags to perform rudimen-
tary chunking, i.e., marking the boundaries of noun
phrases. The surface patterns we used include the
following (Figure 3 shows several examples):

e Copular pattern. Copular constructions of-
ten provide a definition of the target term. In
order to filter out spurious nuggets (e.g., pro-
gressive tense), our system throws out all defi-
nitional nuggets that do not begin with a deter-
miner; this ensured that we only get “NP; be
NPy” patterns, where NP is usually the target
term, and NPy the nugget.

e Appositive pattern. Commas typically pro-
vide strong evidence for the presence of an ap-
positive. With the assistance of part-of-speech
tags, identifying “NP;, NPsy” patterns is rela-
tively straightforward. Most often, NP; is the
target term and NP5 is the nugget, but occa-
sionally the positions are swapped. Thus, we
index both NPs as the target term.

e Occupation pattern. Common nouns pre-
ceding proper nouns typically provide some rel-
evant information such as occupation, affilia-
tion, etc. In order to boost the precision of this



copular pattern: A fractal is a pattern that is irregular, but self-similar at all size scales

appositive pattern: The Aga Khan, Spiritual Leader of the Ismaili Muslims

occupation pattern: steel magnate Andrew Carnegie
verb pattern: Althea Gibson became the first black tennis player to win a Wimbledon singles title

parenthesis pattern: Alice Rivlin (director of the Office of Management and Budget )

Figure 3: Sample nuggets extracted from the AQUAINT corpus using surface patterns. The target terms
are in bold, the nuggets underlined, and the pattern landmarks in italics.

pattern, our system discards all common noun
phrases that do not contain an “occupation”,
e.g., actor, spokesman, leader, etc. We mined
the list of occupations from WordNet and Web
resources.

e Verb pattern. By statistically analyzing a
corpus of biographies of famous people, we were
able to compile a list of verbs that are com-
monly used to describe people and their accom-
plishments, e.g., become, founded, invented, etc.
This list of verbs is employed to extract “NP;
verb NPy” patterns, which are usually very pre-
cise.

e Parenthesis pattern. Parenthetical expres-
sions following noun phrases typically provide
some interesting nuggets about the preceding
noun phrase; for persons, it often contains
birth/death years or occupation/affiliation.

Typically, our patterns identify short nuggets on
the order of a few dozen characters. In answering
definition questions, we decided to return responses
that include additional context. To accomplish this,
we simply expand all nuggets around their center
point to encompass one hundred characters. We
found that this technique enhances the readability
of our responses: many nuggets seem odd and out
of place without context and surrounding text is of-
ten necessary for disambiguation. Furthermore, re-
turning a longer answer means that our responses
sometimes contain additional relevant nuggets that
are not part of the original pattern. In definitions
questions, these “idiosyncratic” nuggets occur quite
often.

One drawback to our knowledge base of nuggets
is a tremendous amount of redundancy. Because we
compiled all patterns from all entities within the
AQUAINT corpus, common nuggets are often re-
peated. In order to deal with this, we developed a
simple algorithm to remove duplicate information:
if any two responses share more than sixty percent
of their keywords, one of them is thrown out.

3.3 Dictionary Lookup

Another component of our system for answering def-
inition questions utilizes an existing Web-based dic-

tionary for nuggets. The motivation is simple: ex-
tensive resources already exist on the Web that can
supply a wealth of nuggets for defining terms. Why
not take advantage of these sources? Obviously, such
an approach cannot be applied directly, because all
nuggets must originate from the AQUAINT corpus.
To address this issue, we developed answer projec-
tion techniques to “map” dictionary definitions back
onto AQUAINT documents. The mapping compo-
nent is based on the insight that if you already know
the answer, it is much easier to find relevant nuggets
in the corpus.

Given the target term, our dictionary wrapper
goes online to the Merriam-Webster website and
fetches the term’s definition. Keywords from the
definition are used as the input query to the Lucene
document retriever. Once a set of candidate docu-
ments has been returned, we chunk all the sentences
and score each one based on its keyword overlap
with the dictionary definition. The sentences with
the highest scores are retained and shortened to one
hundred characters.

3.4 Document Lookup

As a last resort, our system employs simple docu-
ment retrieval to extract relevant nuggets if no an-
swers are found with the first two techniques. The
target term is used as a query to Lucene to gather
a set of candidate documents. These documents are
chunked into separate sentences and sentences con-
taining the target terms are retained as responses.

3.5 Answer Merging

The input to the answer merging stage is a series
of one hundred character responses from each of the
sources: database, dictionary, and documents. The
responses are arranged according to an ad-hoc pri-
ority scale we developed based on the accuracy of
each approach. For example, we found that verb
patterns generally returned very good nuggets, and
copular constructions were often less accurate. The
priority of dictionary answers is somewhere between
the best and worst patterns, ordered such that some
dictionary responses (if any) would always be re-
turned in the final answer. Responses extracted di-
rectly from document lookup are used only if the two




other methods return no answers: document lookup
is considered a strict back-off method used only as
a last resort.

Finally, the answer merging stage of our system
also decides the number of one hundred character
responses to return. Since the length penalties for
returning long answers are not very steep, we de-
cided to return longer answers in hope of encom-
passing more relevant nuggets. Given n responses,
we calculated the final number of responses to return
as:

n if n <10
n++yvn—10 ifn > 10

This ensures that our system will always return a
generous number of nuggets most of the time.

4 Factoid Questions

Our system for answering factoid questions was
largely unchanged from last year. We employed the
Aranea question answering system (Lin et al., 2002;
Lin and Katz, 2003), which embraces two different
views of the World Wide Web: as a heterogeneous
collection of unorganized documents and as a source
of carefully crafted and organized knowledge about
specific topics.

Aranea’s approach is primarily motivated by an
observation that the distribution of user queries
quantitatively obeys Zipf’s Law—a small fraction
of question types accounts for a significant por-
tion of all question instances. Large classes of
commonly-occurring questions translate naturally
into database queries and are handled by Aranea us-
ing a technique we call knowledge annotation, which
allows our system to access semistructured and het-
erogeneous data as if it were a uniform database.
After identifying useful resources on the Web, we
manually craft site-specific wrappers that provide
uniform access capabilities to the knowledge con-
tained in those resources under an object—property—
value data model (Katz et al., 2002). Natural lan-
guage questions are translated into database queries
through schemata, which are then executed to pro-
vide the final answer.

As with all Zipf curves, there is a broad tail
where individual instances are either unique or ac-
count for an insignificant fraction of total questions.
To answer questions that cannot be easily classi-
fied into common categories or grouped by simple
patterns, Aranea employs what we call redundancy-
based knowledge mining techniques. Knowledge
mining leverages the massive amounts of informa-
tion available on the Web to overcome many thorny
problems associated with natural language process-
ing. The insight is simple: the more data available,
the greater the chance that the answer to a natural

language question is stated simply as a reformula-
tion of that question. In such cases, simple pattern
matching techniques suffice to accurately extract an-
swers.

4.1 Answer Projection

The setup of the TREC evaluation required sup-
porting documents for each answer. Since Aranea
does mnot directly use the AQUAINT corpus in
the question answering process, Web-based answers
must then be projected back onto AQUAINT doc-
uments. Answer projection was accomplished in a
two step process: first, a set candidate documents
was gathered; then, a modified passage retrieval al-
gorithm scanned the documents to pick the best doc-
ument. For the set of candidate documents, we tried
three different approaches: using the NIST-supplied
PRISE documents, using documents generated by
our first query generation algorithm (Section 2.1.1),
and using documents generated by our second query
generation algorithm (Section 2.1.2).

After a set of candidate documents has been gath-
ered, the answer projection module applies a mod-
ified window-based passage retrieval algorithm to
score the documents. Each 140-byte window is given
a score equal to the number of times keywords from
both the question and candidate answer appears,
with the restriction that at least one keyword from
the question must appear in the passage. The score
of a document is simply the score of the highest scor-
ing passage. The highest scoring document is paired
with the Web-derived candidate answer as the final
response unit.

5 Results

A summary of our results at this year’s TREC eval-
uation is shown in Table 1. For list questions, the
query generator and passage scoring algorithms used
for each of the runs is shown in Table 2. For defi-
nition questions, all three submissions were exactly
the same. For factoid questions, the query genera-
tion algorithm used for answer projection in each of
the runs is shown in Table 2.

5.1 List Results

In general, the modified IBM passage scoring al-
gorithm performed slightly worse than the original
IBM algorithm. However, for the most part, they
returned exactly the same responses; it is difficult
to determine if the score differences are above the
margin of error inherent in human judgments. In
retrospect, we believe that our modified IBM algo-
rithm was too lax in matching various forms of ex-
pansions (too high a score was given to variants).
It is a well-known result that uncontrolled expan-
sion of lexical-semantic relations (e.g., synonyms and
hyponyms) results in lower performance (Voorhees,
1994). It has likewise been shown that inflectional



Task MITCSAILO3a MITCSAIL03b MITCSAILO3c best median worst
Factoid 0.293 0.295 0.291 0.7 0.177 0.034
List 0.13 0.118 0.134 0.396 0.069 0
Definition 0.309 0.282 0.282 0.555 0.192 0
weighted total 0.256 0.248 0.250
Table 1: Summary of MIT CSAIL submissions.
MITCSAIL0O3a MITCSAILO3b MITCSAILO03c

List questions:

Query generator method 1 method 2 method 2

Passage retriever IBM IBM modified IBM

Factoid questions:

Answer projection PRISE method 1 method 2

Table 2: Variations in each of the TREC runs.

and derivational expansion does not increase perfor-
mance. However, these experiments were conducted
under different circumstances for a traditional doc-
ument retrieval task, which is significantly differ-
ent from the task of extracting succinct answers.
For the question answering task, we believe that
linguistically-motivated query expansions will have
a positive impact on performance. While our ex-
periments have not yet shown a significant overall
positive effect, we attribute this to implementational
deficiencies in our overall system, rather than con-
ceptual shortcomings.

Our second query generation method performed
slightly better than our first query generation
method. In particular, tokenization of multi-token
expressions had the most positive impact on perfor-
mance. Consider the following question:

What countries have had school bus acci-
dents that resulted in fatalities? (q2180)

The second query generation algorithm correctly
identified “school bus” as a collocation and thus
never broken up the expression into “school” and
“buS”.

5.1.1 Question Focus

Our strategy for answering list questions depends on
correctly identifying the question focus, i.e., the type
of entity sought after. For a few questions, our sys-
tem was unable to correctly determine the question
focus, resulting in a score of zero for those ques-
tions. To address this shortcoming, we will improve
START’s ability to recognize question focus.

Although knowledge of the question focus helps in
answering a question, care is needed to map the fo-
cus word into a corresponding class of entities. Con-
sider the following questions:

List the names of cell phone manufactur-
ers. (q2096)

Name recipients of funds given by the vari-
ous foundations of Bill and Melinda Gates.
(q2291)

Our system correctly identified “manufacturer” as
the question focus in the first question, but chose the
wrong sense. The term was on our list of professions,
so the system incorrectly looked for personal names.
The second question demonstrates that not all tar-
gets, even when correctly identified, are useful. “Re-
cipients” are so general that they can be anything:
people, companies, organizations, even countries.

Not surprisingly, our system performed well for
questions whose foci had corresponding fixed lists
in our knowledge base. Since we had exhaustive
lists for entities like cities, countries, and U.S. pres-
idents, all our answers were at least of the correct
type. However, since our system ignored syntactic
relations within the passage, it often overgenerated
irrelevant answers. Consider the following question:

What countries have won the men’s World
Cup for soccer? (q2346)

Since our system returned all countries found near
the relevant keywords, most of the answers were
countries that played in the World Cup, not winners
of it. As a result, we obtained high recall, but poor
precision, on this question. This is certainly a case
where the use of syntactic relations can dramatically
improve question answering performance (Katz and
Lin, 2003).

Our backoff method of looking for the question
focus in candidate answers worked for the following
question:



MITCSAILO3a MITCSAIL03b MITCSAILO3c
PRISE Method 1 Method 2
Right 121 29.30% 122 29.54% 120 29.06%
Inexact 18 4.36% 15 3.63% 15 3.63%
Unsupported 26 6.30% 21 5.08% 21 5.80%
Wrong 248 60.05% 255 61.74% 257 62.23%
Total 413 413 413

Table 3: Detailed analysis of factoid questions

What grapes are used in making wine?
(q1940)

The system extracted correct answers like
“Chardonnay Grapes”. However, the same tech-
nique didn’t work when the question focus was
“team” or “food” because journalists typically do
not write “X team” or “Y food”.

5.2 Definition Results

Although the responses were identical in each of our
three submitted runs for definition questions, the
scores were not; that is, given the same exact an-
swer string, assessors came up with different judg-
ments some of the time. This can be attributed to
the margin of error inherent in human judgments.
Out of the 317 responses we submitted for the 50
definition questions, there were 19 responses which
were not judged the same over all three runs. How-
ever, 7 of these were cases where assessors found
the same nugget in different responses for a ques-
tion. In addition, there are clear instances where an
answer nugget is in one of our responses and the as-
sessors missed it, even when the nugget was present
word for word. We suspect that our decision to re-
turn one hundred character responses contributed to
these variations in judgment.

Target extraction was the single biggest source of
error in answering definition questions. If the tar-
get term is not correctly identified, then all subse-
quent modules have little chance of providing rele-
vant nuggets.

We did not anticipate the presence of stopwords
in names. Consider the following questions:

What is Bausch & Lomb? (q1917)
Who is Vlad the Impaler? (q1933)
Who is Akbar the Great? (q1955)

Our naive pattern based parser extracted “Lomb”,
“Impaler” and “Great” as the target terms for the
above questions, respectively. Fortunately, “Im-
paler” is such a rare word that we actually returned
nuggets concerning “Vlad the Impaler”. Similarly,
“Lomb” so frequently co-occurs with “Bausch &
Lomb” that our system was able to provide relevant
nuggets. However, since “Great” is a very common

word, our definitions for “Akbar the Great” were
mostly meaningless.

Our inability to parse certain forms of names is
related to our simple assumption that the final con-
secutive sequence of capitalized words in a question
is the target. This simply turned out to be an incor-
rect assumption:

Who was Abraham in the Old Testament?
(q1972)

What is ETA in Spain? (q1987)

What is Friends of the Earth? (q2222)

Our pattern-based parser extracted “Old Testa-
ment”, “Spain”, and “Earth” as the targets for those
questions, respectively. The inability to correctly
identify the target term directly resulted in our fail-
ure to return relevant nuggets.

Another problem our target extractor encountered
is apposition. Take the following example:

What is the medical condition shingles?
(q2348)

Our target extractor incorrectly identified “med-
ical condition shingles” as the target term. As a
result, our system did not identify a single relevant
nugget. To better extract target terms for definition
questions, we will employ START and Sepia in the
future, which we were unable to utilize for definition
questions this year for technical reasons.

5.3 Factoid Results

Table 3 shows a detailed analysis of factoid ques-
tions. As in previous years, answer projection ap-
pears to be the biggest Achilles’ heel in our Web-
based question answering strategy, as shown by the
relatively large fraction of unsupported and inexact
answers (in comparison to typical results of other
teams). Furthermore, it does not appear that any of
our more advanced query generation algorithms had
any significant impact of the final score of factoid
questions.

6 Conclusion

The focus of our research this year was to integrate
Web- and corpus-based question answering tech-
niques under a unified framework. This falls under



our general research agenda of employing linguistic
techniques, at the lexical, morphological, syntactic,
and semantic levels in conjunction with statistical
techniques when appropriate. Although our TREC
experiments have yet to show significant benefits
from linguistically-motivated processing techniques,
our research has demonstrated the effectiveness of
linguistically sophisticated techniques for question
answering within more restricted domains. We be-
lieve that high performance in the question answer-
ing task can only be achieved through fusion of mul-
tiple strategies and multiple resources.

References

Eric Brill, Jimmy Lin, Michele Banko, Susan Du-
mais, and Andrew Ng. 2001. Data-intensive ques-
tion answering. In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

Charles Clarke, Gordon Cormack, Thomas Lynam,
C.M. Li, and Greg McLearn. 2001. Web rein-
forced question answering (MultiText experiments
for TREC 2001). In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

Susan Dumais, Michele Banko, Eric Brill, Jimmy
Lin, and Andrew Ng. 2002. Web question answer-
ing: Is more always better? In Proceedings of the
25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR-2002).

Abraham Ittycheriah, Martin Franz, Wei-Jing Zhu,
and Adwait Ratnaparkhi. 2000. IBM’s statistical
question answering system. In Proceedings of the
Eighth Text REtrieval Conference (TREC-9).

Abraham Ittycheriah, Martin Franz, and Salim
Roukos. 2001. IBM’s statistical question an-
swering system—TREC-10. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).

Boris Katz and Jimmy Lin. 2003. Selectively using
relations to improve precision in question answer-
ing. In Proceedings of the EACL-2003 Workshop
on Natural Language Processing for Question An-
swering.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim,
Jimmy Lin, Gregory Marton, Alton Jerome Mc-
Farland, and Baris Temelkuran. 2002. Omnibase:
Uniform access to heterogeneous data for question
answering. In Proceedings of the 7th International
Workshop on Applications of Natural Language to
Information Systems (NLDB 2002).

Boris Katz. 1997. Annotating the World Wide Web
using natural language. In Proceedings of the 5th
RIAO Conference on Computer Assisted Informa-
tion Searching on the Internet (RIAO '97).

Jimmy Lin and Boris Katz. 2003. Question answer-
ing from the Web using knowledge annotation and
knowledge mining techniques. In Proceedings of

Twelfth International Conference on Information
and Knowledge Management (CIKM-2003).

Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory
Marton, and Stefanie Tellex. 2002. Extracting an-
swers from the Web using knowledge annotation
and knowledge mining techniques. In Proceedings
of the Eleventh Text REtrieval Conference (TREC
2002).

Gregory A. Marton. 2003. Sepia: Semantic parsing
for named entities. Master’s thesis, Massachusetts
Institute of Technology.

Stefanie Tellex, Boris Katz, Jimmy Lin, Gregory
Marton, and Aaron Fernandes. 2003. Quantita-
tive evaluation of passage retrieval algorithms for
question answering. In Proceedings of the 26th
Annual International ACM SIGIR Conference on
Research and Development in Information Re-
trieval (SIGIR-2003).

Ellen M. Voorhees. 1994. Query expansion using
lexical-semantic relations. In Proceedings of the
17th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR-1994).



