Query Expansion Techniques for

Question Answering
by
Matthew W. Bilotti

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2004
(© Matthew W. Bilotti, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

AUthor ..
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified Dy
Boris Katz

Principal Research Scientist
Thesis Supervisor

Accepted Dy . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Query Expansion Techniques for Question Answering
by
Matthew W. Bilotti

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Query expansion is a technique used to boost performance of a document retrieval
engine, such as those commonly found in question answering (QA) systems. Common
methods of query expansion for Boolean keyword-based document retrieval engines
include inserting query terms, such as alternate inflectional or derivational forms
generated from existing query terms, or dropping query terms that are, for exam-
ple, deemed to be too restrictive. In this thesis, I present a quantitative evaluation
against a test collection of my own design of five query expansion techniques, two
term expansion methods and three term-dropping strategies. I present results that
show that there exist best-performing query expansion algorithms that can be ex-
perimentally optimized for specific tasks. My findings pose questions that suggest
interesting avenues for further study of query expansion algorithms.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist

Acknowledgments

I am indebted to many people who have helped to make this thesis possible:

To Boris Katz, for his guidance and support, for his boundless patience, and

for welcoming me into his group in January of 2001; and

e To Jimmy Lin, Gregory Marton and Sue Felshin, for teaching me much of what

I know about science and language processing research; and

e To Kimberle Koile and Patrick Winston, for their encouragement and timely

advice; and

e To Stefanie Tellex and Aaron Fernandes, whose previous work in this area

benefited this thesis enormously; and

e To Leah Oats, for working by my side for hours at a time, and for her dedication

to this project; and

e To Caitlin Dwyer-McNally, for taking care of me, and for always having a smile

and some warm words for me whenever I needed them; and

e To William and Celeste Bilotti, and to the rest of my family, who have made
uncountable sacrifices on my behalf, without which I could have never gotten

this far; and

e To Alexander Bilotti, for always understanding me and for always being a good

listener; and

e To Vincent Bilotti and Candido Pensotti, whom I don’t remember, but without

whom none of this could have been possible.

This thesis could not have been completed were it not for the selfless contributions
of the above named individuals, and it stands as a monument to their generosity. To

each, I offer my most humble thanks, and to them, I dedicate this thesis.

Contents

3.2

1 Introduction
1.1 What is Question Answering?
1.2 Approaches to Question Answering
1.3 The Role of Document Retrieval
1.4 What Query Expansion can Contribute
1.5 Contributions of this Thesis
1.6 Outline of this Thesis
2 Background Information
2.1 The History of Question Answering
2.2 Tasks Related to Question Answering
2.2.1 Information Retrieval
2.2.2 Information Extraction
2.3 New Interest in Question Answering
3 Previous Work
3.1 Aranea
3.1.1 Knowledge Annotation

3.1.2 Knowledge Mining
3.1.3 Answer Projectiono
3.1.4 Aranea Results
Pauchok
3.2.1 Question Analysis L

15
15
16
17
18
19
19

21
21
24
24
25
27

3.2.2 Document Retrieval
3.2.3 Query Generation and Expansion
3.2.4 Passage Retrieval and Answer Extraction
3.2.5 Pauchok for List and Definition Questions
3.2.6 Pauchok Results

4 Pauchok IT System Design

4.1
4.2

4.3

Overview of Pauchok IT
Query Expansion Components
4.2.1 Control Structures oL
4.2.2 Term Extractors 0.
4.2.3 Term Expansion Functions
4.2.4 Term-Dropping Strategies

Visualization Tools

5 Building a Test Collection

5.1
5.2
5.3

5.4

Deciding on an Evaluation Metric
The Need for a Test Collection
Choosing Questions
5.3.1 Finding Documents in the Corpus
5.3.2 Guidelines for Judging Documents

Inter-annotator Agreement

6 Evaluation

6.1
6.2
6.3

6.4

Query Expansion Algorithms in Pauchok IT
Approach
Tuning Parameters for Word Morphology
6.3.1 Alpha: The Inflectional Expansion Discount Factor
6.3.2 Beta: The Derivational Expansion Discount Factor
6.3.3 Interdependence of Alpha and Beta

Dropping strategies

47
47
48
48
49
20
o1
52

57
o7
29
60
61
63
66

6.5 Issues with Phrase Analysis 87

Contributions 89
7.1 Motivation 89
7.2 Contributions, 90
7.3 Future Directions 91
The Training Set 93
Evaluation Data 97
B.1 Raw Data 97
B.2 Recall Matrices 100
B.3 TRR Matrices 102

10

List of Figures

3-1
3-2

3-3

3-4

4-1

4-2

4-3

6-1

6-3

Two passages that answer the question, “When did the 6-day war begin?” 33

Several examples of Google queries generated by Aranea’s knowledge
maining facility.
Queries generated by Method 1 for query terms A, B and C' arranged
in increasing-IDF order.o
Queries generated by Method 2 for query terms A, B and C which are

in order of increasing IDF.

Queries generated by the Red Dropping Strategy for query terms A, B
and C, from lowest to highest IDF.
Queries generated by the Green Dropping Strategy for query terms A,
B and C' arranged in increasing order of IDF.
Queries generated by the Blue Dropping Strategy for query terms A, B
and C, which go from lowest to highest IDF.

Recall of relevant documents as o varies in the range from 0.0 to 1.0,
for five limit values of 100, 250, 500, 750 and 1000, from bottom to
top. The results of these five experiments are not directly comparable.
Normalized recall analysis as o varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.
The heavy black line shows the average across the five experiments. . .
Normalized MRR analysis as « varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.

The heavy black line shows the average across the five experiments. . .

11

40

41

51

52

93

75

76

77

6-4

6-5

6-7

6-8

6-9

Normalized TRR analysis as a varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.
The heavy black line shows the average across the five experiments. . .
Normalized recall analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.
The heavy black line shows the average across the five experiments. . .
Normalized MRR analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.
The heavy black line shows the average across the five experiments. . .
Normalized TRR analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.
The heavy black line shows the average across the five experiments. . .
Normalized recall analysis as (3 varies in the range from 0.0 to 1.0, for
five limat values of 100, 250, 500, 750 and 1000, from bottom to top. .
Normalized MRR analysis as (3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. .

6-10 Normalized TRR analysis as (3 varies in the range from 0.0 to 1.0, for

five limat values of 100, 250, 500, 750 and 1000, from bottom to top. .

12

77

79

80

80

81

82

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2

6.3

6.4

Al

B.1
B.2
B.3
B.4

B.5

First Question Set for Inter-annotator Agreement (IAA1) 67
Inter-annotator Agreement Results on TAA1 68
Second Question Set for Inter-annotator Agreement (IAA2). 68
Inter-annotator Agreement Results on TAA2 69
Third Question Set for Inter-annotator Agreement (IAA3) 69
Inter-annotator Agreement Results on [AA3 69
Inter-annotator Agreement Results on TAA1-8 70
Ezxperiments Performed while Finding Alpha (o) 75
Ezperiments Performed while Finding Beta () 78

Recall Dropping—Ezpansion Matrix showing percent change averaged

over five values of document limit: 100, 250, 500, 750 and 1000. . . . 84

TRR Dropping—Fxpansion Matrixz showing percent change averaged over

five values of document limit: 100, 250, 500, 750 and 1000. 85
Training set questionso 95
Raw data for a limit of 100 documents. 98
Raw data for a limit of 250 documents. 98
Raw data for a limit of 500 documents. 99
Raw data for a limit of 750 documents. 99
Raw data for a limit of 1000 documents. 100

13

B.6

B.7

B.8

B.9

B.10

B.11

B.12

B.13

B.14

B.15

Recall Dropping—Ezxpansion Matriz for a limit of 100 documents. Per-
cent change is computed with respect to the Red Dropping Strateqy with
NO ETPANSION. . o o v v v e e e e e e e e
Recall Dropping—Expansion Matriz for a limit of 250 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO ETPANSION. . o o v v v e e e e e e e e e e
Recall Dropping—FEzxpansion Matriz for a limit of 500 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
MO ETPANSION. . o o v v v e e e e e e e e e
Recall Dropping—Expansion Matriz for a limit of 750 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO ELPANSIOT. . o o o o o e e e e e e e e e e e
Recall Dropping—FExpansion Matrix for a limit of 1000 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO ETPANSTOTE. . o o v v e e e et e e e e e
TRR Dropping—Fxpansion Matrixz for a limit of 100 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO EIPANSION. . . v v v v e v e e e e e e e e e e e e
TRR Dropping—Fxpansion Matrix for a limit of 250 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO EIPANSTON. . + v v v e e e e e e e e e e e e e
TRR Dropping—Ezxpansion Matrix for a limit of 500 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO ETPANSIOT. . . o v v v e e e e e e e e
TRR Dropping—Ezxpansion Matrix for a limit of 750 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with
NO ETPANSION. . . o v v v e e e e e e e e e
TRR Dropping—Expansion Matrix for a limit of 1000 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with

NO ETPANSTON. . o o o o o v e e e e e e e e

100

101

101

101

102

102

103

103

103

Chapter 1

Introduction

The development of systems that interact with human users in natural language has
long been a goal of the artificial intelligence research community. Since the 1960s,
when the field was in its infancy, a variety of natural language database front-ends,
dialog systems, and language understanding systems have been created. Each subse-
quent system has demonstrated mastery over a slowly increasing subset of the English
language, and has proposed a solution to the problem of mediating human access to
electronic information in some limited domain. Available processing power and lin-
guistic resources have improved markedly since the time of the early natural language
understanding systems, and interest in general purpose natural language interfaces
has scaled commensurately. Perhaps the best example of this is an ambitious task

known as question answering.

1.1 What is Question Answering?

Open-domain question answering (QA) is an area of natural language processing re-
search aimed at providing human users with a convenient and natural interface for
accessing information. QA is often viewed as a combination of two related, more
established information access tasks known as information retrieval (IR) and infor-
mation extraction (IE), but unlike them, the goal of QA is to provide exact, precise

answers to human users’ questions posed in natural language. For more information

15

on these related tasks, see Section 2.2.

Recently popularized by efforts to provide large-scale evaluation of QA systems,
the field is quickly growing. A large number of research groups are interested in de-
veloping QA systems, in both academia and industry, and from around the world.
The QA research community’s vision is aggressive; placing heavy emphasis on ac-
curacy of correct, unambiguous answers, and on systems that can understand how
confident they are in their answers, and whether there are no answers found among
the documents to which they have access.

A parallel movement in the QA community is highly interested in studying the
user’s interaction with the system, and the system’s role in the user’s work environ-
ment. Some feel that for a QA system to be useful to human users, it has to be
cognizant of the context in which the user is asking the question, and of his or her
purpose in asking it. An eventual goal of the community is to be able to build systems
that support follow-up questions from the user, or requests for clarification. To be
able to deliver a response tailored precisely to the information the user is seeking,
the system must understand the context of and motive for the questioning dialog and
have a model of what the user already knows.

Still another subarea of interest to some QA researchers is the indexing and re-
trieval of mixed media. As media access technologies improve, QA systems will
eventually be searching not only text documents, such as those found on the web and
in corpora of newswire articles, but also clips of video and audio, such as broadcast
news. These forms of media contain information that can be used as source material
for answers to users’ questions, or as supporting evidence for answer justification. For
more information about the vision of the QA research community, see the document

developed by the QA Roadmap Committee [4].

1.2 Approaches to Question Answering

The general QA approach is prescribed by the nature of the task itself. Systems

must provide some facility for analyzing the question, to understand what is being

16

asked for. They must also be able to quickly and efficiently search for documents or
passages relevant to the question, in order to search for candidate answers. Finally,
systems need to locate the extents of these answers and choose the best of them to
present to the user.

This approach is often described as a QA pipeline, in which natural language
questions flow into the first module, which is responsible for question analysis, and
answers flow out of the last module, in which the answer is extracted and packaged
into a response for the user. Modules are chained such that the output of an upstream
module is connected directly to the input of the next adjacent downstream module.
This general approach is known to have solid performance on answering short-answer,
factual questions such as those focused on by the first few QA tracks of the Text
REtrieval Conferences (TREC) [35].

A variety of research groups are augmenting this minimal approach with tech-
niques such as question type ontologies, databases of external knowledge, heuristics
for extracting answers of certain types, generation of answers, answer justifications,

inference rules, feedback loops, machine learning and even logical analysis.

1.3 The Role of Document Retrieval

Whatever QA architecture is chosen, answering questions over a closed corpus or even
the web almost always involves some kind of searching for and retrieval of documents
as a first step to narrow the search space for the answer to the question [10].
Within the context of a pipelined QA system, this retrieval step generally takes
the form of an upstream IR module that extracts relevant documents from the cor-
pus of interest, prior to sending them to a downstream answer extraction module,
which is responsible for generating candidate answers from them. The IR component
in this context is known as a document retrieval module. Many pipelined systems
also have a passage retrieval stage, interposed between the document retrieval and
answer extraction components, which can be thought of as a second, smaller scale IR

module. My colleagues and I, in the Infolab group of the MIT Computer Science and

17

Artificial Intelligence Laboratory, have a great deal of experience with pipelined QA
architectures, as our submissions to the TREC 2002 and 2003 tracks indicate [21, 18].
For more information about these systems, see Chapter 3.

A previous study conducted by Tellex et al. [31] of the Infolab group has identified
the importance of high-quality document retrieval to the performance of downstream
passage retrieval modules, and of pipelined QA systems in general. The supposition is
that maximal performance of the system as a whole depends on high recall in upstream
stages, specifically document retrieval, and high precision in downstream stages, such
as passage retrieval and answer extraction. Intuition confirms that recall is essential
in the early stages of a QA pipeline because documents that are not retrieved can
never be analyzed for relevant passages, and those passages can never be searched for
reasonable answer candidates. Precision is clearly important throughout the whole
question answering process, especially since the most recent TREC QA tracks required
a single, exact answer for each question, but the claim is that precision should be

allowed to decrease in favor of improved recall at the document retrieval stage.

1.4 What Query Expansion can Contribute

Query expansion is a name given to a class of techniques in which a query serving
as input to a document retriever is evolved in some way with the intent that the
change will improve the document retriever’s performance, according to some metric.
Query expansion is particularly applicable to document retrieval components that
provide a Boolean query model, because of the expressiveness of the syntax and ease
of modifying existing queries. This thesis will focus on query expansion techniques for
a Boolean keyword and phrase document retrieval engine, which, as demonstrated in
previous work by the Infolab group, can perform as well if not better when retrieving
documents for question answering than other, more sophisticated retrieval methods,
even though those methods outperform it in terms of raw retrieval [31].

The hypothesis is that cleverly designed query expansion techniques will improve

recall of documents that are relevant to the query. The intention is that there will

18

be more relevant documents in the list of retrieved documents, and they will be more
highly ranked, with query expansion than without it. Improving document retrieval
in this way would provide the best possible input to a downstream passage retrieval

or analysis module in a pipelined QA system.

1.5 Contributions of this Thesis

This thesis is the direct result of research I have done toward the development of
a high-performance document retrieval module for incorporation in a pipelined QA
system, one which will form the foundation for the Infolab’s TREC 2004 competition
system. The work I have done offers the following contributions toward the problem

of improving document retrieval performance for question answering:

e Design and development of a test collection and accompanying suite of evalua-
tion tools used to measure document retrieval performance. The test collection
provides lists of documents known to be relevant, unsupported or irrelevant for
selected TREC 2002 questions and is intended to provide better coverage than
the relevant document lists provided by the TREC organizers.

e Discussion of evaluation techniques for query expansion algorithms and the
outline of an approach for building an optimized query expansion algorithm

given a specific document retrieval engine.

e Comprehensive evaluation of query expansion techniques such as morphological
and derivational query term expansion, and term-dropping strategies, applied

to a Boolean keyword and phrase document retrieval engine.

1.6 Outline of this Thesis

The remaining chapters of this thesis are organized as follows:

e In Chapter 2, I summarize the historical origins of research in natural language

understanding systems, and trace the development of question answering as a

19

task of interest to the research community.

In Chapter 3, I describe two systems central to Infolab’s involvement in TREC-
style QA: Aranea, developed for TREC 2002, and Pauchok, developed for TREC
2003.

In Chapter 4, I tell of my work on Pauchok II, a second system based on the
TREC 2003 version of Pauchok. Pauchok II is the system that underlies the
work done in this thesis, and that will provide document retrieval support for

Infolab’s TREC 2004 QA effort.

In Chapter 5, I discuss issues of evaluating document retrieval for question
answering, and the need for a quality test collection. I describe the building of

such a test collection, one that I later use in this thesis to evaluate my work.

In Chapter 6, I give the details of my approach to the task of evaluating the
performance of a variety of components of query expansion algorithms provided
by the Pauchok II system, and I share the results of my experiments. The query
expansion algorithm that will be used for TREC 2004 will be built from the

best performing components available in Pauchok II.

In Chapter 7, I make some concluding remarks about improving document
retrieval for question answering, identify the primary contributions of this thesis,

and propose promising avenues for future investigation into this problem.

20

Chapter 2

Background Information

In this chapter, I outline the foundations of question answering (QA) and explore the
historical roots of QA research. The purpose of this chapter is to give the reader a

grounding in the history and current directions of QA research.

2.1 The History of Question Answering

Research and development of systems capable of answering questions in natural lan-
guage dates back to 1959 [28], but the notion of a question answering system was born
in 1950, when Turing offered a solution to the question of whether or not machines
can think. He proposed a task he called an “Imitation Game,” which has eventu-
ally become known as the famous “Turing Test,” in which a human communicates
with a machine via a teletype interface and asks questions of it. Turing would have
deemed the machine “intelligent” if the human interrogator could not tell the differ-
ence between the responses of the machine and the responses of another human, also
communicating via teletype [32].

The situation that Turing envisioned, that of a user seated at a console typing
questions to a machine, anticipated the mode of interaction for QA systems, and his
Turing Test spawned the early research into systems that could pass it. Very early
systems relied on identifying word patterns in the user input, drastically restricting

the domain of discourse, or matching simple syntactic structural templates. Examples

21

of such systems include the “Conversation Machine,” by Green et al. [8], and ELIZA
by Weizenbaum [39]. While each of these systems might be able to fool a human
operator into attributing intelligence to it for a short time by generating reasonable
replies to user input, the limitations of the subset of English that each was able to
handle eventually betrayed to the user the artificial mechanism of dialog generation

that the system was using.

In the early 1960s, there was interest in developing natural language front-ends for
database query systems. One of the most successful systems of its time was BASE-
BALL, by Green et al. [9]. The system was able to answer narrow-domain questions
about statistics compiled over a season of American League play by using shallow
parsing techniques on the natural language query to identify the teams and statis-
tics in question. It was also able to handle some more comprehensive queries that
involved collating data found in different records of the baseball database, and return
the appropriate answer. Another example of a natural language database front-end
was the LUNAR system, by Woods, which provided access to two databases contain-
ing information about moon rock samples [41]. The system worked by translating
natural language questions into one or more queries in the database engine’s query
language. While these systems were excellent at responding to specific classes of ques-
tions within their domain of expertise, the systems are incapable of responding to any
natural questions that might suggest themselves during the dialog with the user, but
which happen to be outside of the set of questions that the system was specifically
engineered to be able to process. The types of questions these systems can handle is

largely constrained by the structure of their underlying databases.

Work carried out in the 1970s showed the research community making steps toward
an understanding of human dialog. Early dialog systems were built in which human
operators could ask a series of questions about a narrow domain. The SHRDLU sys-
tem, built in 1972 by Winograd, offered users the opportunity to discuss the state
of an imaginary blocks world with the system [40]. A later system, GUS, applied a
similar dialog model to the domain of making air travel reservations [2]. Both systems

demonstrated remarkable capacity to understand natural language, especially where

22

anaphora resolution or inference was required to carry out the user’s instructions.
They also displayed flexibility when working with a slightly uncooperative user who,
for example, might answer a question from the system with information other than
that for which it asked, or with another question, altering the flow of the dialog. Al-
though these systems represented advances in interactive dialog systems, they showed
that building a system able to pass the Turing Test was more difficult than it seemed.
There has not yet been a machine built that can converse like a human, but steps are
still being taken in the right direction. Interactive dialog systems are a fascinating
area of work that has resulted in many useful applications available to the public,
such as the telephone-based information systems developed by the Spoken Language
Systems group at MIT.?

Attempts to build systems that were capable of basic reading comprehension arose
in the mid-to-late 1970s. The aim was to be able to evaluate a machine’s ability to un-
derstand language much in the same way as is done for that of a human. MARGIE, a
system by Schank et al. [27], was capable of reading and interpreting a document, and
answering a series of questions about it in a way that is reminiscent of standardized
reading tests for children. MARGIE understood texts by parsing them into a semantic
representation that is motivated by theories about how human memory is organized.
It was an attempt to emulate what a human does when reading and understanding
text. This work was taken to the next level by Lehnert and Dyer, whose BORIS sys-
tem had a repertoire of representations for common plot elements of a written story,
including themes, emotions and relationships among characters [19, 7]. Although the
task of story understanding shares some features with that of interactive dialog sys-
tems, namely anaphora resolution and the use of context to understand questions, it
is more of a precursor to modern-day QA than the other tasks described here in that
it relies on understanding unstructured text to find answers to user queries.

For more information about some of the systems named above, or for more ex-
amples of early natural language systems, see the surveys by Simmons [28, 29]. For

details about some of the later systems named, and for a good discussion of the

!See http://www.sls.csail.mit.edu/sls/whatwedo/applications.html

23

current state of QA research, see Hirschman and Gaizauskas [10].

2.2 Tasks Related to Question Answering

Many researchers see the modern QA task, described in Section 1.1, as a combination
of two more established natural language processing tasks, information retrieval (IR)
and information extraction (IE), which are discussed in detail in this section. The

relationships of these tasks to that of QA is also covered.

2.2.1 Information Retrieval

The traditional task known as information retrieval can be considered to be similar
to what a web search engine, such as Google, does, although the original IR engines
predate the existence of the web, searching locally-stored collections of documents
instead. An IR engine takes as input a query expressed in the engine’s query syntax,
which can be as simple as a “bag of words” or as complicated as that of a system
such as INQUERY, which allows the user to query on phrases, sets of synonyms and
keywords in strict order over windows of text [5].

As output, an IR engine provides a ranked list of documents drawn from the
collection it has previously indexed that are relevant to the user’s query, for some
definition of relevance. IR engines generally rely on statistical measures to retrieve
the documents that most closely match the user query. A popular model for building
an IR engine is known as the vector space model (VSM), which represents both
documents and user queries as vectors of terms in a high-dimensional space.

The most common term-weighting strategy for a VSM is known as the tf-idf strat-
egy, which stands for term frequency and inverse document frequency. Term frequency
refers to the number of times a term appears within a document. The inverse docu-
ment frequency of a term is a measure of how rare the term is across the entire corpus.
The insight is that if a term occurs frequently in a document, but not frequently in
the corpus considered as a whole, then that term does a good job of semantically

describing that document. In tf-idf weighting, each term is weighted by the product

24

of its term frequency and its inverse document frequency. It is customary to nor-
malize the term weights against document length to avoid preferentially retrieving
very long documents, which contain more terms and have higher term frequencies for
those terms than do shorter documents.

Assuming that terms occur independently of each other, tf-idf turns out to be a
fairly good term weighting strategy. Relating user queries to similar documents in
the corpus is simply a matter of computing the cosine of the angle between the query
vector and the projections of document vectors onto the hyperplane containing the
query vector. Performance of this kind of retrieval algorithm can be improved by
filtering out stopwords, which are words such as articles and prepositions that are so
frequent in the entire corpus that their presence in a document does not contribute to
that document’s relevance to the query. For more information about term weighting
as it pertains to IR, see Salton [26].

In IR, the input query is expressed in the engine’s query language, and the output
consists of a ranked list of documents that are presumably relevant to the user’s query.
The user is then responsible for reading the documents to learn whatever it is that he
or she wants to know. QA is different from IR in that the user is allowed to ask his or
her question directly to the system in natural language, without having to translate
it into some query syntax. The system then answers the question in the form of an
exact answer extracted from a source document. However different the two tasks are,
the fate of QA is tied to that of IR. In QA systems engineered to answer questions
over a corpus of documents, some provision for a coarse, first-pass search over the
entire set of available documents is necessary, and for that many QA systems turn to

an IR engine.

2.2.2 Information Extraction

Formerly known as message understanding, the general goal of information extraction
is to locate information within free text that matches prepared templates. Templates
can represent events, references to objects or entities, business deals, movements of

military resources, or anything else of interest to the system. Each template, like a

25

frame, contains a number of slots that the IE system would like to fill. In the example
of a business deal, a template might have slots for which corporations were involved,
whether the deal was a sale, a merger or some other type of transaction, and the
amount of stock or money that changed hands. When an IE system locates some
text matching one of its templates, it uses as much context as it can to fill out all of
the slots in the template.

Named Entity (NE) Recognition is a specialized form of the IE task dedicated
to identifying phrases in text that refer to entities like people, organizations and
facilities, and extracting their semantics. It is not enough for an NE recognizer to be
able to identify that the phrase “Pope John Paul II” refers to a person; the system
must be able to fill out a template of information, such that the person is male, his
first name is “John Paul”, his title is “Pope” and his generation is “II”. Examples
of NE extraction systems include the popular BBN Identifinder [1], and also Sepia,
developed at MIT primarily by Marton [22].

Automated Content Extraction (ACE) is a large-scale evaluation effort for IE
systems run by the National Institute of Standards and Technologies (NIST). ACE
challenges participating systems to locate references of people, geo-political entities
such as cities, states and nations, locations with physical extent, organizations and
facilities within newswire text and broadcast news transcripts. Additional goals of the
ACE program are to be able to track mentions of entities throughout larger bodies of
text, and to recognize relationships among entities.? Prior to ACE, standardized IE
evaluation opportunities were provided by the various Message Understanding Con-
ferences (MUCSs) held between 1987 and 1998, the proceedings of which are available
from NIST.

Having extracted information from a large body of text, a database can be com-
piled about the various types of events or entity references extracted, and such a
database can be combined with modern natural language database query front-ends
to make a kind of narrow-domain QA system. Limitations of IE systems include the

fact that the templates have to be hand-edited by humans, which can take signifi-

2See ftp://jaguar.ncsl.nist.gov/ace/doc/ACE-EvalPlan-2002-v06.pdf

26

cant effort that is usually not transferable across domains. As are natural language
database front-ends, IE systems are constrained in the kinds of questions they can an-
swer by the structure of their database templates. Just as with IR engines, however,
a good IE system can be an enormously useful resource for a high-quality QA system
to have. IE can assist with question analysis, helping the system understand what
type of entity it is looking for, and also with answer extraction, identifying entity
references of the desired type among passages retrieved by upstream passage analysis

and document retrieval modules.

2.3 New Interest in Question Answering

Early explorations into question answering systems were concerned with producing
natural language query front-ends for databases, dialog systems, reading comprehen-
sion programs and the like. Interest in the QA task in its current form did not really
take root among the research community until the 1990s.

The START system, developed at MIT by Katz, was the first QA system de-
ployed via the web and made available for public use. START works by matching
the input question against schemata that break down the question focus into an
object-attribute-value triple that becomes a query into the system’s knowledge base.
START’s knowledge base is not only capable of checking local databases for asser-
tions that match the query, but also able to retrieve information from web databases
through the same uniform access model. After START retrieves the answer from its
knowledge base, it packages it into a response paragraph of generated English that
includes a link to the source of the information, and in some cases, relevant pictures
or video clips.

Since 1993, START has answered hundreds of thousands of questions and has
provided users with answers ranging from facts about geography, weather and movies
to useful information such as distances between major cities, conversions between
units of measure, and definitions of words. START’s popularity among users from

around the world helped to bring QA to the forefront of the research community’s

27

attention in the early-to-mid 1990s. For more information about the system, see
Katz [15].

NIST, with support from the Defense Advanced Research Projects Agency (DARPA),
started an annual conference in 1992 to promote research in natural language tech-
nologies and in information retrieval. This Text REtrieval Conference, or TREC,? as
it is referred to, organizes competitive tasks and comprehensive evaluation for natural
language systems. Since 1999, TREC has offered a QA track in which the task was
to answer specific questions over a closed corpus. Each year, TREC provides large-
scale evaluation on increasingly difficult QA tasks, comparing systems from a growing
community of research groups against a common metric, and raising the standards
for the state of the art in QA.

The early QA tracks of TREC-8 and TREC-9 required systems to return 50-byte
or 250-byte text windows extracted from the documents in the TREC corpus that
contained the answers to factual, short-answer questions termed “factoid” questions.
Systems were required to return between one and five answers per question, where
answer consisted of a string of the required length and the identification number of the
corpus document from which the answer was extracted. The evaluation metric was
the average of the reciprocal of the rank at which the first correct answer appeared
in the list of answers for each question. The difference between the TREC-8 and
TREC-9 tasks was in the question set: while TREC-8 questions were specifically
designed to be answerable, TREC-9 questions came from web search engine logs and
were considerably more difficult [38].

The TREC 2001 QA track featured the introduction of the list question task in
addition to the main (factoid question) task. The list task challenged systems to
aggregate an answer from information present in several documents. This inaugural
list task always specified the number of items requested in the question, for example,
“Name 4 U.S. cites that have a ‘Shubert’ theater.” Evaluation metric for the list task
focused on accuracy, which was defined as the number of different, correct responses

returned divided by the number requested in the question.

3See http://trec.nist.gov

28

TREC 2001 also introduced a context task, in which systems answered a series of
questions with the same context. The task was subsequently discontinued because it
did not do a good job of evaluating a system’s ability to keep track of the context
of a running dialog. The TREC 2001 main task was very similar to that of previous
TRECs, except that all answers were required to be in 50-byte windows, and that not
all questions were guaranteed to be answerable. Systems were given credit for return-
ing ‘NIL’ as their answer for the 49 questions that had no answer in the corpus [34].
For more information about evaluating QA systems in the early TRECs, see [35].

The new challenge imposed by the TREC 2002 QA track was that systems had to
return exact answers on the main and list tasks. Answer strings containing characters
beyond the extent of the correct answer were judged “inexact.” These strings, while
not “incorrect,” did not help a system’s score. In the main task, systems were required
to provide exactly one answer to each question, and to rank their responses in order of
confidence. Evaluation was by means of a confidence-weighted score that gave systems
credit for being sure of their answers. The TREC 2002 list task was evaluated using
the same accuracy measure as that used in the list task from TREC 2001. TREC
2002 also saw a switch in the corpus used for finding answers, moving from the TREC
corpus to the Linguistic Data Consortium’s* AQUAINT corpus [36].

The TREC 2003 QA track contained two tasks, a passages task and a main task.
The passages task was similar to earlier QA tracks, in which 250-byte passages were
to be returned as answers, one per question. The main task was composed of three
subtasks, one for each type of question: factoid, list and definition. Recognizing
the need for a QA system to succeed at many question types, scoring on the main
task was a weighted sum of performance on each of the three component subtasks.
Individually, the factoid subtask was scored in terms of accuracy.

The TREC 2003 list subtask was notable because questions no longer asked for a
number; implicitly, the correct answer to the question was to return all instances in
the corpus. List questions were scored by taking the F measure, which is a weighted

average of precision and recall in which the weight can be tuned to favor one or the

4See http://www.ldc.upenn.edu

29

other [33]. The list question scoring algorithm equally weighted precision and recall of
list instances retrieved per question, and averaged that across all list questions. The
newest type of question was the definition question, which is an open-ended question
such as, “Who is Andrew Carnegie?” Systems were charged to retrieve “nuggets” of
information, each an element of the total answer to the question. TREC assessors
judged a subset of the nuggets as vital nuggets, and systems were evaluated using
F measure over the vital nuggets, in which recall was weighted five times as much
as precision. Systems took an artificial precision penalty for returning too many

non-vital nuggets, or nuggets that were past a length allowance [37].

30

Chapter 3

Previous Work

This chapter gives an overview of previous work done by the Infolab group and by the
author in TREC-style question answering (QA). MIT has participated in the TREC
QA track twice to date: in TREC 2002 and in TREC 2003. In this chapter, I describe
the two QA systems whose legacy contributed to our current QA system, which forms
not only the basis for the experiments outlined in this thesis, but also for the Infolab’s

TREC 2004 question answering effort.

3.1 Aranea

Aranea is a system developed by Lin et al. of the Infolab group, which was MIT’s
submission to the TREC 2002 QA track in August of 2002 [21]. Aranea falls into a
category of systems that employ shallow understanding techniques and databases of

external information, a category that was well represented at TREC 2002 [36].

3.1.1 Knowledge Annotation

Aranea seamlessly merges two powerful approaches to QA: knowledge mining and
knowledge annotation. The knowledge annotation component of Aranea leverages
existing natural language annotation technology [15] that is a part of START, the

Infolab group’s publicly available web-based question answering system.!

!See http://www.ai.mit.edu/projects/infolab/

31

START is backed by a database system called Omnibase, which is capable of
providing a uniform interface to a variety of data sources distributed across the
web [16, 17]. Many of these data sources comprise the so-called “invisible” web;
invisible in the sense that its pages are, for example, dynamically generated out of a
database in response to user requests. Pages of this type are not accessible to tradi-
tional search engines that have used some kind of web-crawling tool to generate their
indices, but they can be made available through Omnibase with some minor effort in
knowledge engineering.

Aranea harnessed the power of Omnibase by recognizing questions that are of
known forms and translating them into Omnibase calls to generate answer candidates.
As a canonical example, questions that matched the pattern “When was z born?”
were mapped into Omnibase queries of the form (biography.com z birthdate).
Decoded, this query means to search under the class of symbols known to be in
the database backing biography.com, with symbol name matching the z extracted
from the question, for the value of the attribute birthdate. Omnibase then knows
to download the dynamically-generated page corresponding to x from biography.com
and to extract the birthdate from it.

The mappings from question pattern to Omnibase query constitute a many to
one relation. As an example, the pattern “What is the birthdate of 277 also maps
down to the same Omnibase query on biography.com with the attribute birthdate.
In total, there are 28 mappings from question pattern to Omnibase query, and they

cover seven different Omnibase classes.

3.1.2 Knowledge Mining

In addition to knowledge annotation, Aranea takes a parallel approach to QA called
knowledge mining. Knowledge mining is a web-based technique that relies on the key
insight that, as the size of the corpus scales up, the number of passages that answer
a question tends to increase. As that number increases, so does the probability
that an answer we are looking for is simply phrased in the terms that the original

natural language question used [20]. Consider this example involving question 1527

32

from TREC 2002, “When did the 6-day war begin?” Figure 3-1 shows passages that
answer the question extracted from two documents retrieved from the AQUAINT

corpus.

e APW19981021.0384: “Jordanian soldiers who fought against Israel in the Six
Day War that began June 5, 1967.”

e APW19990306.0071: “Retired Navy Capt. William L. McGonagle, who re-
ceived the Medal of Honor for heroism as skipper of the USS Liberty when
Israel unleashed a deadly attack on the intelligence-gathering ship in 1967, died
Wednesday in Palm Springs. He was 73. Thirty-four crewmen were killed and
171 were wounded when the Liberty was attacked by Israeli air force planes and
torpedo boats in international waters north of Sinai during the Six Day War
between Israel and its Arab neighbors.”

Figure 3-1: Two passages that answer the question, “When did the 6-day war begin?”

From a document retrieval perspective, both documents are likely to be relevant,
that is to say that, not only do they contain the answer, but they also support it. In
terms of extracting an exact answer to return as the output of a QA system, the first
passage is clearly more convenient than the second. Knowing that the web is more
likely than the competition corpus to contain easily-extractable answers that appear
as simple restatements of the question, Aranea uses it to generate candidate answers.
The redundancy of data available on the web also helps Aranea have confidence in
candidate answers it finds, and this confidence is often correlated with frequency.
Except for a small number of incidents, the heuristic that the most frequent answer
is the correct answer is successful. When it fails, the most frequent answer usually
turns out to be something rather nonsensical.

Aranea mines answers from the web by executing Google queries. It generally
constructs queries by restating the natural language question input in the form of an
assertion, and replacing the wh-word with a variable. A few examples of Aranea’s
query formulations are shown in Figure 3-2. The expectation is that, on a corpus as
large as the web is, the answer is likely to appear in the summary snippet returned by

Google, close to the phrase supplied to it as input. As a backoff measure, if no suitable

33

answer candidates are generated using these Google queries based on reformulated
questions, Aranea reverts to a bag-of-words approach, doing no worse in the extreme

case than the most naive QA system.

1. “When did Bob Marley die?” — Bob Marley died
2. “What is the Keystone State?” — is the Keystone State
3. “Where was the first McDonalds built?” — the first McDonalds was built

Figure 3-2: Several examples of Google queries generated by Aranea’s knowledge min-
ing facility.

3.1.3 Answer Projection

Having generated a set of candidate answers from knowledge annotation and knowl-
edge mining techniques, and having filtered, combined and scored them according to
Aranea’s confidence heuristics, the final step for the purposes of TREC evaluation,
was to project the answer candidates onto the corpus, given that the task was not
simply to answer the questions, but to answer them from the designated corpus. This
involved searching the corpus for documents that not only contained the answers, but
also supported them. For TREC 2002, Aranea accomplished this task by running an
early version of the document retrieval and passage extraction facilities that would
eventually become a part of Pauchok, described in Section 3.2. Passages were scored
statistically based on keyword density, using keywords from both the question and
the candidate answer, and the document containing the highest ranking passage was

used to support the answer.

3.1.4 Aranea Results

Aranea performed well at TREC 2002, scoring within the top fifteen of 67 runs on

the main task, but did not succeed well at the confidence ordering of its results. As a

34

consequence, the aranea02a run answered more questions correctly than each of the

two next best runs, but had a lower confidence weighted score [36].

Noticeably, Aranea had trouble providing support for its answers. It turned out
to be difficult to project answer candidates generated by the knowledge annotation
facility on to the corpus, because the answer candidate was often expressed in a com-
plete and unambiguous form that was not always abundant in the corpus, such as
“Verdi, Giuseppe (Fortunino Francesco).” Furthermore, the somewhat crude statisti-
cal measures used by Aranea to score passages could be led astray by documents that
contained keywords from both the question and the answer, but that did not answer

the question.

Being lenient with unsupported answers, Aranea found correct answers for about
37% of the TREC 2002 questions. Knowledge annotation provided 15% of the an-
swers marked correct by TREC evaluators, that is to say, not only correct, but also
appropriately supported by a document from the AQUAINT corpus. This statis-
tic illustrates one of the primary contributions of Aranea; it showed that knowledge
engineering efforts can provide a tangible performance enhancement if judiciously

applied.

Both answer projection and confidence ordering were required to participate in the
TREC evaluation in 2002, but seemed to become stumbling blocks for Aranea. These
two components of the system were viewed as somewhat artificial, and little thought
was invested in clever strategies for implementing them. Here in the Infolab group,
we feel that Aranea’s performance was best measured with respect to the correct
answers it returned, and that the TREC evaluation does not necessarily reflect the
accuracy of the system. We are certain that had it not been for credit lost to poorly
supported answers and issues with the confidence ordering, Aranea would have been

one of the top performing systems at TREC 2002.

35

3.2 Pauchok

Infolab’s TREC 2003 submission was built around a QA infrastructure package called
Pauchok, much of the early development of which was done by Tellex et al. [30]. Pau-
chok is a powerful framework for building and evaluating question answering systems.
The package provides modules, such as question analyzers, document retrievers, pas-
sage retrievers and answer extractors, from which a QA pipeline can be assembled.

There are strong boundaries between components in Pauchok, such that several
different implementations of each module type can coexist, and can be substituted
for each other should need arise. This has led to interesting work in evaluating the
performance of a variety of published passage retrieval algorithms within the Pauchok
framework, which encapsulates a general pipelined approach to the QA task [31].
Unlike some other systems that attempt to dynamically decide which, for example,
document retriever to use to answer a particular question [25], no attempt is made
to adjust the QA pipeline on the fly in the Pauchok system.

For more information about Pauchok, see [30], especially Chapter 3, which details
the architecture of the system as originally developed prior to work on TREC in
the summer of 2003. For information about the system as of August 2003 when the
TREC 2003 runs were being compiled, please see [18], which I co-authored.

3.2.1 Question Analysis

Analyzing the natural language question provided as input to the system is the first
step toward finding the answer. In Pauchok, question analysis is comprised of two
related processes known as query generation and query expansion, the common goal of
which is to construct one or more queries in the query syntax of the document retrieval
engine. Pauchok’s query generation facility is similar to a blackboard architecture in
which independent knowledge sources examine the question and supply information,
such as what part of speech a word belongs to, or what type of entity a phrase
represents.

Annotators are the knowledge sources that power Pauchok’s question analysis

36

and query generation modules. The primary purpose of these annotators is that
they provide information that is useful for generating expanded forms of the original
query. Below, I discuss the types of external knowledge that Pauchok considers when

expanding queries, and the suite of annotators that provides it.

e Tokenization: The word and sentence annotators are the first step in analyzing
a question. The word annotator tokenizes the document, inserting tags around
each word in it according to some user-specified notion of a word boundary,
and the sentence annotator breaks a multi-sentence document along sentence

boundaries.

e Parts-of-Speech: The well-known part-of-speech (POS) tagger by Brill [3] is
encapsulated by an annotator of the same name. The Brill POS tags serve
as the foundation for some phrase-guessing heuristics, which will be discussed

below.

e Word Morphology: Since different tenses of a verb and different pluraliza-
tions of a noun used in the question are likely to occur in relevant documents,
it is useful to be able to have a set of word morphology expansions available
when expanding query terms. Miller’'s WordNet [23] is a useful source of word
inflection information. CELEX provides a comprehensive database of word mor-
phology,? including breakdowns of words into their stem and affix components,

which can be used to derive related word forms from query terms.

e IDF: The inverse document frequency (IDF) of a word is a measure of how
rare a word is across the entire corpus. The IDF information is used to iterate
through query terms in order from most common, or lowest IDF, term to the

most rare, or highest IDF, term.

e Question Focus: The START Natural Language Question Answering System
by Katz [14] can identify which non-stopwords in a natural language question

are function words, and what the target of the question is. For example, in the

2See http://www.kun.nl/celex/

37

question, “Name 20 countries that produce coffee,” the word “name” is not a
stopword, but rather a function word and, as such, is not likely to co-occur with

the answer and should not be included in the query.

e Phrases: For the purposes of query expansion, it is useful to know which se-
quences of words in the input question correspond to phrases that, taken as a
whole, have semantics different from the combination of the semantics of the
individual component words. Sources of phrases available to Pauchok include
Omnibase [16], an incredibly thorough lexicon of phrases that correspond to
things like titles of movies, opera and written works, names of locations such
as cities, countries and natural geologic formations, units of measure, and his-
torical events and figures; Sepia [22], a named entity recognizer used to identify
names of people, locations, organizations and facilities; selected noun—noun
collocations extracted from WordNet; and proper noun phrases identified by

examining the Brill POS tags on the words of the input question.

3.2.2 Document Retrieval

Pauchok utilizes the Apache Jakarta Project’s Lucene® IR engine, which is open source
and available for public download, to provide document retrieval support. Lucene is
a Boolean keyword and phrase search engine based on a standard tf-idf model, and
it provides a fairly rich query syntax. Lucene supports the Boolean connectives
and parenthetical nesting, phrase queries involving wildcards, fuzzy matching, and
proximity searching, and term weighting.

Previous work in analyzing document retrieval systems for the purpose of sup-
porting passage retrieval within the context of a QA system has shown that Lucene
performs just as well as cutting-edge probabilistic IR engines, even though such mod-
ern methods outperform simple Boolean query systems in terms of raw document
retrieval [31]. Not only can a Boolean query model provide adequate document re-

trieval support for QA, but it allows the system to apply performance-enhancing

3See http://jakarta.apache.org/lucene

38

methods such as query expansion. Confirming our intuition, other TREC competi-
tors are using Boolean query-based IR engines in their systems, for example, those

described by Hovy et al [11] and Moldovan et al [24].

3.2.3 Query Generation and Expansion

The work outlined in this thesis began as my exploration into using query expansion
techniques to boost recall of relevant documents retrieved by Lucene in the Infolab’s
TREC 2003 competition system. We had speculated that document retrieval was not
one of the strengths of our older-generation TREC-style QA systems and prototypes,
and we realized that our earlier systems frequently returned no relevant documents
at all for an input question. We considered this performance to be unacceptable,
because there is no sense in doing any further processing on the question if no relevant
documents are retrieved; whatever answers will be extracted from any remaining
documents returned are sure to be wrong.

I developed two query generation and expansion algorithms that were put into use
for TREC 2003. We referred to them as Method 1, a simple approach that represents
an incremental improvement over bag-of-words, and Method 2, an ambitious process
that involves using the annotators described in Section 3.2.1 to identify phrases with
special query expansion properties [18]. Both query expansion algorithms return a
list of Boolean keyword and phrase Lucene queries that are executed in order. The
list of documents returned by is composed by concatenating the list of documents
retrieved by the individual queries, in order, with duplicates removed, up to a limit

of one thousand documents.

Method 1

Method 1 features stopwords filtering, and inflectional and derivational expansion for
query terms. The algorithm does not contain any provision for recognizing phrases
embedded in the natural language question, and so it rather naively considers them

as their component words, expanding these words as it would any other query term

39

in the question. The first query is always a conjunction of all of the query terms. The
second query is the same as the first except that each query term is expanded into
a disjunction of the original term and all morphological variants from WordNet and
CELEX. The third through last queries are generated from the second query according
to a term-dropping strategy in which terms are dropped in order of increasing IDF,
meaning that the term that is the most common across the entire corpus is dropped
first. After all of the terms are exhausted, the term with the highest IDF, or the
most rare term, is removed, and the dropping continues as before. Assuming that
query terms A, B and C are arranged in order of increasing IDF, Figure 3-3 shows the
queries that would be generated by Method 1, in order. Note that not all combinations

of terms are tried.

A N B AN C
e(A) N e(B) AN e(C)
e(B) N e(C)
e(C)
e(A) N e(B)
e(B)
e(A)

Figure 3-3: Queries generated by Method 1 for query terms A, B and C arranged in
increasing-IDF order.

The notation e(x) in Figure 3-3 refers to the morphological expansion of term
x, which equals the disjunction x V inflect(x)® V derive(z)?. The parameters a
and [represent discount factors for WordNet inflectional and CELEX derivational
word forms, respectively. They were initially set to 0.75 and 0.5, respectively, for
participation in TREC 2003, but I have since devised ways of tuning the parameters
automatically. These are incorporated in the current Pauchok II system described in

Chapter 4.

Method 2

With Method 2, I intended to improve on Method 1 by adding linguistic information

in the form of phrase analysis to the query generation and expansion algorithm.

40

Better knowledge of which words in a natural language question constitute phrases
helps a query generator keep those words together instead of breaking them into their
component query terms. Method 2 relies on the annotators described in Section 3.2.1
to identify phrase candidates within the natural language question, and it uses a
first-and-longest heuristic to choose among the candidates. All non-stopwords from
the question that are not part of phrases are considered to be individual query terms
and are expanded exactly as in Method 1.

Method 2 also features an adjustment to the term dropping strategy, because it
was feared that the extended dropping strategy of Method 1 was merely increasing the
number of irrelevant documents returned. Figure 3-4 shows the queries that would
be generated by Method 2 for the same example three-term query in which terms A,

B and C are in increasing IDF order. Again, not all combinations of terms are tried.

e(A) A e(B) N e(C)
e(B) AN e(C)
e(C)

Figure 3-4: Queries generated by Method 2 for query terms A, B and C' which are in
order of increasing IDF.

One of the differences inherent in Method 2 is that the query terms can in fact
be entire phrases. Phrase expansion is handled differently than is normal query term
expansion, which, as in Method 1, refers to the disjunction of morphological forms
with their according discount factors.

Expansion for phrases depends on their type, but for all types the original form
is represented as a phrase query to Lucene, that is to say, a quoted string that must
be matched exactly in a document. The first level of expansion for all phrases is a
proximity search, again taking advantage of some convenient features of Lucene query
syntax. Proximity search allows for the individual component words in a phrase to
be within some number of words of each other. Unfortunately, the proximity feature
does not allow for the word ordering within the window to be enforced. Proximity
searches are given the discount factor of a;, which was set to 0.75 for the TREC 2003

runs.

41

Individual types of phrases that have special expansion are as follows. Special
expansion forms are given the discount factor of 3, which equaled 0.5 during TREC

2003.

e Sepia Names: Persons’ names as identified by Sepia are expanded down to
the last name, since well recognized individuals are sometimes referred to by
their last names only. As an example, the entity “President John F. Kennedy”
would be expanded out to simply “Kennedy,” but not to “John,” since that is
more likely to refer to someone else. I intend to expand this expansion to cover

additional forms of the name that are likely to refer to the same person.

e Noun—Noun Collocations: The noun—noun collocations recognized by the
system have been extracted from WordNet, which can supply correct plural-
ization information. As as example, “box car” is expanded to “box cars,” but
not “boxes car.” A more difficult case is “attorney general,” which WordNet

correctly expands to “attorneys general.”

Other types of phases that Method 2 recognized but that did not have a special

expansion form are as follows:

e Prequoted Phrases: Perhaps the most obvious types of phrases available
are those that appear delimited by quotation marks in the natural language

question itself.

e Omnibase Symbols: Omnibase contains a large number of information about
names of movies, books, plays and operas as well as historical figures and events,
all of which are likely to be asked about by name. Because of the sheer number
of symbols available in Omnibase, the algorithm only recognizes symbols with
at least three words in them. Prior experimentation had shown that there are
a wealth of movie titles that match phrases of one or two ordinary words in
the question when in fact the question was not referring to these movies at all.
Recognizing the words as part of a phrase prevents the algorithm from generat-

ing morphological and derivational variants from them, and so, to prevent the

42

spurious tagging of ordinary phrases as Omnibase movie titles, we agreed on

setting a three-word minimum on matching Omnibase Symbols.

e Sepia Locations and Organizations: Sepia can recognize names of cities,
states, countries and combinations of the three; names of geological formations
such as lakes, rivers and mountains; and names of organizations such as corpora-
tions, foundations, and committees. It contains heuristics, whereas Omnibase,
in all of its comprehensiveness, is still a lexicon. Sepia outperforms Omnibase

in some cases.

e Proper Noun Phrases: The algorithm gets its parts of speech for the natural
language question from Brill’s tagger. Proper noun phrases are identified as an
optional determiner followed by zero or more adjectives and one or more proper

nouns.

3.2.4 Passage Retrieval and Answer Extraction

Previous work has shown IBM’s passage retrieval [13, 12] algorithm to be among the
best performing, especially when backed by a Boolean keyword and phrase document
retriever employing recall-boosting techniques such as query expansion strategies [31].
Infolab group members extended the algorithm to make use of linguistic information,
such as WordNet hyponyms, alternate word forms, and phrase annotations, compiled

by the annotators in the document retrieval phase.

Passages extracted by the IBM algorithm were passed to answer extraction for
generation of candidate answers. In addition to being used for the natural language
questions, the suite of annotators was also used to analyze passages to find phrases
of the same type as that which was asked for in the question. If no phrases of the
right type were found in a passage, the system was able to fall back to statistical and

pattern-based answer extraction techniques.

43

3.2.5 Pauchok for List and Definition Questions

Special versions of Pauchok were developed to handle the list and definition question
subtasks posed by TREC 2003 [37]. For list questions, such as question 1915, “List
the names of chewing gums,” the strategy was identical to the Pauchok pipeline used
for factoid questions except for the answer extraction module, which was designed
specifically to incorporate external knowledge in the form of lists of members of certain

classes of entities extracted from Omnibase [15].

The START question annotator is capable of parsing most common forms of
questions and extracting the focus word or phrase. In question 2097, “Which countries
were visited by first lady Hillary Clinton?”, for example, START was able to tell the
system that it is looking for information about countries of the world, as opposed to
about Hillary Clinton. When it came time to extract answers from passages, the list
question answer extraction module was able to consult its known list of the countries
of the world and restrict its answers to members of that list. For questions for which
there was no list of reasonable answer candidates available, the system fell back to
answer extraction heuristics carried forward from Aranea [21] that were known to
work with some degree of success. Bringing external knowledge to bear on the QA
task was beneficial to answering list questions. Other TREC teams have recognized

this benefit as well, e.g. IST [11].

For definition questions, the task was made somewhat more difficult by the need
to achieve high recall of nuggets of information. For this type of questions, a special
purpose architecture made use of a pre-indexed database of nuggets created by run-
ning common surface patterns, such as appositives and parenthetical definitions, over
the corpus. In parallel, the system searched for nuggets in the web-based Merriam-
Webster dictionary, projecting anything useful back onto the AQUAINT corpus us-
ing techniques pioneered in our TREC 2002 system [21]. If the first two approaches
yielded no nuggets, the definition question handler used a streamlined version of the
factoid Pauchok pipeline to retrieve sentences from the corpus that were likely to

contain nuggets.

44

3.2.6 Pauchok Results

We are pleased to say that Pauchok performed rather well, scoring sixth best of fifty-
four runs on the main task, third on the list question subtask, eighth on the definition
question subtask, and sixth overall. The MITCSAILO3b run performed the best on
factoid questions, scoring 0.295 accuracy. The run made use of Method 1 for query
generation and the original IBM algorithm for passage retrieval. For List questions,
MITCSAILO3c, using Method 2 and the modified IBM passage retriever, was the best
run with a score of 0.134. For each run, the results for definition questions were the
same, but because of variations in the ways assessors scored answers, MITCSAILO3a,

with a score of 0.309, was the best of our runs on definition questions.

45

46

Chapter 4

Pauchok II System Design

The current system that forms the testbed for the experiments carried out in this
thesis, and that will become the basis for Infolab’s submission to the Text REtrieval
Conference (TREC) 2004 question answering (QA) track, is known as Pauchok II,

and is covered in detail in this chapter.

4.1 Overview of Pauchok II

Pauchok II is a redesign of the original Pauchok system, taking into account lessons
we learned by interacting with it and using it to build a competition QA system
for TREC 2003. The infrastructure for Pauchok II was designed to be simpler and
much more free-form when compared with the strict modularity and linear flow of
information imposed by the original Pauchok system. The same types of components
exist, such as question analyzers, query generators, and document retrievers, since
we believe them to be fundamental to the QA task, but they can now be freely
interconnected.

The question analysis facility based on a blackboard architecture has been carried
forward from the original system. As before, annotators are responsible for supply-
ing information about the question that can be useful for query expansion, such as
sentence and word boundaries, word part of speech and inverse document frequency

(IDF), alternate morphological forms of query terms, and the extents of any phrases

47

that appear in the input.

Since Pauchok II is meant to be somewhat of a playground for building and ex-
perimenting with new query expansion algorithms, we have provided an environment
that enables this, based on an embeddable Scheme interpreter. Query generators can
be constructed out of a variety of components we have pre-defined, and new com-
ponents are easy to create. We have provided query expansion components such as
control structures, which are responsible for connecting together other query expan-
sion components; term extractors, which locate the extents of query terms within
the input question according to user-defined criteria; query term expansion functions,
which when given a query term suggest alternate forms of that term that could prove
useful for query expansion purposes; and term-dropping strategies, which construct

a series of queries that try different combinations of query terms.

4.2 Query Expansion Components

This section describes in more detail the primitive components that combine to form
a query expansion algorithm in Pauchok II, and also discusses the components that
were built for the experiments described in this thesis. The primitive components have
been designed to be as general and as expressive as possible, and to make building
query expansion algorithms easy. We aimed to minimize the extent to which the the
user is constrained to work within the limits of architectural decisions that we have

made when building the system.

4.2.1 Control Structures

We have provided only one control structure, but defining others is extremely straight-
forward in Pauchok II. The control structure is highly generalized, and provides a
unified framework for a large number of query expansion algorithms that can be built
from it. The provided control structure combines a term extractor, zero or more term
expansion functions, and a term-dropping strategy in a simple algorithm.

When the question is passed to a query expansion algorithm built from this control

48

structure, it is passed first to the term extractor, which is responsible for locating
query terms within the question that meet its criteria and returning a list of them.
This list of terms is then passed to any term expansion functions to which the control
structure has access. Each function generates alternate forms for every term passed
to it. The control structure is responsible for collecting these forms, weeding out
duplicates, and building disjunctive query clauses. At this point in the process,
the control structure holds a disjunction for each term that was extracted from the
original question. Instead of returning a simple conjunction of these clauses, the
control structure uses its term-dropping strategy to create a list of queries out of
various combinations of the terms’ disjunctive clauses. The result is an ordered list

of nested Boolean queries that can be used to retrieve documents from the corpus.

4.2.2 Term Extractors

Term extractors are that part of a query expansion algorithm responsible for analyzing
the question and producing a list of the query terms that it contains. Part of the
power of the Pauchok II system is that the term extractor has sole jurisdiction over
whether any word or sequence of words from the question becomes a query term or
not. A Pauchok IT user could encode any definition of what constitutes a query term
into a term extractor, and it would immediately coexist with the other components
in the system.

We have pre-defined two term extractors in the Pauchok II system. The simpler
of the two term extractors is called the Word Term Extractor. It promotes all non-
stopwords in the question to query terms. The other term extractor is known as the
Phrase Term Extractor because it identifies phrases in the input question and returns
them as query terms.

The Phrase Term Extractor interacts with the blackboard question analysis sys-
tem introduced in the original Pauchok system. There are several annotators known
as phrase analysis annotators that identify and mark the extents of phrases of known
classes in the input question. For more discussion about these annotators, see Sec-

tion 3.2.1. Selection among phrase candidates identified by the blackboard system is

49

carried out using a first-and-longest heuristic. The result is a set of non-overlapping
phrases, and some lone words that are not part of the phrases. The phrases and
lone words together constitute the list of query terms returned by the Phrase Term
Extractor; words that are enclosed by the phrases are not considered to be query

terms.

4.2.3 Term Expansion Functions

A term expansion function has the job of generating alternate forms of a query term
supplied to it. Such a function can be specifically created to handle only certain
types of terms, ignoring others it encounters, or can be generally applicable to all
terms. Term expansion functions can easily obtain access to the blackboard ques-
tion analysis system, which may contain alternate forms of words appearing in the
input question or other useful information, or they can be completely self-contained,

executing algorithms of their own directly on the query terms.

We have included two term expansion functions in the Pauchok II system. The
inflectional expansion function is responsible for returning inflections of the original
query term, such as tense variants for verbs, pluralizations for nouns, and comparative
and superlative forms for adjectives. To accomplish this, the function checks the
blackboard system for annotations that contain alternate WordNet forms for the

query terms in the questions.

The second term expansion function operates in much the same way as the first,
but provides different content. It is called the derivational expansion function, and
it finds forms that can be derived from the original term and other related forms by
searching the blackboard for information originating from CELEX, a comprehensive
database of word morphology. Both of these term expansion functions operate solely
on query terms consisting of a single word, ignoring any phrases, or other classes of
query terms yet to be defined, that they may encounter as input. Although there are
not currently any term expansion functions that operate on phrases, the system is

designed so that adding such a function would not be difficult.

50

4.2.4 Term-Dropping Strategies

A term-dropping strategy is simply than a function that returns a list of different
combinations of the items provided to it as input. These items can be query terms,
disjunctions of terms, or entire nested Boolean queries. The algorithm that a term-
dropping strategy implements is unrestricted. It could try subsets of the terms pro-
vided as input to it, or even insert query terms of its own invention into the mix.
We currently have three term-dropping strategies pre-defined in the Pauchok II
system, and they are designated by color as the Red, Green and Blue Dropping
Strategies. The Red Dropping Strategy was taken directly from the original Pauchok
system’s query generation Method 2. In this dropping strategy, terms are dropped
in order of increasing Inverse Document Frequency (IDF), which is a measure of
the rarity of a term in the entire corpus of interest. The Red Dropping Strategy is
intended to be an incremental improvement over the bag-of-words approach that can
serve as a baseline for experiments with improved dropping strategies. Figure 4-1
shows the queries generated by the Red Dropping Strategy for three query terms, A
through C', which are in order from lowest to highest IDF. Throughout this section,
e(x) refers to the output of a set of term expansion functions applied to the term
x, which may be a single word or an entire phrase. In Section 4.2.3, there is more

information about how term expansion is implemented in Pauchok II.

e(A) N e(B) AN eC)
e(B) AN e(C)
e(C)

Figure 4-1: Queries generated by the Red Dropping Strategy for query terms A, B
and C', from lowest to highest IDF.

Pauchok IT also features the Green Dropping Strategy, which bears some resem-
blance to that used in Method 1 in the original Pauchok system for TREC 2003. Like
the that of Method 1, this strategy drops terms in order of increasing IDF, and when
all terms are exhausted, removes the highest IDF term and restarts the dropping

process. The Green Dropping Strategy does not use all combinations of the query

51

terms, but does execute queries that cover the entire space of documents containing
at least one of the query terms. Unlike the original system’s Method 1, the Green
Dropping Strategy does not begin with a conjunction of all terms unexpanded; such
a query is generally too narrow for our purposes. See Figure 4-2 for an illustration of
this strategy. Compare with Figure 3-3, on page 40, which shows the strategy used

in the original system.

e(A) N e(B) A e(C)
e(B) A e(C)
e(C)
e(A) A e(B)
e(B)
e(4)

Figure 4-2: Queries generated by the Green Dropping Strategy for query terms A, B
and C arranged in increasing order of IDF.

Perhaps the most interesting term-dropping strategy available is the one we des-
ignated with the color blue, shown in Figure 4-3. This strategy arose from a desire
to try all combinations of n terms before trying any combinations of n — 1 terms.
The way the strategy works is somewhat complicated. To generate the combinations,
one term is plucked out of the group of terms in order of increasing IDF, and this
is done recursively, adding every distinct combination to a list, which is then sorted
in decreasing order of the number of terms in the combination, while preserving ini-
tial order. Intuitively, what is happening is that all combinations of size 3 are tried,
followed by all combinations of size 2, in order of increasing IDF for the missing
term. Finally, all combinations consisting of only a single term are tried, in order of

increasing IDF for all missing terms.

4.3 Visualization Tools

Pauchok II comes with a full suite of visualization tools I developed to make work-
ing with the system easier. This is part of what makes Pauchok II such an effective

playground for experimenting with query expansion algorithms. The statistics com-

92

e(A) A e(B) N e(C)
e(B) AN e(C)
e(A) A e(C)
e(A) N e(B)
e(C)
e(B)
e(A)

Figure 4-3: Queries generated by the Blue Dropping Strategy for query terms A, B
and C', which go from lowest to highest IDF.

puted by the evaluation framework are useful metrics, but nothing can substitute for
the intuition gained by looking through the documents retrieved by the experimental

queries. The Pauchok II visualization package is designed to make this task easy.

The visualization toolkit has two primary interactive windows, a Query Viewer
and a Document Viewer. The Query Viewer is a frame that contains two lists. On the
left, the queries generated by the query generation and expansion algorithm are shown
in the order executed. On the right hand side of the Query Viewer, the documents
are listed in the order retrieved by the query that is currently selected in the left-hand
list. Duplicates are removed so that each document appears only once in the Query
Viewer, in the list associated with the query that first returns it. The Query Viewer
has a color-coding capability such that documents known to be relevant appear in
red, and documents known to be unsupported appear in orange. Documents known
to be irrelevant appear in blue. Documents for which the status is not known appear
in the normal black font. To assist the user, documents that have been viewed in the

current session are shown in italics.

Selecting a document in the Query Viewer and then pressing the “Examine” but-
ton raises another window known as the Document Viewer. This simple frame shows
the document text with the query keywords highlighted. The user can scroll through
the document, letting the highlighting guide his or her eyes to the mentions of the
keywords, and can make a judgment as to the document’s relevance by clicking one
of the buttons at the top of the frame: relevant, unsupported or irrelevant. Making a

judgment in this way causes a log file entry to be written. Any text snippet the user

53

may have selected with the mouse is also written to the log file and stored with the
document identification number and the judgment. After the judgment is recorded,
the Document Viewer will load the next document in the list for judgment. Returning
to the Query Viewer is accomplished by pressing a button, or by making a judgment

for the last document in the list.

The visualization tools package was most useful for assisting with the manual
annotation of documents for the building of the test collection that is a part of
this thesis, as described in Section 5.3.1. While building the test collection, a human
assessor took each question and its answer and formulated a Lucene query from them.
The query was expected to retrieve as many as was possible of the total number of
documents in the corpus that were relevant to the question, which means that they
not only contained the answer, but also supported it. The Query Viewer was used
as a part of this process, showing on the left-hand side of the frame the single query
supplied by the human annotator. The documents retrieved by that query were
displayed in order on the right-hand side of the frame. With the highlighting, it
did not take very long to scan the documents and judge whether they were in fact
relevant. The visualization tools made it easy for the annotator to iterate through
the retrieved documents and efficiently make relevance judgments for them, which

were automatically recorded.

Even after we had finished building the test collection, the visualization tools were
still very useful to me while I was experimenting with different query expansion tech-
niques. After retrieving documents with queries generated by an experimental query
generator, I used the Query Viewer to display the documents returned. Conveniently,
the frame showed me the sequence of queries in the left-hand list. The right-hand
list displayed the documents returned by the corresponding query selected in the list,
and the documents were color-coded according to the relevance judgments that were
available for them. With a glance, it was easy to see which relevant or unsupported
documents were being returned by which query. It was also immediately clear when
the first query generated was too narrow and did not return any relevant documents.

I used the Document Viewer to display the retrieved documents with highlighting

o4

of the query terms. For the documents that had not been judged, I used the con-
trols on the Document Viewer to record whether they were relevant, unsupported or

irrelevant.

55

56

Chapter 5

Building a Test Collection

This chapter describes the development of a test collection to support comparative
evaluation of various query expansion techniques of my own design. I discuss evalua-
tion of document retrieval systems in general, and the role I the test collection plays
in this thesis. I describe the composition and format of the test collection, the pro-
cedure I and my collaborator, Leah Oats, used to build it and guidelines for manual

annotation that we developed for it.

5.1 Deciding on an Evaluation Metric

Proper evaluation of my work on query expansion techniques and document retrieval
for question answering requires a task that approximates as closely as is possible
the reality of how my system will be used in practice. The task must incorporate
a performance metric and a clear definition of what constitutes ‘good’ performance
with respect to that metric.

For studies of document retrieval, an evaluation metric suggests itself immediately.
I am interested in retrieving as many documents as possible that are relevant to the
query and as few documents as possible that are not relevant to the query. In the
standard context of performance evaluation of information retrieval systems, I can
consider the precision and recall of relevant documents. Precision is defined as the

ratio of the number of relevant documents retrieved to the total number of retrieved

57

documents. Recall is defined as the ratio of the number of relevant documents re-
trieved to the number of relevant documents, total, that exist for a given question. For
the questions in the test collection, the expectation is that all the relevant documents

are known.

Researchers evaluating retrieval systems tend to try to maximize precision and
recall simultaneously, using F-measure [33], to avoid the trivial case, for example, in
which a system attains 100% recall by retrieving the entire corpus, or 100% precision
by retrieving no documents at all, in response to a query. Here, I take a different

approach that I feel is mandated given the nature of the problem I am trying to solve.

For the purposes of document retrieval for question answering (QA), it is not nec-
essary to focus heavily on improving precision; that is to say, the document retriever
does not have go to extraordinary lengths to filter out documents that are not relevant
to the query. The slack will be picked up by downstream passage retrieval and an-
swer extraction modules, which compute a statistical measure based on keyword and
phrase density and ordering, and search the document for entity references matching
an expected type. Documents that are not relevant are extremely likely to receive
very poor passage retrieval scores, or to not contain matching entity references. In
this way, the post-document retrieval stages of a QA system serve to filter out docu-
ments that are not relevant, releasing the document retrieval engine from having to

be overly strict about precision.

While precision is not the focus of this evaluation, recall is of utmost interest
here. Without relevant documents, downstream modules in a QA system have no
hope of generating reasonable answer candidates. In this thesis, I am concentrating
on improving the recall of relevant documents of my document retrieval module, so
I choose to evaluate solely on the basis of recall. Given that we have assembled a
test collection in which all of the relevant documents are known and have been exam-
ined by hand, this evaluation will be meaningful. I intend to continually improve my
system throughout the summer as the Infolab group prepares for TREC 2004, peri-
odically checking against my evaluation metric to see how the system’s performance

has increased.

58

5.2 The Need for a Test Collection

The evaluation metric stated above depends on the fact that there exists a set of
questions for each of which all of the relevant documents are known. For question
sets used in past runnings of the TREC QA track, relevance judgments are available to
the research community.! These judgments do not make a suitable test collection for
researchers developing QA systems because they are not complete, and are sometimes
wrong.

As described in the TREC QA track overview literature, document relevance
judgments consider only relevant documents returned by participating systems as
support for their answers. We also know that these document candidates are judged
only binarily, when in fact there are three categories into which a document can fall:
relevant, irrelevant, or unsupported [35].

In the relevance judgments provided for TREC 2002, no single question has more
than four relevant documents identified for it, and the average number of relevant
documents identified per question is 1.95. It would be wrong for us as researchers to
evaluate our systems under the assumption that documents not named by the asses-
sors are irrelevant documents. The TREC assessors do not tell us which documents
they reviewed and judged to be irrelevant. The assessors also do not attempt to

distinguish unsupported documents.

There are also clear errors in the TREC-provided relevance judgments. Take,
for example, question 1440, “Who was the lead singer for the Commodores?” The
answer is “Lionel Richie.” Document APW19980827.1319, marked relevant by the
TREC assessors, states that Richie is a singer who has had several solo hits, and
that he was an original member of The Commodores, but not that he was the lead
singer of the group. According to the definition of relevance we used while creating
this test collection, which will be explained below, this document does not answer

the question. We marked it unsupported.

In another example, one that does not depend on differing definitions of relevance,

!See http://trec.nist.gov/data.html

59

consider question 1443, “When did Bob Marley die?”. The answer to this question is
May 11, 1981, when the artist lost his battle against cancer. The provided relevant
document, NYT19991217.0112, is an article about several different newly released
albums, with a paragraph about each one. The last paragraph in the article, which
discusses Marley’s “Songs of Freedom”, does not mention his death, but the penul-
timate paragraph tells readers that Harry Chapin died in a car accident in 1981. It
is clear that this is just a mistake that any person could make when asked to read
and annotate thousands of documents, but this document is the only relevant docu-
ment identified for this question; it is in fact listed twice in the TREC 2002 relevance
judgments file.

It seems clear to me that a test collection such as the one we are building would
be of enormous use in furthering QA research, since what relevance judgments the
community currently has are terribly incomplete. I intend for this test collection to
provide much broader coverage of the space of relevant documents for each question,
such that if a retrieved document is not in the provided set, it is much more likely to
be irrelevant. Iintend to provide markings for unsupported and irrelevant documents.

In the course of the work outlined in this thesis, I have constructed such a test
collection, with the help of another student, Leah Oats. In the following sections, 1
describe our test collection, and the process that we used to construct it. The actual
test collection in its entirety does not appear in this thesis because it is not yet ready

for distribution.

5.3 Choosing Questions

When building this test collection, we selected 120 questions from the TREC 2002
question set. Almost all questions were acceptable for inclusion in the test collection,
but we did reject several questions. Questions such as 1496, “What country is Berlin
in?” | were rejected on the basis that there were 5088 documents in the corpus that
potentially discussed the answer, more than were practical to read and judge.

Other questions were rejected because it was not clear what the question was

60

asking. In the case of question 1422, “What two European countries are connected by
the St. Gotthard Tunnel?”, multiple reasonable answers suggest themselves. Several
documents in the corpus explain that the tunnel is the essential route connecting Italy
and Germany, two EU countries. It has also been claimed that the tunnel links Italy
and Switzerland. The reality of the situation is that both endpoints of the tunnel,
and its entire extent, lie within Switzerland, which is not an EU member state. The
southern entry of the tunnel opens in Airolo, which is 100 km from Chiasso, the
border town between Italy and Switzerland. Since there was no clear answer to
question 1422, we excluded it from our test collection. Difficult questions such as
these constitute only a handful of those in the TREC 2002 question set, so there were

plenty of suitable questions to choose from when assembling the test collection.

5.3.1 Finding Documents in the Corpus

The test collection pairs TREC 2002 questions with sets of documents known to be
relevant, unsupported or not relevant. To generate sets of documents for us to judge,
we formulated Boolean queries with the aim of making them as narrow as possible
while retrieving all documents that were likely to be relevant to a particular question.
These queries generally took the form of conjunctions of all keywords from the ques-
tion that we felt would most certainly co-occur with the answer in the corpus and
the answer itself, which we found by searching the web. As these queries were formu-
lated manually, we did not unilaterally apply any standardized expansion techniques
such as word morphology or synonymy. Any terms that might need to be expanded
were dropped. If the resulting query returned more documents than was practical to
read, we then added terms to restrict the scope of the query, being sensitive to word
morphology and synonymy issues.

Occasionally, it was necessary to add terms that came neither from the question
nor from the answer to narrow the query sufficiently such that the number of doc-
uments returned was small enough to read. Consider question 1501, “How much of
U.S. power is from nuclear energy?” Given that the answer is approximately 20%,

the query that immediately suggests itself is nuclear AND power AND 20 AND (US

61

OR America OR American OR (United AND States)), which returns 1294 doc-
uments, too many to read. Adding the term electricity narrows the query suffi-

ciently, returning 170 documents and making it possible to annotate this question.

Sometimes we were not able to locate a single answer to include in our query.
Question 1423, for example, asks, “What is a peninsula in the Philippines?” Answers
we located in the corpus included the Bataan, Zamboanga and Bicol peninsulas, but
the most narrow query were able to use was peninsula AND Philippines, without
knowing a priori which peninsulas in the Philippines would be mentioned in the
corpus. We read 142 documents, most of which discussed the Korean Peninsula and
the Philippines separately, to ensure that we found as many of the relevant documents

as was possible.

There were also questions for which the answer we found on the web was not
suitable for querying. Question 1513, “What is the current population in Bombay,
India?” is an example of this. As of the time of this writing, the population of Mum-
bai, which is what Bombay’s name was changed to in 1996, was 18.1 million people.
In the corpus, we found several different opinions of the population of Bombay: 10
million, 12 to 14 million, and 15 million. The quoted figure depends on the year
the article was written, and the source of the data. Answers in the form of num-
bers, such as this one, were particularly troublesome and we could not use them in
our queries. The query we used for question 1513 was (Mumbai OR Bombay) AND
(population OR (million AND people)), which returned 296 documents to

read.

To actually make the judgments, we used a convenient annotation tool that I
developed. Features of the software were expressly designed to speed the annotation
process. The annotation frame displayed the document’s text, with query terms high-
lighted. This allowed the assessor to quickly scan the document for the concentration
of highlighted terms and read the passage in which the terms appeared. Controls on
the frame allowed the annotator to mark the document as relevant, unsupported or
irrelevant. This judgment was written to a log file, along with the document number

and any text snippet selected by the user with the mouse. This process continued

62

as the next document was opened automatically in the frame. For more information

about the Pauchok II visualization package, see Section 4.3.

5.3.2 Guidelines for Judging Documents

For this test collection to be of general use, the judgments need to be relatively
stable. By this, I mean that several different human annotators, each equally trained
in the task of judging documents and each annotating the same question set, should
arrive at the same judgments within some threshold percentage. One way of making
sure that different assessors are applying the same set of criteria when making their
judgments is to provide comprehensive guidelines, with examples, to help them better
understand when a document is relevant, unsupported or irrelevant.

Leah and I carefully developed guidelines for judging documents that were reason-
able and satisfactory to us both. We imagine our guidelines to be spelling out what a
reasonable human reader who did not already know the answer to the question would
think after reading the document. If there were a way for a human to read the answer
out of the document, we intended to judge it relevant. For a document to be marked
relevant, we settled on the requirements that the document contain the answer to the
question, and clearly support it, regardless of inference or reference resolution that
may be required.

We each arrived at the task of building this test collection with preconceived
notions of what constituted relevance for a document. Initially, there was a tendency
on both of our parts to mark relevant only those documents that explicitly gave the
answer, or that we felt a machine would have a good chance of extracting the answer
from. Naturally, we were using our conceptions of what a state of the art QA system
could do in terms of today’s technology. We realized that this was a very limiting way
to make judgments, so one of our first guidelines was that the judgments should be
independent of the present or future capabilities of machines, real or hypothesized.

Even more disparate than our preconceptions on document relevance were our
initial opinions on what it meant for a document to be unsupported as opposed to

irrelevant, which was surprising. We would have liked it to have been completely

63

obvious which documents were irrelevant, but concerns quickly arose. We defined a
judgment of unsupported to mean that a document contains at least a part of the
answer, and discusses it in the right context, but that the document does not clearly

and completely answer the question.

We decided that, although an unsupported document will not necessarily do so,
a relevant document must address all of the constraints in the question. We define a
question constraint as a distinct factual unit that a relevant document must contain
to support its answer to the question. This concept is best illustrated by example.
For question 1411, “What Spanish explorer discovered the Mississippi River?”, the
answer is Hernando de Soto, and there are 27 documents that are returned by the
query mississippi AND soto. Document APW20000520.0126 tells us that de Soto
“died while searching for gold along the Mississippi River,” and also that he was a
Spanish explorer. This document satisfies only three of the four constraints asked
for in the question, namely that de Soto was a Spaniard, that he was an explorer,
that he reached the Mississippi and that he discovered it. This document was marked
unsupported because it almost completely supported the answer, but failed to mention
that de Soto is actually credited with having discovered the river. As as extreme
example, question 1834, “Which disciple received 30 pieces of silver for betraying
Jesus?”, which is not in the test collection, contains so many constraints that no

documents found in the corpus are actually relevant for it.

When two terms are used interchangeably in the text, we agreed that this would
constitute their equivalence, even though it was never explicitly stated in the text.
Consider question 1456, “What is the Keystone State?” Almost never do the doc-
uments state clearly that the Keystone State is Pennsylvania, because such a fact
is in most cases known to the readers. Writers instead use the phrase “Keystone
State” interchangeably with the state’s name, and we marked these documents rel-
evant when they did so, because a reasonable human reader would be able to infer

that Pennsylvania is the Keystone State by reading the document.

We had to resist the tendency to mark documents that required inference on world

knowledge as unsupported. If a document clearly answered the question but required

64

external knowledge to do it, we marked that document relevant so as to set a high
standard for QA systems developed in the future to aspire to. The best example of
this phenomenon involves pairing universities with their mascots, as is necessary for
document NYT19990701.0055, which answers question 1484, “What college did Allen
Iverson attend?”. The Philadelphia 76ers guard attended Georgetown University,
but the document tells us simply that he was a Hoya. Since one day we expect QA
systems to be able to synthesize an answer by aggregating information from multiple

documents, we marked documents like this relevant.

Question 1475, “Who was the first person to reach the south pole?,” (sic.) is
interesting because it raises the issue of contemporary language usage. Document
NYT19981128.0126 refers to Roald Amundsen as “the first man to reach the South
Pole”, and it is a safe assumption that the writer intended to say that he was the
first person to reach it; that is to say, there exists no woman who arrived at the
South Pole before Amundsen did. This document was marked relevant, because a
reasonable reader would understand what the writer means, based on knowledge of
the culture at the time. Many readers, in fact, would not stop to think about this
case. Document XIE19981221.0153 tells us that Amundsen was “the first man who
arrived at the South Pole by skiing solely.” Most readers would assume that he was
the first person to reach the South Pole and he happened to get there on skis after
having read this passage. The way it is phrased without punctuation, however, leads
one to believe that the article is crediting Amundsen with being the first person to ski
to the South Pole, and that, possibly, someone could have reached the pole through

other means. This document was marked unsupported.

Sometimes the correct answer has more than one part to it. Consider question
1534, “The sun is mostly made up of what two gases?”, which is not a part of the test
collection. The correct answer is hydrogen and helium, and a document that does not
give both parts of the answer can not be marked relevant. It is debatable whether
a document that says, for example, that the sun is comprised mostly of hydrogen
can be unsupported, or whether it must be marked irrelevant. For this reason, the

question was excluded from the test collection.

65

We arrived at these criteria incrementally; after each performing a blind annota-
tion on a set of questions and analyzing where our judgments differed, Leah and I
discussed and agreed on the content of these guidelines. We found that we needed
to iterate through this process twice to achieve a level of agreement we were satisfied
with. More details about this appear in Section 5.4. When we had finally settled on
annotation guidelines that were acceptable to both of us, we each reviewed our own

previous judgments to bring them in line with the latest guidelines.

5.4 Inter-annotator Agreement

When a group of human annotators are asked to produce a set of judgments, dis-
agreement can occur even when there are agreed-upon guidelines. Multiple natural
and reasonable interpretations for the question, what constitutes the answer, and
what constitutes a relevant document can lead to genuine disagreement among anno-
tators. The community relies on a measure known as inter-annotator agreement to
indicate whether or not a group of annotators is applying the same set of criteria to
its judgments.

To achieve good inter-annotator agreement, and to make sure that we were each
faithfully applying the criteria outlined in Section 5.3.2, Leah and I conducted a
series of blind tests on three question sets, totaling 26 questions. 1 developed a
simple Perl script to compute the correlation on a per-document basis for the two
sets of judgments, and also a measure of inter-annotator reliability called the Kappa
statistic [6]. Kappa measures inter-annotator agreement adjusted for chance, and
it ranges from zero to one, where k = 1.0 refers to perfect agreement between the
annotators and xk = 0.0 refers to agreement that is no better than chance. According
to Carletta, k > 0.8 show good reliability between the annotators, and 0.67 < k < 0.8
is sufficient evidence to draw preliminary conclusions.

Our first question set was drawn randomly from a range of questions that I had
already annotated. The task was then for Leah to assess the same set of questions,

shown in Table 5.1, without seeing my judgments or discussing the questions or

66

documents with me.

Number | Question

1400 When was the telegraph invented?

1401 What is the democratic party symbol? (sic.)

1403 When was the internal combustion engine invented?
1416 When was Wendy’s founded?

1419 What year did Alaska become a state?

1429 What was Andrew Jackson’s wife’s name?

1438 What body of water does the Colorado River flow into?
1458 What was the name of the high school in “Grease”?
1494 Who wrote “East is east, west is west and never the twain shall meet”?
1504 Where is the Salton Sea?

Table 5.1: First Question Set for Inter-annotator Agreement (IAA1)

“reasonable” human definition of whether

Initially, we had each agreed to use a
each document we read was relevant or not. When it came to identifying unsupported
documents, the agreement was that documents that almost but did not quite answer
the question were to be marked unsupported. All other documents judged that did
not meet either of these loosely-defined sets of criteria were to be marked irrelevant.
There were questions for which Leah and I formulated different Lucene queries, leading
to documents that one of us marked and the other didn’t. For the purposes of
computing inter-annotator agreement, those documents were marked irrelevant in
the other assessor’s judgment set. Looking at the results of the script on our first
blind test, shown in Table 5.2, it was clear that Leah and I were working with different
sets of criteria. The table is set up as a matrix; my judgments are along the top, and
Leah’s are along the side. Each cell shows the number of documents for which Leah
and I made the corresponding judgments, and the percentages shown are the number
of documents in the cell divided by the number of total documents mentioned by
either assessor. Cells corresponding to agreement between the annotators appear on
the diagonal, in bold face.

A careful analysis of our results showed that we had 83.71% total agreement,
but that we had unacceptable levels of errors (over 5%) in which one of us marked

a document irrelevant, and the other marked it relevant. This figure is misleading,

67

Oats Bilotti Judgment

Judgment relevant unsupported | irrelevant
relevant 26 (9.85%) | 0 2 (0.76%)
unsupported || 24 (9.09%) |5 (1.89%) |4 (1.52%)
irrelevant 13 (4.92%) |0 190 (71.97%)

Table 5.2: Inter-annotator Agreement Results on IAA1

though, because we had to correct for documents mentioned by only one assessor, as

described above, and the result was an increase in this type of judgment error. The

r value for this first blind test was 0.5726, which leaves much to be desired. We also

took the opportunity to agree on a better formulation of the criteria, to ensure we

were both judging documents against the same standard.

After revising the criteria, we chose a second question set, shown in Table 5.3,

and calculated our inter-annotator agreement again. This time, we standardized the

Lucene queries used so that each of us would judge exactly the same set of documents.

The complete results of this second calculation are shown in Table 5.4, formatted in

the same way as Table 5.2. The overall agreement on this blind test was 80.18%.

Number

Question

1474
1475
1480
1483
1484
1488

1490
1492
1516
1520

What is the lowest point on earth?

Who was the first person to reach the south pole?

What is the principle port in Ecuador? (sic.)

Where is the highest point on earth?

What college did Allen Iverson attend?

What is the name of the professional baseball team
in Myrtle Beach, South Carolina?

What is the Boston Strangler’s name?

How old was Nolan Ryan when he retired?

What does CPR stand for?

What is the capital of Kentucky?

Table 5.3: Second Question Set for Inter-annotator Agreement (IAA2)

In this second blind test, we reduced the amount of relevant /irrelevant errors to

less than 1% while maintaining above 80% in total agreement.

On this test, we

achieved a much improved Kappa measure of k = 0.6897. We clarified the criteria

68

Oats Bilotti Judgment

Judgment relevant unsupported | irrelevant
relevant 68 (20.42%) | 20 (6.01%) 3 (0.90%)
unsupported | 21 (6.31%) 40 (12.01%) | 17 (5.11%)
irrelevant 0 5 (1.50%) 159 (47.74%)

Table 5.4: Inter-annotator Agreement Results on [AA2

once more and tested a several extra questions, which are shown in Table 5.5. The
results from this final blind test are excellent, showing almost 89% total agreement.
Kappa for the third blind test decreased slightly to x = 0.6137, which is likely at-
tributable to the comparatively low number of total judgments made in this test. The
complete results are shown in Table 5.6, which is again formatted in the same style

as Table 5.2.

Number | Question

1527 When did the 6-day war begin?

1531 What does NASDAQ stand for?

1533 Who directed the film “Fail Safe”?

1536 What city is Lake Washington by?

1537 How many electoral college votes in Tennessee? (sic.)
1538 Who is the evil H.R. Director in “Dilbert”?

1539 What is Ronald Reagan’s favorite candy?

Table 5.5: Third Question Set for Inter-annotator Agreement (IAAS3)

Oats Bilotti Judgment

Judgment relevant unsupported | irrelevant
relevant 212 (80.62%) | 7 (2.66%) 0
unsupported || 8 (3.04%) 13 (4.94%) | 0
irrelevant 0 14 (5.32%) |9 (3.42%)

Table 5.6: Inter-annotator Agreement Results on TAAS3

Total results over all three question sets are shown in Table 5.7. Overall agreement
is 83.96%. The overall Kappa value of 0.7351 shows significant improvement, now
just short of the k = 0.8 mark that indicates solid inter-annotator agreement.

In total, the test collection contains 120 questions, and of them, 65 (54.17%) were

69

Oats Bilotti Judgment

Judgment relevant unsupported | irrelevant
relevant 306 (35.58%) | 27 (3.14%) | 5 (0.58%)
unsupported || 53 (6.16%) 58 (6.74%) | 21 (2.44%)
irrelevant 13 (1.51%) 19 (2.21%) | 358 (41.64%)

Table 5.7: Inter-annotator Agreement Results on TAA1-3

annotated by me personally, and the remaining questions were handled by Leah.
There are 26 (21.67%) questions that were doubly-annotated by both of us for the
purposes of calculating inter-annotator agreement. As of the publication of this thesis,
not all of questions in the test collection have undergone adjudication, but as soon as
the work is completed, the test collection will be in distributable form.

For those interested in summary statistics about the test collection, it contains
6009 total judgments; 1901 of which were relevant, 298 of which were unsupported,
and 3810 of which were irrelevant. There are an average of 50.08 total judgments
per question, and each question averages 15.84 documents judged relevant, 2.48 doc-
uments judged unsupported, and 31.75 documents judged irrelevant. In total, an
estimated 229.60 person hours were invested in human assessment for this test col-

lection.

70

Chapter 6

Evaluation

My primary goal throughout this thesis has been to build a better-performing docu-
ment retrieval module for a question answering (QA) system by incorporating query
expansion techniques. This chapter covers the experiments I performed using the
Pauchok II evaluation framework to find the query expansion techniques that best

improve document retrieval performance for a QA system.

6.1 Query Expansion Algorithms in Pauchok II

The Pauchok II system makes it easy to rapidly build and evaluate query expansion
algorithms. The system comes pre-loaded with a control structure, and two term
extractors, two term expansion functions and three term-dropping strategies to use

with it.

e Control structure: With the control structure available to me, I can create
a complete query expansion algorithm using one term extractor, zero or more
term expansion functions, and one term-dropping strategy. The control struc-
ture works by first passing the question through the term extractor to produce a
list of query terms present in the question, and then passing each of these terms
through any term expansion functions available to the control structure. The
control structure aggregates query terms and their alternate forms into disjunc-

tive clauses. The dropping strategy is responsible for assembling conjunctive

71

combinations of those clauses into an ordered list of Boolean queries, which is

then passed to the document retrieval engine.

e Term extractors: I have two term extractors at my disposal; the Word Term
Extractor, which is the default, and the Phrase Term Extractor, which is used
when incorporating phrase analysis into the query expansion algorithm. The
Phrase Term Extractor can not detect phrases on its own; it relies on the
blackboard-based question analysis system, the annotators of which are capable

of marking phrases for it.

e Term expansion functions: Two term expansion functions currently are
available, and they both operate solely on single-word query terms as opposed
to phrases. The inflectional expansion function uses information provided by
WordNet to generate alternate tenses for verbs, pluralizations for nouns, and
superlative and comparative forms for adjectives. The derivational expansion
function is backed by CELEX, and generates a wide range of words and phrases

that can be derived from or are related to the query term.

e Term-dropping strategies: At this time, there are three term-dropping
strategies, designated by the colors red, green and blue. All three rely on a
heuristic related to term inverse document frequency (IDF) to guide the order
in which they drop terms. The Red Dropping Strategy starts with a conjunc-
tion of all of the terms and drops them in order of increasing IDF, starting with
the most common term. The Green Dropping Strategy improves on the Red
Dropping Strategy by dropping the rarest term and restarting the IDF-order
dropping after having exhausted all of the terms. Neither the Red nor the Green
Dropping Strategies try all combinations of query terms, but the Blue Dropping
Strategy does do so, trying all combinations of size n before dropping a term,

and then trying all combinations of size n — 1.

With these components, I can build twelve different query expansion algorithms

that operate only on single-word terms, using a combination of one term-dropping

72

strategy and zero or more term expansion functions. Another twelve can be built

that are capable of phrase analysis.

6.2 Approach

The goal of these experiments is to compose the query expansion algorithm with the
best performance possible, using the components available in the Pauchok II system.
The evaluation metrics I use to determine what constitutes better performance of
one query expansion algorithm over another are recall of relevant documents; total
reciprocal rank, which is defined as the sum of the reciprocals of the ranks at which
relevant documents are returned; and mean reciprocal rank, which is computed by
dividing the total reciprocal rank by the number of relevant documents retrieved. For
the purposes of the experiments in this chapter, I randomly chose 60 questions from
the test collection to serve as a training set. Table A.1 in Appendix A shows the
questions that are in the training set.

Central to this task is tuning the parameters o and 3, which are the default
discount factors for alternate forms of query terms generated by the inflectional and
derivational term expansion functions, respectively. These parameters are interpreted
by the document retrieval engine as being weights on query terms, such that a match
on an expansion form in a document contributes less to the overall score of that docu-
ment. Setting these parameters too low reduces the effectiveness of query expansion,
since matching the expansion forms does not boost the score of a document enough
to affect its rank. Setting the parameters too high can destroy performance by prefer-
entially retrieving documents that contain an abundance of expansion forms and few
or none of the original forms, and are in fact not relevant. I hypothesize the existence
of an optimal value for each parameter that yields best performance.

My approach is to tune optimum values for the parameters o and (3, first indepen-
dently and then simultaneously. The query expansion algorithm used for each test is
based on the Word Term Extractor and the Red Dropping Strategy. When tuning

« alone, I use inflectional expansion only, and when tuning (alone, I use only the

73

derivational expansion function. When tuning both parameters, I use both forms of
term expansion.

After finding the best values for a and (, I turn my attention to evaluating
the performance of the various combinations of dropping strategies and expansion
functions by setting up a matrix experiment and evaluating the performance of each

of the twelve combinations.

6.3 Tuning Parameters for Word Morphology

As mentioned previously, for the purposes of query term expansion, alternate forms
of a word are given a discount factor meant to represent the semantic difference
between the new and the original word forms. Alternate word forms generated by
the inflectional expansion function bear a discount factor of «, and those generated
by the derivational expansion function bear a discount factor of (.

Originally, these values were set to 0.75 and 0.5, respectively, for the purposes
of participating in the TREC 2003 QA track. The values were chosen to generally
reflect an intuitive sense of how semantically distant the new word forms were from
the originals, but one of my goals all along was to be able to tune these parameters
automatically. This section recounts a set of experiments designed to identify opti-
mum values for a and 3. All of the experiments in this section use query expansion

algorithms based on the Word Term Extractor and the Red Dropping Strategy.

6.3.1 Alpha: The Inflectional Expansion Discount Factor

To find the optimum value of «, I set up an experiment using inflectional term ex-
pansion as a part of my query expansion algorithm. As I varied a with a step size
of 0.05, I generated queries for each question in the training set and used them to
retrieve documents from the corpus, up to a certain limit. For each set of returned
documents, my evaluation framework computed the recall, the mean reciprocal rank
(MRR) and the total reciprocal rank (TRR), which is defined as the sum of all re-

ciprocal ranks, over not only relevant documents but also combined relevant and

74

unsupported documents.

To determine how the limit on the number of documents returned by the document
retriever would affect this calculation, I tried the same experiment with limit values of
100, 250, 500, 750 and 1000. Figure 6-1 shows a plot of recall for relevant documents
as « varies along the abscissa. The five lines correspond to the experiments performed
with limit values of 100, 250, 500, 750 and 1000, from bottom to top, respectively.

Table 6.1 gives a summary of the experiments performed in this section.

Term Term Dropping
Limit | Extractor | Expansion | Strategy
100 Word inflectional | Red
250 Word inflectional | Red
500 Word inflectional | Red
750 Word inflectional | Red
1000 | Word inflectional | Red

Table 6.1: Ezperiments Performed while Finding Alpha (o)

0.45 —

04 | .

Recall of Relevant Documents

03 | —

Alpha

Figure 6-1: Recall of relevant documents as a varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The results of
these five experiments are not directly comparable.

It is difficult to draw any conclusion from Figure 6-1 because the recall of relevant

5

documents for each of the five experiments is not directly comparable. For this reason,
I normalized the recall data for each experiment, fitting each on a zero-to-one scale.
Figure 6-2 shows this new data set, in which the maximum recall achieved in the
experiment appears as 1 and the minimum recall appears as 0. The average over all
five different limit experiments is shown as the heavy black line. By inspection, it

can be seen that the best « is 0.05.

1 T T T

0.6 | —

Recall of Relevant Documents

0.2 —

Alpha

Figure 6-2: Normalized recall analysis as o varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The heavy black
line shows the average across the five experiments.

I have prepared similar plots showing MRR and TRR averaged over the five limit
experiments. Figure 6-3 shows MRR as alpha varies from 0.0 to 1.0. In the figure,
the black line indicates the average across the five experiments corresponding to limit
values of 100, 250, 500, 750 and 1000. Figure 6-4 shows TRR as alpha varies over the
same interval, again with the average across the five experiments shown as a heavy

black line. In terms of MRR and TRR, the optimal value of « is 0.35.

76

Mean Reciprocal Rank of Relevant Documents (MRR)

Alpha

Figure 6-3: Normalized MRR analysis as o varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The heavy black
line shows the average across the five experiments.

Total Reciprocal Rank of Relevant Documents (TRR)

Alpha

Figure 6-4: Normalized TRR analysis as o varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The heavy black
line shows the average across the five experiments.

7

6.3.2 Beta: The Derivational Expansion Discount Factor

I followed a similar procedure to find the optimum value of (5. I set up an experiment
using only derivational expansion for expanding query terms. I again examined the
behavior of the parameter over the range from 0.0 to 1.0, with a step size of 0.05.
For each value of 3, I generated queries and retrieved documents for the questions
in the training set. I ran five experiments, each with different values for the limit on
the number of documents returned, those values being 100, 250, 500, 750 and 1000.

Table 6.2 shows the experiments performed in this section.

Term Term Dropping
Limit | Extractor | Expansion | Strategy
100 Word derivational | Red
250 Word derivational | Red
500 Word derivational | Red
750 Word derivational | Red
1000 | Word derivational | Red

Table 6.2: Ezperiments Performed while Finding Beta (3)

From my experience with «, I knew to normalize the values provided by my
evaluation framework, and then to average across the five different limit experiments.
Figure 6-5 shows recall of relevant documents averaged across all five experiments.
One interesting thing to note about the figure is how quickly recall falls off as
increases, when compared with how recall falls off with increased «, which is shown
in Figure 6-2. The derivational morphology expansion facility usually generates at
least some alternate forms that are not as closely related to the original query term
as are the forms generated by inflectional morphology expansion. Increasing the
weight on alternate forms that are more semantically distant from what the system
is looking for causes it to preferentially retrieve documents that contain these forms,
fewer of which are actually relevant. The behavior of the average recall curve shown
in Figure 6-5 is consistent with this explanation, indicating that the value of § that
leads to maximal recall of relevant documents is 0.15.

I was also interested in seeing how different values of § affects MRR and TRR

78

0.8 | —

0.6 |- E

0.4 - g

Recall of Relevant Documents

Beta

Figure 6-5: Normalized recall analysis as (8 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The heavy black
line shows the average across the five experiments.

of relevant documents. Figure 6-6 shows MRR of relevant documents as 3 ranges
between 0.0 and 1.0 in increments of 0.05. Figure 6-7 shows the behavior of TRR
as [varies over that same interval. Interestingly, after having been normalized, the
variance of TRR across the five experiments is very small; the figure would have looked
the same if I had plotted only the five-experiment average. Both figures indicate that

optimal value of (3 is 0.2.

79

0.6 |- _

04 - .

Mean Reciprocal Rank of Relevant Documents (MRR)

Beta

Figure 6-6: Normalized MRR analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The heavy black
line shows the average across the five experiments.

1 / T T T

0.8 - -

0.4 -

0.2 | —

Total Reciprocal Rank of Relevant Documents (TRR)

Beta

Figure 6-7: Normalized TRR analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top. The heavy black
line shows the average across the five experiments.

80

6.3.3 Interdependence of Alpha and Beta

I was concerned that the optimal values found for o and (8 individually might not be
the best values for the parameters when both are used simultaneously. It is reasonable
to expect that the inflectional and derivational expansion systems are not independent
of each other because, in some cases, each return the same alternate forms for query
terms. Figure 6-8 shows how recall of relevant documents varies as a and 3 both range
from 0.0 to 1.0, with a step size of 0.05. The document retrieval limit in this case is
100 documents. It is easy to see from the contour lines that have been drawn in the
x-y plane that the highest recall is achieved when 0.2 < a < 0.35 and 0.0 < 3 < 0.4.
The peak of the surface is a ridge where a = 0.3 and 0.0 < 8 < 0.25.

Recall

0.28
0.275
0.27

0.265

0.26

0.255

Figure 6-8: Normalized recall analysis as (3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.

Figure 6-9 shows the results of the same experiment in terms of MRR. Although
it is difficult to see from the figure, there is a peak of maximum MRR at a = 0.0
and # = 0.4. The surface appears jumbled and noisy, but the picture is much clearer
when looking at TRR.

Figure 6-10 shows TRR as a and 8 both vary in increments of 0.05 between 0.0

81

MRR

0.12
0.119
0.118
0.117
0.116
0.115
0.114
0.113
0.112
0.111

0.11
0.109

Figure 6-9: Normalized MRR analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.

and 1.0. The TRR peak is at a = 0.35 and § = 0.0, but the highest plateau of
TRR, as shown by the contour lines, is approximately where 0.0 < a < 0.5 and
0.0 < 3 <0.5.

To summarize, the highest-performing value for «;, when considered alone, is 0.05
in terms of recall and 0.35 in terms of MRR and TRR. For (8 alone, the results are
showing that best performance occurs at 0.15 for recall, and 0.2 for MRR and TRR.
When both parameters are tuned together, it is clear from Figure 6-8 that o must
be above 0.2 to achieve best recall, so the v = 0.05 result for recall independent of 3
is probably the result of a dependence between the inflectional and derivational term

expansion functions.

To combine the results from the independent and combined experiments for «
and [, it is reasonable to average their best performing values for each experiment,
because the values are close to each other. For «, best performance individually is
at 0.35 and best performance in the combined experiment is at 0.3. For 3, best

individual performance occurs at 0.15 and 0.2 and best combined results were at

82

TRR

35
345
34
335
33
32,5
32
315
31

Figure 6-10: Normalized TRR analysis as 3 varies in the range from 0.0 to 1.0, for
five limit values of 100, 250, 500, 750 and 1000, from bottom to top.

values of 0.0 and 0.4. All told, the results of the experiments in this section indicate
that reasonable values for o and for 8 are 0.325 and 0.1875, respectively. These values

will be used in all remaining experiments in this chapter.

6.4 Dropping strategies

Setting o = 0.325 and 3 = 0.1875, I evaluated the performance of each dropping strat-
egy, under four conditions: no term expansion, inflectional expansion only, deriva-
tional expansion only, and both. I performed this battery of experiments five times,
one for each value of document limit: 100, 250, 500, 750 and 1000. In total, sixty
experiments were performed, and Appendix B contains all of the raw results. In this
section, I present two tables showing the percent change averaged across the doc-
ument limit experiments for each combination of dropping strategy and expansion,
and I discuss the results of the experiments.

In Table 6.3, I show percent change in terms of recall of relevant documents. The

combination of the Blue Dropping Strategy and inflectional expansion shows the best

83

Dropping Term Expansion

Strategy | None Inflection | Derivation | Both

Red — +3.11% | -1.57% +2.13%
Green +2.64% | +5.57% +0.78% +5.00%
Blue +6.32% | +6.48% | +5.10% +5.94%

Table 6.3: Recall Dropping—FExpansion Matrixz showing percent change averaged over
five values of document limit: 100, 250, 500, 750 and 1000.

overall performance improvement according to this table. Looking at the table, it can
be seen that inflectional expansion outperforms derivational expansion when a single
expansion function is used. In fact, whenever derivational expansion is added to the
query expansion algorithm, performance suffers relative to the original algorithm. I
attribute this to the fact that the derivational expansion function often generates

expansion forms that are quite distant from the original query terms in meaning.

It is also clear from the table that the term-dropping plays a significant role in
improving performance. Even without any expansion, the Blue Dropping Strategy
offers a commanding improvement in performance over the Red Dropping Strategy
because it emphasizes querying on the original terms in all possible combinations

rather than quickly broadening the query by dropping as many terms as possible.

In Section B.2, there is a matrix showing recall of relevant documents for five val-
ues of document limit: 100, 250, 500, 750 and 1000. It is interesting to examine how
different dropping strategies and different term expansion methods vary in perfor-
mance with respect to the document limit. The Green and Blue Dropping Strategies,
for example, generate so many queries that the later ones can only be executed when
the document limit is high. This is a consequence of the fact that documents returned
from a sequence of queries are concatenated. Higher document limit also reduces the
effect that expansion has on improving recall, because term-dropping in later queries
broadens the scope of documents retrieved to include many of those that would have

matched the expanded forms of the original query terms.

Table 6.4 shows percent change in terms of TRR of relevant documents for the

matrix of dropping strategy and expansion combinations. TRR is a measure that

84

reflects not only how many relevant documents were returned, but also how highly

ranked they were. It is a better measure than recall, which can be inflated as document

limit is increased.

Dropping Term Expansion

Strategy | None Inflection | Derivation | Both
Red — -5.18% +1.41% -4.45%
Green +3.56 | -1.80% +4.87% -1.12%
Blue +3.26% | -3.21% +5.08% | -2.40%

Table 6.4: TRR Dropping—Expansion Matriz showing percent change averaged over
five values of document limat: 100, 250, 500, 750 and 1000.

Table 6.4 shows that, overall, the Blue Dropping Strategy performs and deriva-
tional expansion yield the best performance in terms of TRR. Regardless of dropping
strategy, derivational expansion improves TRR and inflectional expansion lowers it.
This is an almost certainly misleading result, because 3, the weight on derivational
expansion forms, is so low. If the weight were higher, derivational expansion would
be causing a performance decrease just as inflection does. If the performance increase
were really due to derivational expansion, the second and fourth colums of the table
would not look so similar.

Performance in general suffers when term expansion is used, because of a feature
of the scoring mechanism of the IR engine that Pauchok II is based on. There is a
coordination value factored into the score for a document that represents the ratio of
the query terms matched in that document to the total number of terms in the query.
This coordination penalty explains the behavior of recall as term expansion is added
to the query expansion algorithm; as the number of terms in the query increases, ranks
of relevant documents are shifted downward, decreasing TRR. A certain percentage
of relevant documents are shifted past the document limit, which causes recall to drop
accordingly. If we had better ways of merging results from multiple queries, rather
than concatenating them, we might be able to alleviate this problem somewhat.

In general, coordination seems like a reasonable component for the scoring metric

of a general-purpose IR engine to include. Imagine we were looking for information

85

about what to serve for dessert at a dinner party, and we queried using a disjunction of
terms representing different types of pastries. We would want a document containing
the terms sfogliatelle, zeppole and struffoli to be ranked higher than a document
containing a single mention of an eclair. For term expansion, this is not the kind of
scoring we want, since expanded forms of the original term appear with it in large
disjunctive clauses. Ideally, we would define a special kind of disjunction for which
matches of one or more of the component terms are scored equally. If this were the
case, querying on a large disjunction of morphological variants of each term would

not uniformly penalize documents for coordination.

One caveat about the results presented in this section is that they are aggregated
over the five different values of document limit. It is important to view the results
in this context, because the optimal combinations of term-dropping strategies and
term expansion methods that they suggest would be most successful if there were
no single fixed document limit used in the application. If there were a specific limit
on documents returned used consistently by the application, best performance would
result from performing a matrix experiment, such as those in Appendix B to choose
the best combination of dropping and expansion for the particular limit value needed

by the application.

I believe that it would be interesting to watch how the performance of each com-
bination of dropping strategy and term expansion behaves as a and [vary between
0.0 and 1.0. T have seen no evidence that proves to me that the optimal dropping
strategy and expansion combination is independent of the parameters. Throughout
the experiments in this section, I have assumed that the optimal query expansion
algorithm found when « and (3 were set to their optimal value would be the maxi-
mally performing query expansion algorithm, but that may not be completely true.
This is one of the questions that I will be investigating in my further study of query

expansion algorithms.

86

6.5 Issues with Phrase Analysis

Although Pauchok II is capable of recognizing phrases in the input question, through
the partnership of the phrase term extractor and the blackboard-based question anal-
ysis facility, no results of experimentation with query expansion algorithms that uti-
lize phrase analysis are presented here, because of the difficulty of designing effective

phrase expansion strategies.

Phrase recognition can do wonders for precision, directly targeting documents
that unambiguously refer to whatever it is that the user is asking about, but it can
be a hindrance as well. The more exact a phrase is, the more likely it is to be very
infrequent in the corpus. A system can get into trouble using phrases to query for
something, such as a person’s name, which can take many forms. Without some
way of generating alternate forms of phrases, a system may end up missing some
percentage of relevant documents that happen to use some other way of referring to
the question target. I have confirmed with experiments on the Pauchok II system that
phrase analysis without expansion causes a performance penalty, not only in terms
of recall but also in terms of TRR, which means that not only are fewer relevant
documents retrieved when phrase analysis is in use, but also that they are returned
at lower ranks. There is clearly a trade-off at work here. A system has to have some

kind of knowledge of when using phrase analysis will be an advantage.

When the structure of a phrase is known, it is reasonable to use that information to
generate expansion forms of that phrase, perhaps using discount factors to represent
semantic distance from the original term. Consider the class of phrases that represent
names of people. Certain instances of this class can give rise to a large number
of expansion forms. As an example, expansion forms such as “President Franklin
D. Roosevelt,” “President Franklin Roosevelt,” “Franklin D. Roosevelt,” and even
“President Roosevelt” and “Roosevelt,” if there is sufficient context to make these
forms unambiguous, can be generated from the phrase “President Franklin Delano

Roosevelt.”

Not all phrase instances can be expanded in this way. Such expansion depends on

87

knowing the internal construction of the phrase for the class of phrases to which the
instance belongs, and knowing that the instance is a member of the class. Sometimes
it is not easy to fit a phrase instance into the ontology. Consider, for example, the
phrase “first person” in TREC 2002 question 1475, “Who was the first person to
reach the south pole?” The phrase was mistakenly recognized by the system while
it was looking to match noun—noun collocations extracted from WordNet. Clearly,
the phrase “first person” is not being used in the question as a noun, but rather
as an adjective—noun combination. Keeping “first person” as an indivisible phrase
throughout the process for this question would be a mistake. It seems that if a system
can not identify the sub-structure of a phrase, it should not be marked as such.
This thesis does not contain experiments with phrase analysis because they would
not yield a great deal of insight without the application of proper phrase expansion
techniques. There are a great many ways to do phrase expansion that square with
intuition, but without careful experiments, there can be no telling which methods
work, and which do not. Such experiments are beyond the scope of this thesis.
Although I could have included phrase analysis here by designing some ad hoc phrase
expansion methods, they would not have been generally applicable. Phrase expansion

is instead left as a potential avenue for future query expansion research.

88

Chapter 7

Contributions

This thesis has been the product of approximately a year of work in document retrieval
for TREC-style question answering (QA), and the desire to build a better-performing

document retrieval module.

7.1 Motivation

In a pipelined QA system, one in which an upstream document retrieval stage provides
a list of documents relevant to the input question to downstream passage retrieval
and answer extraction stages, documents that are not retrieved early in the process
can never be searched for answer candidates. In the extreme case in which no relevant
documents are retrieved by the document retriever, there is no point in continuing
the QA process, because answers gleaned from whatever documents were actually
retrieved are unlikely to be correct. The overarching vision of this thesis is that
focusing on improving recall of relevant documents at the document retrieval stage
of a pipelined QA system can contribute greatly to improved accuracy of the system
as a whole.

Query expansion refers to a family of recall-boosting techniques especially suited
to Boolean keyword and phrase document retrieval engines. The motivating problem
behind this thesis was to fully explore the potential of query expansion techniques

such as inflectional and derivational word morphology, term-dropping strategies and

89

phrase analysis to improve recall of relevant documents for this type of document

retrieval engine.

7.2 Contributions

This thesis chronicled the building of a comprehensive test collection for evaluating
document retriever performance, consisting of 120 questions drawn from the TREC
2002 question set, each one associated with lists of document identification numbers
of documents from the AQUAINT corpus known to be relevant, unsupported or irrele-
vant for that question. Only 26 (21.67%) percent of these questions were subjected to
double-annotation, and subsequent adjudication and calculation of statistics regard-
ing inter-annotator agreement, so the test collection is not yet ready for distribution.
We consider this test collection to be one of the contributions of this thesis, so as
soon as the work on it is completed, we intend to release it so that other research
groups can benefit from it.

Another equally-important contribution of this work is the Pauchok II infrastruc-
ture itself, which is a flexible and powerful toolkit for building document retrieval
modules, and evaluating them against the test collection. Because it is based on
Scheme, the Pauchok II system promotes rapid prototyping and testing. Pauchok
IT includes pre-defined components for query expansion algorithms, such as con-
trol structures, term extractors, query term expansion functions, and term-dropping
strategies. The system also makes it easy to manipulate data and understand how
questions translate into queries, which then give rise to documents, by means of the
Pauchok II visualization package. As part of the AQUAINT program, we intend to
polish and fully document this system and release the source code to the QA research
community.

Lessons learned about query expansion for QA purposes include the following.
Term expansion improves recall by retrieving documents that do not contain all of
the original query terms, but do contain alternate forms of those terms. Tuning the

discount factors for the alternate forms can be done experimentally for a set of ques-

90

tions; it does not have to be ad hoc. Attention should be paid to the tuning because,
if the discount factors are too high, irrelevant documents that do not contain any of
the query terms, but that do contain alternate forms in abundance can overwhelm the
results. If the discount factors are too small, query expansion contributes very little
to the overall score of a document. One difficulty with query expansion techniques
can be how the IR engine backing the system interprets the queries and scores them
against documents. The big lesson in this thesis, though, is that given an appropriate
test collection and evaluation framework, a variety of query expansion algorithms can
be quickly built and experimented with, making finding the right query expansion
technique for the task at hand easy.

7.3 Future Directions

It is my belief that high recall of relevant documents in an upstream document re-
trieval stage is essential to a high-quality, pipelined QA system. Query expansion
techniques can contribute quite a bit to the improvement of recall, but there is a
limit to what they can do. I believe that query expansion is constrained by the query
interface and syntax provided by the document retrieval engine backing the QA sys-
tem. If a document retrieval engine were to expose through its query syntax more
fine-grained control over the document search process, there would be a much richer
space of possibilities for query expansion techniques.

To fully support QA, we as a research community need to explore ways to integrate
linguistic information into the indexing, querying and retrieval processes. Although
they work to some degree, it is not necessarily best to index keywords for the QA
task. We should be indexing named entity references, instances of classes, semantic
roles, and relations among objects and concepts mentioned in the documents, and
we should be providing convenient and expressive syntax for querying on the basis of
these linguistic objects.

It is clear that, for the purposes of TREC evaluation and answering questions over

a closed, static corpus, such thorough indexing could be done semi-automatically, or

91

even manually, were enough person-hours available. For this kind of IR to evolve
into the mainstream, though, we need to develop ways to automatically learn how to
recognize these references, induce these relations among objects, and compile these
indexes. If we succeed in building IR tools that are robust, linguistically-aware and
automatic, we will not only have made great advances in QA, but we will have
revolutionized IR as well. Such projects are just clouds dotting the horizon as of yet,
but are exciting nonetheless. I look to the future of QA with hope and expectation
that we will one day be able to realize the dream, now over half a century old, of a

conversational machine.

92

Appendix A

The Training Set

Table A.1 shows the 60-question training set used to perform the experiments de-

scribed in Chapter 6. These 60 questions were drawn randomly from the test collec-

tion discussed in Chapter 5, which is comprised of 120 questions selected from the

TREC 2002 question set.

No. | Question

1398 | What year was Alaska purchased?

1409 | Which vintage rock and roll singer was known as “The Killer”?
1410 | What lays blue eggs?

1412 | Who is the governor of Colorado?

1413 | What river is called “China’s Sorrow”?

1414 | What was the length of the Wright brothers’ first flight?

1417 | Who was the first person to run the mile in less than four minutes?
1419 | What year did Alaska become a state?

1425 | What is the population of Maryland?

1429 | What was Andrew Jackson’s wife’s name?

1431 | Who starred in “The Poseidon Adventure”?

1432 | Where is Devil’s Tower?

1433 | What is the height of the tallest redwood?

1434 | What site did Lindbergh begin his flight from in 19277

1435 | What nation is home to the Kaaba?

93

1436 | What was the name of Stonewall Jackson’s horse?

1438 | What body of water does the Colorado River flow into?

1439 | How deep is Crater Lake?

1440 | Who was the lead singer for the Commodores?

1446 | How did Mahatma Gandhi die?

1453 | Where was the first J.C. Penney store opened?

1456 | What is the Keystone State?

1459 | What is one national park in Indiana?

1460 | What was the name of the dog in the Thin Man movies?

1462 | Where is the oldest synagogue in the United States?

1463 | What is the North Korean national anthem?

1464 | Who is the detective on “Diagnosis Murder”?

1469 | When did Alexandra Graham Bell invent the telephone? (sic.)
1470 | When did president Herbert Hoover die?

1472 | How do you say “house” in Spanish?

1473 | When was Lyndon B. Johnson born?

1474 | What is the lowest point on earth?

1475 | Who was the first person to reach the south pole?

1477 | What are wavelengths measured in?

1480 | What is the principle port in Ecuador?

1481 | What is the capital city of Algeria?

1483 | Where is the highest point on earth?

1484 | What college did Allen Iverson attend?

1485 | What is slang for a “five dollar bill”?

1487 | How much are tickets to Disney World?

1490 | What is the Boston Strangler’s name?

1493 | When was Davy Crockett born?

1494 | Who wrote “East is east, west is west and never the twain shall meet”?
1497 | What was the original name before “The Star Spangled Banner”?
1501 | How much of U.S. power is from nuclear energy?

1508 | What was Dale Evans’ horse’s name?

1510 | Where is Anne Frank’s diary?

94

1512
1514
1515
1517
1519
1521
1522
1527
1533
1536
1537
1538
1547

What is the age of our solar system?

What is Canada’s most populous city?

What was Dr. Seuss’ real name?

What is the state bird of Alaska?

Where was Hans Christian Andersen born?

What year did Ellis Island open its doors to immigrants?
What are the headpieces called that the Saudi Arabians wear?
When did the 6-day war begin?

Who directed the film “Fail Safe”?

What city is Lake Washington by?

How many electoral college votes in Tennessee? (sic.)
Who is the evil H.R. Director in “Dilbert”?

What is the atomic number of uranium?

Table A.1: Training set questions

95

96

Appendix B

Evaluation Data

This Appendix presents in unabridged form the results of the experiments described
in Section 6.4. There were two term expansion functions under consideration, the
inflectional and the derivational. A query expansion algorithm could use neither, only
one or both of the expansion functions. There were three term-dropping strategies
available for study, designated the Red, Green and Blue Dropping Strategies. I ran
experiments for five different values for the limit on the number of documents retrieved
by the document retrieval engine. Those values were 100, 250, 500, 750 and 1000
documents.

In total, sixty experiments were run, one for each combination of document limit,
dropping strategy and term expansion. For each experiment, I report recall, mean
reciprocal rank (MRR) and total reciprocal rank (TRR), for both relevant documents

and relevant or unsupported documents.

B.1 Raw Data

The five tables in this section, Tables B.1, B.2, B.3, B.4 and B.5 show the raw results
of the experiments performed. There is one table per document limit value. For each
combination of dropping strategy and expansion, I report recall, mean reciprocal rank
(MRR) and total reciprocal rank (TRR), for both relevant documents and relevant

or unsupported documents.

97

Dropping Recall MRR TRR
Strategy | Expansion || Rel. Both Rel. Both Rel. Both
Red none 0.2589 | 0.2451 | 0.1317 | 0.1314 | 36.4801 | 38.0919
infl. 0.2766 | 0.2612 | 0.1157 | 0.1146 | 34.2612 | 35.4116
deriv. 0.2589 | 0.2451 | 0.1339 | 0.1335 | 37.0902 | 38.7020
both 0.2766 | 0.2612 | 0.1166 | 0.1154 | 34.5013 | 35.6518
Green none 0.2729 | 0.2587 | 0.1313 | 0.1306 | 38.3278 | 39.9552
infl. 0.2907 | 0.2747 | 0.1156 | 0.1142 | 35.9458 | 37.4706
deriv. 0.2729 | 0.2587 | 0.1333 | 0.1326 | 38.9379 | 40.5653
both 0.2907 | 0.2747 | 0.1164 | 0.1149 | 36.1860 | 37.3474
Blue none 0.2720 | 0.2747 | 0.1304 | 0.1255 | 37.9606 | 40.8018
infl. 0.2748 | 0.2671 | 0.1199 | 0.1186 | 35.2527 | 37.4706
deriv. 0.2738 | 0.2764 | 0.1322 | 0.1272 | 38.7450 | 41.5862
both 0.2766 | 0.2688 | 0.1205 | 0.1191 | 35.6698 | 37.8876
Table B.1: Raw data for a limit of 100 documents.
Dropping Recall MRR TRR
Strategy | Expansion || Rel. Both | Rel. Both | Rel. Both
Red none 0.3664 | 0.3508 | 0.0967 | 0.0953 | 37.8939 | 39.5648
infl. 0.3710 | 0.3550 | 0.0906 | 0.0888 | 35.9689 | 37.2797
deriv. 0.3383 | 0.3263 | 0.1060 | 0.1037 | 38.3651 | 40.0473
both 0.3607 | 0.3466 | 0.0940 | 0.0917 | 36.2695 | 37.5831
Green none 0.3738 | 0.3584 | 0.0976 | 0.0961 | 39.0557 | 40.7423
infl. 0.3776 | 0.3618 | 0.0919 | 0.0898 | 37.1116 | 38.4334
deriv. 0.3458 | 0.3339 | 0.1068 | 0.1043 | 39.5269 | 41.2148
both 0.3673 | 0.3534 | 0.0952 | 0.0927 | 37.4122 | 38.7368
Blue none 0.3850 | 0.3905 | 0.0947 | 0.0910 | 39.0276 | 42.0248
infl. 0.3701 | 0.3727 | 0.0919 | 0.0882 | 37.1116 | 38.4334
deriv. 0.3589 | 0.3668 | 0.1033 | 0.0983 | 39.6733 | 42.6573
both 0.3617 | 0.3652 | 0.0953 | 0.0911 | 36.8713 | 39.3579

Table B.2: Raw data for a

98

limat of 250 documents.

Dropping Recall MRR TRR
Strategy | Expansion || Rel. Both Rel. Both Rel. Both
Red none 0.5308 | 0.5038 | 0.0676 | 0.0673 | 38.4100 | 40.0955
infl. 0.5467 | 0.5173 | 0.0624 | 0.0618 | 36.5233 | 37.8462
deriv. 0.5271 | 0.4998 | 0.0690 | 0.0687 | 38.9440 | 40.6241
both 0.5374 | 0.5089 | 0.0640 | 0.0633 | 36.7923 | 38.1138
Green none 0.5393 | 0.5123 | 0.0686 | 0.0681 | 39.5758 | 41.2769
infl. 0.5551 | 0.5258 | 0.0634 | 0.0627 | 37.6711 | 39.0050
deriv. 0.5355 | 0.5080 | 0.0700 | 0.0696 | 40.1097 | 41.8055
both 0.5458 | 0.5173 | 0.0650 | 0.0642 | 37.9401 | 39.2727
Blue none 0.5682 | 0.5587 | 0.0651 | 0.0645 | 39.6010 | 42.6073
infl. 0.5766 | 0.5689 | 0.0600 | 0.0588 | 37.0433 | 39.5760
deriv. 0.5664 | 0.5571 | 0.0665 | 0.0657 | 40.3097 | 43.3029
both 0.5692 | 0.5621 | 0.0616 | 0.0602 | 37.4888 | 40.0121
Table B.3: Raw data for a limit of 500 documents.
Dropping Recall MRR TRR
Strategy | Expansion || Rel. Both | Rel. Both | Rel. Both
Red none 0.5897 | 0.5604 | 0.0610 | 0.0606 | 38.5166 | 40.2098
infl. 0.6028 | 0.5731 | 0.0568 | 0.0560 | 36.6256 | 37.9593
deriv. 0.5888 | 0.5596 | 0.0620 | 0.0615 | 39.0548 | 40.7439
both 0.6000 | 0.5706 | 0.0575 | 0.0567 | 36.9071 | 38.2388
Green none 0.5981 | 0.5689 | 0.0620 | 0.0156 | 39.6824 | 41.3912
infl. 0.6112 | 0.5816 | 0.0578 | 0.0569 | 37.7735 | 39.1182
deriv. 0.5920 | 0.5680 | 0.0629 | 0.0624 | 40.2205 | 41.9253
both 0.6084 | 0.5790 | 0.0584 | 0.0575 | 38.0549 | 39.3977
Blue none 0.6280 | 0.6145 | 0.0591 | 0.0588 | 39.7121 | 42.7221
infl. 0.6336 | 0.6221 | 0.0548 | 0.0539 | 37.1475 | 39.6940
deriv. 0.6299 | 0.6162 | 0.0600 | 0.0596 | 40.4264 | 43.4233
both 0.6336 | 0.6221 | 0.0555 | 0.0545 | 37.6069 | 40.1339

Table B.4: Raw data for a

99

limat of 750 documents.

Dropping Recall MRR TRR
Strategy | Expansion || Rel. Both | Rel. Both | Rel. Both
Red none 0.6065 | 0.5790 | 0.0594 | 0.0587 | 38.5381 | 40.2356
infl. 0.6168 | 0.5875 | 0.0555 | 0.0546 | 36.6435 | 37.9793
deriv. 0.6075 | 0.5799 | 0.0601 | 0.0594 | 39.0788 | 40.7722
both 0.6178 | 0.5866 | 0.0559 | 0.0551 | 36.9300 | 38.2618
Green none 0.6196 | 0.5917 | 0.0599 | 0.0592 | 39.7097 | 41.4228
infl. 0.6290 | 0.5993 | 0.0562 | 0.0552 | 37.7955 | 39.1423
deriv. 0.6205 | 0.5926 | 0.0606 | 0.0599 | 40.2504 | 41.9594
both 0.6299 | 0.5985 | 0.0565 | 0.0557 | 38.0820 | 39.4247
Blue none 0.6514 | 0.6365 | 0.0570 | 0.0568 | 39.7419 | 42.7530
infl. 0.6589 | 0.6450 | 0.0527 | 0.0520 | 37.1781 | 39.7145
deriv. 0.6533 | 0.6382 | 0.0579 | 0.0576 | 40.4562 | 43.4541
both 0.6607 | 0.6467 | 0.0532 | 0.0525 | 37.6401 | 40.1670

Table B.5: Raw data for a limit of 1000 documents.

B.2 Recall Matrices

Tables B.6, B.7, B.8, B.9 and B.10 show the experimental results arranged in a matrix,
in which rows represent different dropping strategies and columns represent different
types of expansion. Each cell in the matrix shows the recall of relevant documents
and gives percent change with respect to the upper-left cell. The best combination,
defined as the cell with the highest percent change, is in bold face. There is one

matrix per document limit value.

Dropping Term Expansion

Strategy | None Inflection Derivation | Both

Red 0.2589 0.2766 0.2589 0.2766

(+6.84%) | (+0.00%) | (+6.84%)

Green 0.2729 0.2907 0.2729 0.2907
(+5.41%) | (+12.28%) | (+5.41%) | (+12.28%)

Blue 0.2720 0.2748 0.2738 0.2766
(+5.06%) | (+6.14%) | (+5.76%) | (+6.84%)

Table B.6: Recall Dropping—Expansion Matriz for a limit of 100 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

100

Dropping Term Expansion

Strategy | None Inflection | Derivation | Both

Red 0.3664 0.3710 0.3383 0.3607

(+1.81%) | (-7.16%) | (-1.02%)

Green 0.3738 0.3776 0.3458 0.3673
(+2.58%) (+3.62%) | (-5.10%) (-0.79%)

Blue 0.3850 0.3701 0.3589 0.3617
(+5.65%) | (+1.56%) | (-1.51%) (-0.74%)

Table B.7: Recall Dropping—Expansion Matriz for a limit of 250 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

Dropping Term Expansion

Strategy | None Inflection Derivation | Both

Red 0.5308 0.5467 0.5271 0.5374

(+3.00%) | (-0.70%) (+1.24%)

Green 0.5393 0.5551 0.5355 0.5458
(+1.60%) | (+4.58%) (+0.89%) | (+2.83%)

Blue 0.5682 0.5766 0.5664 0.5692
(+7.05%) | (+8.63%) | (+6.71%) | (+7.23%)

Table B.8: Recall Dropping—FExpansion Matrixz for a limit of 500 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

Dropping Term Expansion

Strategy | None Inflection Derivation | Both

Red 0.5897 0.6028 0.5888 0.6000

(+2.22%) (-0.15%) (+1.75%)

Green 0.5981 0.6112 0.5920 0.6299
(+1.42%) | (+3.65%) (+0.39%) | (+6.82%)

Blue 0.6280 0.6336 0.6299 0.6336
(+6.50%) | (+7.44%) | (+6.82%) | (4+7.44%)

Table B.9: Recall Dropping—Expansion Matriz for a limit of 750 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

101

Dropping Term Expansion
Strategy | None Inflection | Derivation | Both
Red 0.6065 0.6168 0.6075 0.6178
(+1.70%) | (+0.17%) | (+1.86%)
Green 0.6196 0.6290 0.6205 0.6299
(+2.16%) | (+3.71%) | (+2.31%) | (+3.86%)
Blue 0.6514 0.6589 0.6533 0.6607
(+7.40%) | (+8.64%) | (+7.70%) | (+8.94%)

Table B.10: Recall Dropping—Expansion Matrixz for a limit of 1000 documents. Per-
cent change is computed with respect to the Red Dropping Strategy with no expansion.

B.3 TRR Matrices

Tables B.11, B.12, B.13, B.14 and B.15 are similar to those in the last section, except
that each cell shows TRR of relevant documents instead of recall. Again, percent
change is shown with respect to the upper-left cell, and the cell showing the greatest
percent increase in TRR is given in bold face. There is a matrix for each value of the

document limit.

Dropping Term Expansion
Strategy | None Inflection | Derivation | Both
Red 36.4801 34.2612 37.0902 34.5013

(-6.08%) | (+1.67%) | (-5.42%)
Green 38.3278 | 35.9458 | 38.9379 36.1860
(+5.06%) | (-1.46%) | (+6.74%) | (-0.81%)
Blue 37.9606 | 35.2527 | 38.7450 35.6698
(+4.06%) | (-3.36%) | (+6.21%) | (-2.22%)

Table B.11: TRR Dropping—FExpansion Matriz for a limit of 100 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

102

Dropping Term Expansion

Strategy | None Inflection | Derivation | Both
Red 37.8939 35.9689 38.3651 36.2695
(-5.08%) | (+1.24%) (-4.29%)
Green 39.0557 37.1116 39.5269 37.4122
(+3.07%) | (-2.06%) | (+4.31%) | (-1.27%)
Blue 39.0276 37.1116 39.6733 36.8713
(+2.99%) | (-2.06%) | (+4.70%) | (-2.70%)

Table B.12: TRR Dropping—FExpansion Matriz for a limit of 250 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

Dropping Term Expansion
Strategy | None Inflection | Derivation | Both
Red 38.4100 36.5233 38.9440 36.7923

(-4.91%) | (+1.39%) | (-4.21%)
Green 39.5758 | 37.6711 | 40.1097 37.9401
(+3.04%) | (-1.92%) | (+4.43%) | (-1.22%)
Blue 39.6010 | 37.0433 | 40.3097 | 37.4888
(+3.10%) | (-3.56%) | (+4.95%) | (-2.40%)

Table B.13: TRR Dropping—Fxpansion Matriz for a limit of 500 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

Dropping Term Expansion
Strategy | None Inflection | Derivation | Both
Red 38.5166 36.6256 39.0548 36.9071

(-4.91%) | (+1.37%) | (-4.18%)
Green 39.6824 | 37.7735 | 40.2205 38.0820
(+3.03%) | (-1.93%) | (+4.42%) | (-1.13%)
Blue 39.7121 | 37.1475 | 40.4264 | 37.6069
(+3.10%) | (-3.56%) | (+4.54%) | (-2.36%)

Table B.14: TRR Dropping—FExpansion Matriz for a limit of 750 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

103

Dropping Term Expansion

Strategy | None Inflection | Derivation | Both
Red 38.5381 36.6435 39.0788 36.9300
(-4.92%) | (+1.40%) (-4.17%)
Green 39.7097 37.7955 40.2504 38.0820
(+3.04%) | (-1.93%) | (+4.44%) (-1.18%)
Blue 39.7121 37.1781 40.4562 37.6401
(+3.05%) | (-3.53%) | (+5.00%) | (-2.33%)

Table B.15: TRR Dropping—Ezpansion Matriz for a limit of 1000 documents. Percent
change is computed with respect to the Red Dropping Strategy with no expansion.

104

Bibliography

1]

[7]

Daniel M. Bikel, Richard L. Schwartz, and Ralph M. Weischedel. An algorithm
that learns what’s in a name. Machine Learning, 34(1-3):211-231, 1999.

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry
Thompson, and Terry Winograd. Gus, a frame-driven dialog system. Artificial

Intelligence, 8(2):155-173, 1977.

Eric Brill. Automatic grammar induction and parsing free text: A trans-
formation-based approach. In Proceedings of the 31st Annual Meeting of the
Association for Computational Linguistics (ACL 1993), 1993.

J. Burger, C. Cardie, V. Chaudhri, R. Gaiz aus kas, S. Ha raba giu, D. Is-
rael, C. Jac que min, C. Y. Lin, S. Mai orano, G. Miller, D. Mol do
van, B. Ogden, J. Prager, E. Riloff, A. Singhal, R. Shrihari, T. Strza-
lkowski, E. Voorhees, and R. Weishedel. Issues, tasks and program struc-
tures to roadmap research in question & answering (q&a). http://www-

nlpir.nist.gov /projects/duc/papers/qa.Roadmap-paper_v2.doc, 2001.

James P. Callan, W. Bruce Croft, and Stephen M. Hardin. The INQUERY
retrieval system. In Proceedings of the 3rd International Conference on Database

and Fxpert System Applications, 1992.

J. Cohen. A coefficient of agreement for nominal scales. FEducational and Psy-

chological Measurement, 20:37-46, 1960.

Michael G. Dyer. In-depth understanding. MIT Press, Cambridge, MA, 1983.

105

8]

[10]

[11]

[12]

[13]

[14]

[15]

L. E. S. Green, Berkeley E. C, and C. Gotlieb. Conversation with a computer.
Computers and Automation, 8(10):9-11, 1959.

Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. Base-
ball: an automatic question answerer. In E. A. Figenbaum and J. Feldman,

editors, Computers and Thought, pages 207-216. McGraw-Hill, New York, 1963.

Lynette Hirschman and Robert Gaizauskas. Natural language question answer-
ing: The view from here. Journal of Natural Language Engineering, Special Issue

on Question Answering, Fall-Winter 2001.

Eduard Hovy, Ulf Hermjakob, and Chin-Yew Lin. The use of external knowledge
in factoid QA. In Proceedings of the Tenth Text REtrieval Conference (TREC
2001), 2001.

Abraham Ittycheriah, Martin Franz, and Salim Roukos. IBM’s statistical ques-
tion answering system—TREC-10. In Proceedings of the Tenth Text RFEtrieval
Conference (TREC 2001), 2001.

Abraham Ittycheriah, Martin Franz, Wei-Jing Zhu, and Adwait Ratnaparkhi.
IBM’s statistical question answering system. In Proceedings of the Ninth Text

RFEtrieval Conference (TREC-9), 2000.

Boris Katz. Using english for indexing and retrieving. AI Memo 1096, MIT
Artificial Intelligence Laboratory, 1988.

Boris Katz. Annotating the World Wide Web using natural language. In Proceed-
ings of the 5th RIAO Conference on Computer Assisted Information Searching
on the Internet (RIAO 1997), 1997.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton,
Alton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to
heterogeneous data for question answering. In Proceedings of the 7th Interna-

tional Workshop on Applications of Natural Language to Information Systems

(NLDB 2002), 2002.

106

[17]

[20]

[21]

[25]

Boris Katz and Jimmy Lin. Annotating the Semantic Web using natural lan-
guage. In Proceedings of the 2nd Workshop on NLP and XML (NLPXML 2002)
at COLING 2002, 2002.

Boris Katz, Jimmy Lin, Daniel Loreto, Wesley Hildebrandt, Matthew Bilotti,
Sue Felshin, Aaron Fernandes, Gregory Marton, and Federico Mora. Integrating

Web-based and corpus-based techniques for question answering. In Proceedings

of the Twelfth Text REtrieval Conference (TREC 2003), 2003.

Wendy G. Lehnert, Michael G. Dyer, Peter N. Johnson, C. J. Yang, and Steve
Harley. Boris—an experiment in in-depth understanding of narratives. Artificial

Intelligence, 20(1):15-62, 1983.

Jimmy Lin. The Web as a resource for question answering: Perspectives and
challenges. In Proceedings of the Third International Conference on Language

Resources and Evaluation (LREC 2002), 2002.

Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory Marton, and Stefanie Tellex.
Extracting answers from the Web using knowledge annotation and knowledge
mining techniques. In Proceedings of the Eleventh Text REtrieval Conference

(TREC 2002), 2002.

Gregory A. Marton. Sepia: Semantic parsing for named entities. Master’s thesis,

Massachusetts Institute of Technology, 2003.

George Miller. WordNet: A lexical database for English. Communications of the
ACM, 38(11):49-51, 1995.

Dan Moldovan, Marius Pasca, Sanda Harabagiu, and Mihai Surdeanu. Perfor-
mance issues and error analysis in an open-domain question answering system.
In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL 2002), 2002.

E. Nyberg, T. Mitamura, J. Carbonell, J. Callan, K. Collins-Thompson,
K. Czuba, M. Duggan, L. Hiyakumoto, N. Hu, Y. Huang, J. Ko, L. Lita,

107

28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

S. Murtagh, V. Pedro, and D. Svoboda. The javelin question-answering system
at trec 2003: A multi-strategy approach with dynamic planning. In Proceedings
of the Twelfth Text REtrieval Conference (TREC 2003), 2003.

G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5):513-523, 1988.

Roger C. Schank, Neil M. Goldman, Charles J. Rieger, III, and Christopher K.
Riesbeck. Inference and paraphrase by computer. J. ACM, 22(3):309-328, 1975.

Robert F. Simmons. Answering english questions by computer: a survey. Com-

mun. ACM, 8(1):53-70, 1965.

Robert F. Simmons. Natural language question-answering systems: 1969. Com-

mun. ACM, 13(1):15-30, 1970.

Stefanie Tellex. Pauchok: A modular framework for question answering. Master’s

thesis, Massachusetts Institute of Technology, 2003.

Stefanie Tellex, Boris Katz, Jimmy Lin, Gregory Marton, and Aaron Fernandes.
Quantitative evaluation of passage retrieval algorithms for question answering.
In Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2003), 2003.

A. Turing. Computing machinery and intelligence. Mind, 59:433—-460, 1950.
C. J. van Rijsbergen. Information Retireval. Butterworths, London, 1979.

Ellen M. Voorhees. Overview of the TREC 2001 question answering track. In
Proceedings of the Tenth Text REtrieval Conference (TREC 2001), 2001.

Ellen M. Voorhees. The evaluation of question answering systems: Lessons
learned from the TREC QA track. In Proceedings of the Question Answering:
Strategy and Resources Workshop at LREC-2002, 2002.

Ellen M. Voorhees. Overview of the TREC 2002 question answering track. In
Proceedings of the Eleventh Text REtrieval Conference (TREC 2002), 2002.

108

[37]

[38]

[39]

Ellen M. Voorhees. Overview of the TREC 2003 question answering track. In
Proceedings of the Twelfth Text REtrieval Conference (TREC 2003), 2003.

Ellen M. Voorhees and Dawn M. Tice. Overview of the TREC-9 question an-
swering track. In Proceedings of the Ninth Text REtrieval Conference (TREC-9),
2000.

Joseph Weizenbaum. Eliza: A computer program for the study of natural lan-
guage communication between man and machine. Commun. ACM, 9(1):36-45,

1966.

Terry Winograd. Understanding Natural Language. Academic Press, New York,
New York, 1972.

William A. Woods, R. M. Kaplan, and B. L. Nash-Webber. The lunar sciences
natural language information system. Final Report 2378, BBN, Cambridge, MA,
1972.

109

