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Abstract— State lattice-based planning has been used in
navigation for ground, water, aerial and space robots. State
lattices are typically constructed of simple motion primitives
connecting one state to another. There are situations where
these metric motions may not be available, such as in GPS-
denied areas. In many of these cases, however, the robot may
have some additional sensing capability that is not being fully
utilized by the planner. For example, if the robot has a camera
it may be able to use simple visual servoing techniques to
navigate through a GPS-denied region. Likewise, a LIDAR may
allow the robot to skirt along an environmental feature even if
there is not enough information to generate an accurate pose
estimate. In this paper we present an expansion of the state
lattice framework that allows us to incorporate controller-based
motion primitives and external perceptual triggers directly into
the planning process. We provide a formal description of our
method of constructing the search graph in these cases as well
as presenting real-world and simulated testing data showing
the practical application of this approach.

I. INTRODUCTION

Lattice-based graphs are commonly used for robotic path
planning. For example, aerial vehicles [1], automobiles [2],
boats [3], and all-terrain vehicles [4] have all used state
lattices for navigation. These graphs are constructed by
applying a set of motion primitives to each state expanded
during the search in order to generate valid successor states.
By doing this, they generate edges in the search graph
between the (possibly non-adjacent) discretized states which
serve as the graph nodes. A graph search algorithm, such as
A? can act on this lattice to generate a trajectory consisting
of a sequence of motion primitives between the start and goal
state. The advantage of using a motion primitive vice simple
4- or 8-connected grids is that the motion primitives can more
accurately model the kinematic constraints of the robot. For
example, a car-like robot is unable to move directly sideways,
but it can curve to the left and right as well as travel forward
and in reverse. In this case a small set of motion primitives
encoding those maneuvers is typically sufficient for planning
motions in a plane.

In some environments, however, there may exist regions
where the robot is unable to execute the typical motion
primitives or they provide poor performance. For example,
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Fig. 1: Example of controller based motion primitive. From start
state, S, we construct the motion primitive lattice. Metric motions
that result in states inside the denied region are considered invalid,
as the robot would become hopelessly lost if it entered this area.
However, state A is a valid state and is sufficiently close to the
wall on the left to allow a controller-based motion primitive (using
a wall-following motion) to generate state B on the far side of the
denied region. From B the standard metric motion primitives can
generate a path to the goal, G.

Fig. 1 depicts an environment with a large GPS-denied region
between the start and the goal. If the robot is relying purely
on GPS data in order to navigate, then there is not a valid
path to the goal state as it would become hopelessly lost
when attempting to transit the GPS-denied region. On the
other hand, if, in addition to our normal suite of sensors,
we had the ability to follow a wall the robot could then
use that ability to successfully cross the GPS-denied region.
Similarly, as shown in Fig. 2, while motion primitives are
well suited for the use in a parking lot, on the roads it is
more common to use lane-following controllers.

More generally, a typical robot is usually equipped with a
suite of controllers that utilize on-board sensors. For exam-
ple, common controllers include visual servoing towards a
landmark using a camera [5], direct-to-goal navigation using
a GPS sensor [6], and range maintaining actions using a
radar [7]. Controllers such as these operate well in real-
world conditions due in part to their tight coupling of sensor
information and actuation, specifically due to their ability to
utilize the strengths of a given sensor system. For example,
visual servoing works well in part due to the relatively large
field-of-view and high angular accuracy of cameras.

In this paper, we extend the definition of state lattice to



Fig. 2: The state lattice is sufficient to navigate in the parking lot
area, however, once on the roadway, the lane-following controller
is used.

support the availability of such controllers. Specifically, we
introduce the notion of controller-based motion primitives
that correspond to running available controllers terminated by
a perceptual trigger. We refer to this data structure as a State
Lattice with Controllers (SLC). Planning with SLC allows
us to reason within a single planning process about the use
of controllers and purely metric motions. In the following
sections we present relevant related works, details of how
we integrate controller-based motion primitives into the state
lattice, and our real-world and simulation testing results.

II. RELATED WORK

Most of the modern approaches to global path planning
for navigation represent the environment as a 2-D or 3-D
geometric map and compute feasible paths on it. Typically
these planners are either sampling-based approaches such as
Probabilistic Road-maps (PRM) [8] and Rapidly-exploring
Random Trees (RRT) [9][10][11], or approaches based on
heuristic search (search-based approaches) such as A? [12],
ARA? [13], and Field D∗ [14]. Our approach lies in the
second class but differs from either class in that it adds
reasoning over available controllers.

There also exist navigation strategies that directly encode
sensing capabilities, such as the wall following assump-
tion found in the simplistic, but effective, Bug2 and its
related derivatives [15], and the “go to goal” sensing ability
inherent in potential field approaches [16] and navigation
functions [17]. Another example of planning integrated with
control is the corner-localization scheme proposed by [18].
This approach uses only a minimal set of poor accuracy
sensors but can still provably reach a desired goal loca-
tion under certain conditions. However, these approaches
typically do not provide path cost minimization, may get
stuck in local minima, or are difficult to construct for
arbitrary environments being traversed by arbitrary-shaped
robots [19][20]. In contrast, lattice-based planning provides
good cost minimization and deals well with arbitrarily com-

plex environments.
One alternative to the navigation functions and potential

field approaches is the sequential composition of controllers.
By covering the valid states with a series of controllers
that each moves the robot along to the next controller, this
approach can alleviate the need to find a single globally
attractive control law. Specific controllers are activated by
a planner in order to approximate an arbitrary navigation
function [21][22][23]. While these functions are easier to
construct than a single navigation function covering the entire
domain, there is still some computational overhead. More
importantly, they cannot react to arbitrary perceptual triggers.
In other words, they typically cannot come up with plans
that say “follow the wall, until a doorway is detected on
the left”. By using the controller-based motion primitives
in combination with perceptual triggers, we are able to
construct these types of strategies.

Hybrid approaches seek to overcome the limitations that
pure behavior-based systems exhibit. Sensor-based planning
schemes using temporal logics to create an automaton or
finite-state machine are capable of integrating sensor func-
tionality into the planning scheme [24]. These planners also
allow the robot to change its high-level behavior based on
sensor inputs. However, these systems do not use any cost-
minimization techniques to choose between controllers dur-
ing the planning cycle. Instead they generate fixed controllers
and select between them at run-time, typically shifting
controllers when a higher level process detects a lack of
progress towards the goal [25], and so do not incorporate
the controllers into the planning process.

There have been approaches that considered the uncer-
tainty of the robot as part of the planning problem. Of these,
POMDP based approaches, even with modern approximate
solvers, are slower than A? and do not scale as well to
large environments [26]. An alternative to the full POMDP
method of handling uncertainty is by augmenting the state
space with an uncertainty metric [27]. This approach uses
detected landmarks to reduce uncertainty as a part of the
planning process. In this way the planner can prune actions
that raise the uncertainty above a threshold without incurring
the overhead of solving a POMDP. Another example is the
coastal navigation algorithm [28] which models the posi-
tional probability using a Gaussian. Our approach does not
explicitly model the uncertainty in localization unlike these
methods making our approach less general but significantly
faster due to not increasing the problem dimensionality.

In summary, our approach combines the strengths of the
search-based planning using state lattices with the advan-
tages of pure-controller based approaches augmented by the
ability to switch controllers based on perceptual triggers. Our
approach retains the guarantees on path cost and consistency
inherent in the search-based approaches as well as allowing,
in a formal system, the ability to short-cut portions of the
search graph based on available sensor-based controllers.
Unlike the pure controller-based approaches, we are able
to switch between controllers (including a metric motion
controller) at any point based on the reception of a perceptual



trigger.

III. PLANNING WITH THE STATE LATTICE WITH
CONTROLLERS

Typically, graph search-based planners decompose the
environment into an n-dimensional grid where each cell be-
comes a node on the graph. They then construct edges based
on proximity or available motion primitives. Given a graph,
one can use any graph search algorithm, such as A?, to find
a least-cost or good quality path in the graph. One method
of constructing this graph is the use of the state lattice
which is formed from applying, to each state, metric motion
primitives; short kinematically (and dynamically, if the state
space includes velocities) feasible motions going from a
center of one cell to the center of another. Our approach
builds on the state lattice construct by also adding edges
that correspond to executing different controllers available
on the robot. We refer to these as controller-based motion
primitives. These primitives are terminated using perceptual
triggers generated by the robot sensing system. The resulting
construct, a state lattice augmented with controller-based
motion primitives and perceptual triggers, we refer to as the
State Lattice with Controllers (SLC).

A. State Lattice

As a type of graph, a state lattice consists of a set of states,
S, connected by edges, E (see Fig. 1). To construct the set of
states, each dimension in the planning domain is discretized
into cells of finite size. Typically, metric dimensions are
divided into small grids, for example, 10cm square regions
for a small ground robot, while other dimensions, such as
angular dimensions, are discretized into a small number of
distinct values, e.g. {0°, 45°, . . . , 315°}. The discretization
size of the cells must balance two competing objectives.
Having larger cells, and therefore fewer states, improves
planning speed, while smaller cells can more accurately
represent the environment. State lattices can have any num-
ber of dimensions and can include dimensions representing
curvature, velocity, or other state variables as well. For
navigation a typical choice is (x, y, yaw) or (x, y, yaw, vel)
[2].

The edges of the state lattice are constructed by applying
a set of pre-computed motion primitives to each state s ∈ S
and then adding a directed edge from s to the state s′ ∈ S
that the motion primitive ends at. The motion primitives can
be generated in a number of different ways. For example,
they can be generated through an offline optimization process
[29] or by applying a feasible control signal for a short
period of time [4]. The trajectory resulting from this control
input is the motion primitive. Typically, motion primitives
are picked to span the space well and are symmetric in the
space of controls. For example, for a car-like robot, there
are usually motion primitives for both left and right hand
turns, and for forward and reverse directions (see Fig. 3).
They also need to be generated in a way that their start
and end points land on the center of cells. Typically, they
are generated for every possible orientation of a vehicle

and then during planning they only need to be translated
to (x, y) coordinates of a state for which the planner is
getting successors. Since the individual motion primitives
are feasible trajectories between states, the composition of
multiple motion primitives between a series of states creates
a feasible path for the robot. See [4] for an additional
discussion on motion primitive construction.

Fig. 3: An example of motion primitives for a car-like robot

B. Adding Controller-Based Motion Primitives

Our contribution is in adding additional motion primitives
that, instead of being generated a priori, are generated during
the planning process based on controllers available to the
robot. We begin with the introduction of three new functions.
The first function,

C(s) : S → P(C)

provides us with a set of available controllers, C , from the
powerset of all controllers, P(C), available at a state s ∈
S. C is the set of all controllers available to the robot. In
other words, for any given state s, C(s) returns all of the
controllers which can be executed at that state. Similarly,
the second function,

T(c) : C → P(T )

provides a set of available triggers, T , based on the given
controller, c ∈ C. T is the set of all triggers available to
the robot, such as the ability to detect doors, intersections,
etc. While metric motion primitives are of fixed length,
controller-based motion primitives need to have a stopping
condition. To this end we introduce a notion of a perceptual
trigger. A controller-based motion primitive is a pair 〈c, τ〉
representing the execution of a controller c ∈ C until either
a perceptual trigger τ ∈ T or an intrinsic trigger (explained
below) is detected. Different controllers may have different
triggers. For example, a controller for FOLLOWLEFTWALL
may have a trigger OPENINGONLEFT, whereas that trigger
may not be valid for a controller performing VISUALSER-
VOTOLANDMARK.1

1For the purposes of this paper we use relatively simple controllers in
order to more clearly demonstrate the method of constructing the search
graph. As such, the controllers and triggers listed are only a small subset
of controllers and triggers that one can construct. For example, a wide
collection of behavior based controllers are described in [30].



We classify triggers into two categories: intrinsic or ex-
trinsic. Intrinsic triggers result from the natural completion
of a controller. Intrinsic triggers are not selectable - they
are always in effect. When following a wall, the robot must
stop when the wall stops - there is no option to continue
following a now non-existent wall. To account for these types
of intrinsic triggers algorithmically, we do not individually
include them in T and thus they are never returned as an
element from T(c). Instead, a universal trigger, COMPLE-
TION, is used to signify execution of a controller until its
natural conclusion.2 Compared to intrinsic triggers, extrinsic
triggers are not directly related to the current controller, but
instead result from some independent external signal. When
following a wall, an extrinsic trigger could be sighting a door
on the left or an opening on the right.

The third function, Φ, generates a state where a controller-
based motion primitive ends, given a start state, a controller,
and a trigger.

Φ(s, c, τ) : S × C(s)× T(c) → S.

So for a given state s, an allowable controller c for that
state, and an allowable trigger τ for that controller, function
Φ simulates the execution of the controller c starting at state
s until either trigger τ or an intrinsic trigger is detected
(whichever comes first). The resulting state s′ is returned
by the function. The function Φ accounts for feasibility in
execution as part of the generation process. Unlike a typical
state lattice graph, there is no guarantee that the final position
of a robot after executing a controller will be in the center
of a cell aligned with one of the discretized orientations.
Given a maximum deviation from the cell center, ~δ, that
the low-level path following controller (used for following
metric motion primitives) can correct for, the function Φ
can determine whether the final position and orientation of
the robot is within these bounds as part of its feasibility
verification.3

With this construction of the function Φ we can now
modify how the state lattice is being constructed. Typically,
when constructing a lattice, there needs to be a function
that returns all of the successors of any state s together
with the corresponding edge costs. Let us call this function
GETSUCC(s).4 During planning, a planner repeatedly calls
this function to construct whatever portion of the graph it
needs. Typically, the planner only calls this function for states
that it expands. In this way, the full lattice is never explicitly
constructed beforehand, but rather each edge and node is
constructed as needed during the planning instance.

Algorithm 1 shows the GETSUCC(s) function for the state
lattice with controllers. This function first determines the
successors by applying the set of metric motion primitives to

2Some controllers have more than one intrinsic trigger.
3Another possibility is to set the discretization step size for each dimen-

sion smaller than the maximum allowable error for that dimension so that
any point in the final cell is a valid start condition for the following motion
primitive.

4Besides the GETSUCC(s) function, the remainder of the planning
process remains identical to the typical search-based planning algorithm
implementation such as in [31].

Algorithm 1 [S′ Cost] = GetSucc(state s)

1: vector〈state, cost〉 [S′ Cost] =
⋃
{[s(m) cost(s,m)]}

2: ∀m ∈ {Motion Primitives}
3: C = C(s)
4: for all c in C do
5: T = T(c)
6: for all τ in T do
7: [s′ cost] = Φ(s, c, τ)
8: [S′ Cost] = [S′ Cost] ∪ [s′ cost]
9: end for

10: end for
11: return [S′ Cost]
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Fig. 4: (a) Environment and (b) segment
of graph G based on the SLC with C =
{FOLLOWLEFTWALL(fL), FOLLOWRIGHTWALL(fR)} and
triggers T = {COMPLETION(End), OPENINGLEFT(oL),
OPENINGRIGHT(oR)}.

the current point (line 1). s(m) is meant to represent a state
resulting from applying metric motion primitive m at state s.
cost(s,m) is meant to represent the cost of executing motion
primitive m at state s. It then iterates through the available
controllers (line 3) and triggers (line 5) to generate the
successor states and edge costs (line 7). For each controller-
trigger pair we determine a valid successor state, if one
exists, for that pairing applied at the start state.

To see an example of a lattice incorporating controller-
based motion primitives, consider the environment shown
in Fig. 4a. For the sake of illustration, it does not include
metric motion primitives. Suppose we are given a set of con-
trollers C = {FOLLOWLEFTWALL, FOLLOWRIGHTWALL}
with an intrinsic trigger of COMPLETION corresponding
to the end of the wall, and a set of extrinsic triggers
T = {OPENINGLEFT, OPENINGRIGHT}. Consider a state
S, indicated by the square in the lower right corner and
suppose both controllers are available at S. From state
S there is an edge to A corresponding to the controller
FOLLOWLEFTWALL, fL, and trigger COMPLETION, End,
as shown in the portion of G shown in Fig. 4b. Likewise,
with controller FOLLOWRIGHTWALL, fR, and trigger End,
the edge goes from S to D. However, if the trigger were
OPENINGLEFT, oL, then the edge would have been from
S to C. Note, it is possible for multiple controller/trigger



combinations to connect two nodes. For example, B → C
is formed by the (fL,End) pair in the graph, however
B → C is also connected by the pair (fR, oL) (which is
not depicted).

C. Cost Function

As with any graph search-based planning, the edges in
graph G need to have costs associated with them. These
costs can represent an arbitrary cost function that includes
such factors as distance, risk, closeness to obstacles and other
factors. For controller-based motion primitives the cost can
also incorporate the reliability of different controllers and the
risk of relying on the detection of perceptual triggers.

D. The Output of the SLC-based Planner

When a planner runs on a state lattice, the typical output is
an ordered list of poses for the path-follower to execute. With
the introduction of controller-based motion primitives the
output of the planner becomes an ordered list of controllers
together with the associated triggers. For the metric motion
primitives, this will consist of the poses comprising the
motion primitive for the path following controller to execute,
just as in the state lattice. For the other primitives, it will
specify which controller is to direct the actuators as well as
the perceptual signal to relinquish control.

E. Theoretical Properties

The State Lattice with Controllers is just a graph. There-
fore, by running an optimal search such as A? on it we can
guarantee completeness and optimality with respect to the
discretization and given controllers:

If there exists a sequence of metric motion primitives
intermixed with controllers ci ∈ C terminated by triggers
τi ∈ T that move the robot from its starting position to
the goal, then the planner will return a solution and it will
be an optimal sequence of metric motion primitives and
controllers/triggers with respect to the cost function used.

IV. EXPERIMENTS

A. Vision-Based Micro Aerial Vehicle (MAV) Navigation

To demonstrate the State Lattice with Controllers, we
conducted flight testing using a low-cost AR.Drone 2.0 by
Parrot. This quadcopter comes with 2 cameras, one forward
and one downward looking, an ultrasonic and barometric
altitude capability, a compass, on-board WiFi for interfacing
and an ARM A8 micro-controller to perform low level
controls. An off-board laptop running ROS-Fuerte performed
the planning and control calculations as well as acting as
the user interface to the robot. We added a 4.5mW laser
line projector to provide depth information using the forward
looking camera (Fig. 5).

The platform was incapable of path following due to its
highly imprecise localization system. As a result, transla-
tional metric motion primitives had to be disabled. Instead,
using the laser line and the forward camera, we implemented
both a FOLLOWTHE[LEFTŠRIGHT]WALL controller and a

(a) (b)

Fig. 5: The AR-Drone 2.0 with a laser line generator attached above
its camera (a) and during flight (b).

GOTOLANDMARK5 visual servo controller in addition to
metric turn-in-place motion primitives. For the Landmarks
we implemented a detector to pick out the door jambs from
each image. This detector provided the controller with the
angular position, height and width of the door jambs located
in the image. The controller then determined which jamb
was the most appropriate to follow based on angle and
range; turning as appropriate to consistently proceed to the
desired jamb. Since the doors were indistinguishable from
each other, the planner had the capability to execute the
turn-in-place motion primitives in order to re-orient from its
current heading by ±30° using the on-board compass, when
searching for a door. This effectively allowed the controller
to reliably transition to any adjacent door on the wall in front
of it, or, by executing four turns (±120°), a door to the right
or left on the opposite wall. These four motions worked for
all tested door goal locations in our facility.

Fig. 6: Example of Laser Line. Range in millimeters to wall with
pillar on right hand side.

The laser line allowed the AR.Drone to calculate the
distance to nearby objects within the field of view of the
camera via triangulation (Fig. 6). Due to the drop-off in
horizontal brightness associated with using a cylindrical lens,
the distance information was only reliable over the central
two-thirds of the image, or approximately 30° − 40°. Once
calibrated, it proved fairly accurate and very consistent out
to 1.5m.

The cost function used for these experiments was distance
traveled plus a value proportional to the time to perform each
maneuver. By making the cost proportional to time, turn-in-
place motions that do not have any translational component

5referred to as GOTODOOR in the remainder of this section



Fig. 7: Floor plan of map traversed with start and goal positions.
The plan as a sequence of controllers is shown by a dashed line.

still had a positive cost.
In our experiments, we had the AR.Drone fly in a typical

indoor environment consisting of a hallway with multiple
doors along it (Fig. 7). The accompanying video shows one
of the autonomous flights of the AR.Drone executing the
calculated plan. The MAV navigates from one area of an
indoor environment to a specific door at the far end without
running SLAM or generating any form of metric map. Fig. 7
also shows the associated plan encoding the sequence of
controllers terminated by the perceptual triggers, namely the
detected doors.

Altogether there were 20 flights conducted which con-
sisted of a series of GOTODOOR controller phases inter-
mixed with long FOLLOWTHELEFTWALL controller execu-
tion phases, each terminated by the door detection trigger.

This experiment demonstrates the ability to use the SLC-
based planner in situations where conventional planning
is not feasible. Since the test MAV does not have the
localization capability to translate reliably, typical search or
sampling-based planners would not be able to construct a
feasible trajectory. Pure controller-based approaches would
be able to use the same controllers that were used here, but
would not be able to shift based on the perceptual triggers
received to terminate the execution of a controller prior to
reaching its goal-set.

B. Experimental Analysis of Runtime and Quality

1) Setup: While the first experiment showed that the
SLC-based planner could successfully generate executable
plans in domains where conventional planning could not, this
series of tests was performed to demonstrate that for those
domains where conventional methods do work SLC-based
planning was also competitive in terms of planning time and
path length.6 The three planners we compared ours against
were the lattice-based weighted A? search from the SBPL
package [31], and RRT-Connect and RRT∗ from the OMPL
package [32]. We ran the four planners on seven maps; four
indoor and three outdoor. The indoor maps, shown in Fig. 8,

6All tests were performed on an 2.6 GHz i7 processor with 8 GB RAM
running ROS-Electric on 64-bit Kubuntu 11.04.

were generated from building floor-plans†, converted laser
scan data†, and a custom drawn map. The outdoor maps,
shown in Fig. 9 were a park†, a set of buildings in a city, and
a randomly generated map. None of the maps contained any
regions that disallowed metric motions in order to not provide
any advantage solely to the State Lattice with Controllers.
On each map, each planner was tasked with finding solutions
between 100 randomly selected pairs of points (each planner
was given the same set of (start, goal) pairs). The planners
planned in R3 = {x, y, θ}. In addition, each planner was
given approximately 10 seconds of total processing time,
including any post-generation smoothing (smoothing was
performed on all trajectories generated by the RRT∗, and
RRT-Connect planners). Each pair of points was planned
from scratch with the planner being restarted each time.
While several planners can efficiently reuse data between
plans, we only compared initial planning times since we did
not allow for mid-execution replanning and we were inter-
ested in measuring the time before the robot could initially
begin to execute a plan. For the SLC-based planning we
used weighted-A? to search the graph constructed from the
State Lattice with Controllers. For the weighted A? search
running on both the normal lattice and the State Lattice with
Controllers the heuristic inflation (ε) weighting was fixed
at 2.0. The heuristic was computed as the 2-D distance to
the goal while accounting for obstacles. It was computed by
running a single Dijkstra’s search backwards from the goal,
which was included in the planning times.

2) Controller-based Motion Primitives: For these experi-
ments, in addition to WALLFOLLOWING and GOTOLAND-
MARK controllers, we have also introduced a GOTOGOAL
controller and a perceptual trigger based on the distance
traveled. For the metric motion primitives, we used a left arc
motion, a right arc motion and a straight motion, all in both
forward and reverse direction, and a turn-in-place motion.
The GOTOGOAL controller was only used on the outdoor
maps as an example of a GPS capable sensor. This controller
operated by having an attractive force directed towards the
goal position, and repulsive forces from local obstacles in a
manner similar to the potential fields approach.

The cost function used for these experiments was propor-
tional to the time and distance traversed for each motion.

3) Simulation Results: The results from the 3500 planning
attempts are shown in Table I. Since the results across all of
the indoor maps and all of the outdoor maps were similar,
they were each combined into a single entry. No one map was
significantly better or worse than the others for any planner
within each group. Planning time was the wall time for the
planner to run from when it is given the (start, goal) pair
until a solution is returned. The average planning time ratio
takes the planning time for a single (start, goal) pair and
divides it by the time it takes the SLC-based planner for
the same (start, goal) pair, then averages it across all runs
from that map. Average Path Length Ratio is calculated in the

†Some of the maps were obtained from the Robotics Data Set Repository
(Radish) [33]. Thanks go to Ashley Tews, Richard Vaughan, and Dieter Fox
for providing this data.



(a) Library floorplan 1500×1600 (b) Custom 1000× 1000

(c) Laser scan 600× 600

(d) Hospital floorplan 500× 1200

Fig. 8: Indoor Maps

same way comparing the path length from each individual
run to the path length returned by the SLC-based planner.

For some of the (start, goal) pairs, not all planners were
able to find a solution. This percentage is reported under the
Plan Failure percentage column. The weighted A? row refers
to running weighted A? on a normal lattice while SLC refers
to the SLC-based planner.

As can be seen from this table, the planning time for the
State Lattice with Controllers is comparable to the other plan-
ners and produces paths that are similar in length. The small
increase in average path length compared to the A? results is
principally due to the State Lattice with Controllers making
wider turns around corners and both planners having ε > 1.
While the A? heuristic drives expansions right against the
obstacles, the State Lattice with Controllers’s frequent use
of the wall following and goal directed controllers resulted
in many paths maintaining a larger standoff from the wall
on one or both sides of a corner. The results of both tests
indicate that incorporating controller-based motion primitives
has only a minimal impact on planning time.

V. CONCLUSION

In this paper we introduced the concept of State Lattice
with Controllers-based planning. The State Lattice with
Controllers has the important feature that, by taking into

(a) Park 1400× 2300

(b) Custom 1000× 1000

(c) City 900× 1800

Fig. 9: Outdoor Maps

account the specific sensing capabilities of the robot and
any controllers already instantiated on the robot, it can use
the corresponding additional motion primitives in instances
when metric motion primitives are not available with only a
minimal impact to planning times. Our primary contribution
is this ability to seamlessly integrate controller-based motion
primitives along with perceptual triggers into the existing
state lattice planning framework due to our method of
constructing the search graph. One of the main directions
for our future work is to determine automatically which
controllers or types of controllers are likely to be beneficial
for a given environment. For example, FOLLOWTHEWALL is
of little use in a forest, and GOTOGOAL requires additional
sensing hardware in a typical indoor environment, however
as newer more complex controllers are developed simple
intuition for which ones will work successfully may fail.
A second direction for future work is to determine if there
is a method to efficiently handle changes to the map in
a similar way as D? (and related) or other incremental
planners. Testing on a wider variety of robots, such as those
with Ackermann steering or other non-holonomic constraints,
is the third direction for future work.

REFERENCES

[1] D. Thakur, M. Likhachev, J. Keller, V. Kumar, V. Dobrokhodov,
K. Jones, J. Wurz, and I. Kaminer, “Planning for opportunistic
surveillance with multiple robots,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, Nov 2013, pp.
5750–5757.



TABLE I: Experimental Results.

Map Algorithm Avg Plan Std Avg Plan Std Avg Path Std Planning
Time (s) Dev Time Ratio Dev Length Ratio Dev Failure (%)

All Indoor

Weighted-A? 0.32 0.21 0.94 0.40 0.89 0.06 0
RRT∗ 1.59 2.32 4.41 5.99 1.06 0.31 0

RRT-Connect 0.56 0.72 1.69 1.23 1.09 0.29 0
SLC 0.42 0.42 1 - 1 - 0

All Outdoor

Weighted-A? 1.00 0.40 0.74 0.26 0.92 0.05 0
RRT∗ 10.25 0.34 8.73 4.22 0.94 0.09 15.6

RRT-Connect 0.33 0.64 0.22 0.38 1.14 0.26 27
SLC 1.50 0.85 1 - 1 - 0

[2] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009. [Online].
Available: http://ijr.sagepub.com/content/28/8/933.abstract

[3] P. Svec, B. C. Shah, I. R. Bertaska, J. Alvarez, A. J. Sinisterra, K. von
Ellenrieder, M. Dhanak, and S. K. Gupta, “Dynamics-aware target
following for an autonomous surface vehicle operating under colregs
in civilian traffic,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. IEEE, 2013, pp. 3871–3878.

[4] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in International Symposium on Artificial
Intelligence, Robotics, and Automation in Space, 2005.

[5] G. J. Agin, Real time control of a robot with a mobile camera. SRI
International, 1979.

[6] M. O’Connor, G. Elkaim, and B. Parkinson, “Kinematic gps for
closed-loop control of farm and construction vehicles,” in PROCEED-
INGS OF ION GPS, vol. 8. Citeseer, 1995, pp. 1261–1268.

[7] S.-B. Choi and J. Hedrick, “Vehicle longitudinal control using an
adaptive observer for automated highway systems,” in American
Control Conference, Proceedings of the 1995, vol. 5, Jun 1995, pp.
3106–3110 vol.5.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” Robotics and Automation, IEEE Transactions on, vol. 12,
no. 4, pp. 566 –580, aug 1996.

[9] J. J. Kuffner Jr. and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, vol. 2,
2000, pp. 995 –1001 vol.2.
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