
Anytime Truncated D* : Anytime Replanning with Truncation

Sandip Aine and Maxim Likhachev
Robotics Institute, Carnegie Mellon University

Pittsburgh, PA, US

Abstract

Incremental heuristic searches reuse their previous
search efforts to speed up the current search. Anytime
search algorithms iteratively tune the solutions based on
available search time. Anytime D* (AD*) is an incre-
mental anytime search algorithm that combines these
two approaches. AD* uses an inflated heuristic to pro-
duce bounded suboptimal solutions and improves the
solution by iteratively decreasing the inflation factor. If
the environment changes, AD* recomputes a new so-
lution by propagating the new costs. Recently, a differ-
ent approach to speed up replanning (TLPA*/TD* Lite)
was proposed that relies on selective truncation of cost
propagations instead of heuristic inflation. In this work,
we present an algorithm called Anytime Truncated D*
(ATD*) that combines heuristic inflation with trunca-
tion in an anytime fashion. We develop truncation rules
that can work with an inflated heuristic without vio-
lating the completeness/suboptimality guarantees, and
show how these rules can be applied in conjunction with
heuristic inflation to iteratively refine the replanning so-
lutions with minimal reexpansions. We explain ATD*,
discuss its analytical properties and present experimen-
tal results for 2D and 3D (x, y, heading) path planning
demonstrating its efficacy for anytime replanning.

Introduction
Planning for systems operating in the real world involves
dealing with two major challenges, namely, uncertainty and
complexity. The real world is an inherently uncertain and dy-
namic place; accurate models for planning are difficult to ob-
tain and quickly become out of date, and the planner needs to
modify its solution when such a change is perceived. Incre-
mental search algorithms such as LPA* (Koenig, Likhachev,
and Furcy 2004), D* Lite (Likhachev and Koenig 2005),
Field D* (Ferguson and Stentz 2006) attempt to efficiently
cope with such dynamic environments. These algorithms
reuse the information from previous search iterations to gen-
erate the optimal solution for the current iteration and can
converge faster when compared to planning from scratch.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This research was sponsored by the DARPA Computer Science
Study Group (CSSG) grant D11AP00275 and ONR DR-IRIS
MURI grant N00014-09-1-1052.

For complex planning problems, it is often desirable to ob-
tain a trade-off between the solution quality and the run-
time. Anytime search algorithms (such as AWA* (Zhou
and Hansen 2002), ARA* (Likhachev, Gordon, and Thrun
2004), and etc) are very useful for such systems, as they
usually provide an initial, possibly highly-suboptimal solu-
tion very quickly and then iteratively improve this solution
depending on the deliberation time in hand.

Anytime D* (AD*) (Likhachev et al. 2008) is an anytime
replanning algorithm that combines the benefits of incre-
mental search (D* Lite) and anytime search (ARA*). AD*
uses an inflated heuristic to produce a fast bounded subop-
timal solution, and then continually improves the solution
by searching with decreasing inflation factor. If the envi-
ronment changes, AD* corrects its solution in an incremen-
tal manner by propagating the cost changes. AD* is widely
used in real life robotics systems. For example, it was used
in the DARPA Urban Challenge winner vehicle (2007).

While AD* has been a successful integration of incremen-
tal and anytime approaches, it suffers from two problems.
Firstly, as AD* uses heuristic inflation to speed up planning,
its efficacy is very much dependent on the heuristic accuracy.
Also, while AD* works exceedingly well for high inflation
factors, its convergence time increases considerably when
searching for close-to-optimal solutions. Secondly, in AD*,
heuristic inflation is only used for states for which the path
has improved from the previously computed values (over-
consistent states) whereas the states for which the path has
degraded (underconsistent states) use uninflated heuristics.
This can result in accumulation of the underconsistent states
at the top of the queue, resulting in performance deteriora-
tion (Likhachev et al. 2008).

Recently, a new method called truncation was proposed
for improving the replanning runtime while maintaining
suboptimality guarantees (Aine and Likhachev 2013b). The
basic idea of truncation is to use a target suboptimality
bound to restrict the replanning cost propagations, when
such propagations are not necessary to guarantee the cho-
sen bound. The truncation based algorithms (TLPA*/TD*
Lite) have been shown to be very effective when search-
ing for close-to-optimal solutions. Also, this method is es-
pecially useful for handling underconsistent states, as it can
efficiently limit underconsistent state expansions by truncat-
ing an underconsistent state when a good enough (depending

Proceedings of the Sixth International Symposium on Combinatorial Search

2



on the target bound) path to it has been discovered.
In this work, we explore the possibility of combining

heuristic inflation (AD*) with truncation (TD* Lite) to de-
velop an anytime replanning algorithm. Combination of
AD* with TD* Lite leads to an exciting proposition, as these
techniques approach the replanning problem from different
directions and are shown to be efficient for different parts
of the anytime incremental spectrum. For example, AD*
speeds up planning with inflated heuristics while TD* Lite
speeds up replanning with selective truncation, AD* works
very well for high suboptimality bounds whereas TD* Lite
is more effective for close-to-optimal bounds, AD* may suf-
fer from accumulation of underconsistent states while TD*
Lite can efficiently truncate such states.

Unfortunately, these approaches can not be combined di-
rectly, as the truncation rules used for TD* Lite only work
with consistent heuristics. To rectify this, we design new
truncation rules that follow the same principle used in TD*
Lite but can work with inflated heuristics without violat-
ing the completeness/suboptimality constraints. We develop
Anytime Truncated D* (ATD*), an anytime replanning al-
gorithm that uses these new truncation rules in conjunction
with heuristic inflation and thus can simultaneously speed up
planning and replanning, offering greater efficacy and flex-
ibility to solve complex dynamic planning problems under
limited time. Also, ATD* ensures minimal reexpansion of
states between anytime/incremental iterations.

We present the theoretical properties of ATD* demon-
strating its completeness and suboptimal termination. We
also show that ATD* retains the expansion efficiency of
AD*. We experimentally evaluate ATD* for two domains,
2D and 3D (x, y, heading) path planning, comparing it with
the state-of-the-art anytime incremental algorithm (AD*)
and a widely used anytime search algorithm in robotics
(ARA*).

Related Work
The incremental heuristic search algorithms found in the
AI literature can be classified in three main categories. The
first class (LPA* (Koenig, Likhachev, and Furcy 2004), D*
(Stentz 1995), D* Lite (Likhachev and Koenig 2005)) reuses
the g- values from the previous search during the current
search to correct them when necessary, which can be inter-
preted as transforming the A* tree from the previous run
into the A* tree for the current run. The second class (Fringe
Saving A* (Sun and Koenig 2007), Differential A* (Trovato
and Dorst 2002)) restarts A* at the point where the current
search deviates from the previous run while reusing the ear-
lier search queue up to that point. The third class (Adaptive
A* (Koenig and Likhachev 2005), Generalized Adaptive A*
(Sun, Koenig, and Yeoh 2008)) updates the h- values from
the previous searches to make them more informed over it-
erations.

Another group of incremental searches (Sun, Yeoh, and
Koenig 2010; Sun et al. 2012) focus on solving moving tar-
get search problems in static environments, i.e., these algo-
rithms incrementally replan paths with changes in start/goal
configurations but do not accommodate changes in the edge
costs.

Over the years, a large number of anytime search al-
gorithms have been proposed in the AI literature. In gen-
eral, these algorithms use a depth-first bias to guide the
search toward a quick (possibly suboptimal) termination
and iteratively relax this bias to improve the solution qual-
ity. A majority of such algorithms (such as AWA* (Zhou
and Hansen 2002), ARA* (Likhachev, Gordon, and Thrun
2004), RWA* (Richter, Thayer, and Ruml 2010)) are based
on the Weighted A* (WA* (Pohl 1970)) approach, where the
heuristic is inflated by a constant factor (> 1.0) to give the
search a depth-first flavor. Other anytime approaches include
searches that restrict the set of states that can be expanded
(BeamStack search (Zhou and Hansen 2005), Anytime Win-
dow A* (Aine, Chakrabarti, and Kumar 2007)), and searches
that use different cost/distance estimates to guide the search
and best first heuristic estimates to provide bounds (AEES
(Thayer, Benton, and Helmert 2012)).

As discussed earlier, Anytime D* (AD*) (Likhachev et al.
2008) combines the anytime approach of ARA* (Likhachev,
Gordon, and Thrun 2004) with the incremental replanning
of D* Lite (Likhachev and Koenig 2005). TLPA* (and TD*
Lite), on the other hand, is a bounded suboptimal replanning
algorithm that relies on efficient truncation of the cost prop-
agations. Both of these algorithms are based on LPA*, and
thus belong to the first category of incremental search.

Background

1 procedure key(s)
2 return [min(g(s), v(s)) + h(sstart, s);min(g(s), v(s))];
3 procedure InitState(s)
4 v(s) = g(s) =∞; bp(s) = null;
5 procedure UpdateState(s)
6 if s was never visited InitState(s);
7 if (s 6= sgoal)
8 bp(s) = argmin(s′′∈Succ(s))v(s

′′) + c(s, s′′);
9 g(s) = v(bp(s)) + c(s, bp(s));
10 if (g(s) 6= v(s)) insert/update s inOPEN with key(s) as priority;
11 else if s ∈ OPEN remove s fromOPEN ;
12 procedure ComputePath()
13 whileOPEN.Minkey() < key(sstart) OR v(sstart) < g(sstart)

14 s = OPEN.Top(); remove s fromOPEN ;
15 if (v(s) > g(s))
16 v(s) = g(s); for each s′ in Pred(s) UpdateState(s′);
17 else
18 v(s) =∞; for each s′ in Pred(s)∪s UpdateState(s′);
19 procedure Main()
20 InitState(sstart); InitState(sgoal); g(sgoal) = 0;
21 OPEN = ∅; insert sgoal intoOPEN with key(sgoal) as priority;
22 forever
23 ComputePath();
24 Scan graph for changes in edge costs;
25 If any edge costs changed
26 for each directed edges (u, v) with changed edge costs
27 update the edge cost c(u, v); UpdateState(u);

Figure 1: LPA*/D* Lite (searching backwards)

D* Lite
In this section, we briefly describe three algorithms, D* Lite
(Likhachev and Koenig 2005), AD* (Likhachev et al. 2008),
and TD* Lite (Aine and Likhachev 2013b), that form the
backbone of the work presented in this paper.

3



Notations In the following, S denotes the finite set of
states of the domain. c(s, s′) denotes the cost of the edge be-
tween s and s′, if there is no such edge, then c(s, s′) = ∞.
Succ(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes the set of
all successors of s. Similarly, Pred(s) := {s′ ∈ S|s ∈
Succ(s′)} denotes the set of predecessors of s. c∗(s, s′) de-
notes optimal path cost between s to s′ and g∗(s) denotes
c∗(s, sgoal). All the algorithms presented in this work search
backward, i.e., from sgoal (root) to sstart (leaf).

D* Lite repeatedly determines a minimum-cost path from
a given start state to a given goal state in a graph that rep-
resents a planning problem while some of the edge costs
change1. It maintains two kinds of estimates of the cost of
a path from s to sgoal for each state s: g(s) and v(s). v(s)
holds the cost of the best path found from s to sgoal dur-
ing its last expansion while g(s) is computed from the v-
values of its successors (as stated in Invariant 1 below) and
thus is potentially better informed than v(s). Additionally,
it stores a backpointer bp(s) for each state s pointing to
best successor of s (if computed). D* Lite always satisfies
the following relationships: bp(sgoal) = null, g(sgoal) = 0
and ∀s ∈ S − {sgoal}, bp(s) = argmin(s′∈Succ(s))v(s

′) +

c(s, s′), g(s) = v(bp(s)) + c(s, bp(s′)) (Invariant 1).
A state s is called consistent if v(s) = g(s), otherwise

it is either overconsistent (if v(s) > g(s)) or underconsis-
tent (if v(s) < g(s)). D* Lite uses a consistent heuristic
h(sstart, s) and a priority queue to focus its search and to or-
der its cost updates efficiently. The priority queue (OPEN )
always contains the inconsistent states only (Invariant 2).
The priority (key(s)) of a state s is given by: key(s) =
[key1(s), key2(s)] where key1(s) = min(g(s), v(s)) +
h(sstart, s) and key2(s) = min(g(s), v(s)). Priorities are
compared in a lexicographic order, i.e., for two states s and
s′, key(s) ≤ key(s′) iff either key1(s) < key1(s

′) or
(key1(s) = key1(s

′) and key2(s) ≤ key2(s
′) (Invariant

3).
The pseudo code of a basic version of D* Lite is shown in

Figure 1. The algorithm starts by initializing the states and
inserting sgoal into OPEN . It then calls the ComputePath
function to obtain a minimum cost solution. ComputePath
expands the inconsistent states from OPEN in increasing
order of priority in a manner that the Invariants 1-3 are
always satisfied, until it discovers a minimum cost path to
sstart. If a state s is overconsistent, ComputePath makes it
consistent by setting v(s) = g(s) (line 16) and propagates
this information to its predecessors by updating their g-, v-
and bp- values according to Invariant 1. This may make
some s′ ∈ Pred(s) inconsistent, which are then put into
OPEN ensuring Invariant 2 (the UpdateState function). If
s is underconsistent, ComputePath forces it to become over-
consistent by setting v(s) =∞ (line 18) and propagates the
underconsistency information to its predecessors (again en-
suring Invariant 1), and selectively puts s and its predeces-
sors back to OPEN maintaining Invariant 2. If this state

1All the algorithms described in this paper are capable of han-
dling the movement of the agent along the path computed, by
updating the sstart dynamically, as discussed in (Likhachev and
Koenig 2005).

(s) is later selected for expansion as an overconsistent state,
it is made consistent as discussed before.

During the initialization, v(s) is set to∞, ∀s ∈ S. Thus,
in the first iteration there are no underconsistent states, and
the expansions performed are same as A*. After the first it-
eration, if one or more edge costs change, D* Lite updates
the g- and bp- values of the affected states by calling the
UpdateState function to maintain Invariant 1. This may in-
troduce inconsistencies between g- and v- values for some
states. These inconsistent states are then put into OPEN
to maintain Invariant 2 (in the same UpdateState function).
D* Lite then calls ComputePath again to fix these inconsis-
tencies until a new optimal path is computed.

1 procedure key(s)
2 if v(s) ≥ g(s)
3 return [g(s) + ε ∗ h(sstart, s); g(s))];
4 else
5 return [v(s) + h(sstart, s); v(s))];
6 procedure UpdateState(s)
7 if s was never visited InitState(s);
8 if (s 6= sgoal)
9 bp(s) = argmin(s′′∈Succ(s))v(s

′′) + c(s, s′′);
10 g(s) = v(bp(s)) + c(s, bp(s));
11 if (g(s) 6= v(s))

12 if (s /∈ CLOSED) insert/update s inOPEN with key(s) as priority;
13 else if (s /∈ INCONS) insert s in INCONS;
14 else
15 if (s ∈ OPEN ) remove s fromOPEN ;
16 else if (s ∈ INCONS) remove s from INCONS;
17 procedure ComputePath()
18 whileOPEN.Minkey() < key(sstart) OR v(sstart) < g(sstart)

19 s = OPEN.Top(); remove s fromOPEN ;
20 if (v(s) > g(s))
21 v(s) = g(s); for each s′ in Pred(s) UpdateState(s′);
22 else
23 v(s) =∞; for each s′ in Pred(s)∪s UpdateState(s′);
24 procedure Main()
25 InitState(sstart); InitState(sgoal); g(sgoal) = 0; ε = ε0;
26 OPEN = ∅; insert sgoal intoOPEN with key(sgoal) as priority;
27 ComputePath(); Publish solution;
28 forever
29 if changes in edge costs are detected
30 for each directed edges (u, v) with changed edge costs
31 update the edge cost c(u, v); UpdateState (u);
32 if ε > 1.0 decrease ε;
33 move states from INCONS intoOPEN ;
34 update the priorities ∀s ∈ OPEN according to key(s);
35 CLOSED = ∅;
36 ComputePath(); Publish solution;
37 if (ε = 1.0) wait for changes in edge costs;

Figure 2: Anytime D*

Anytime D*
Anytime D* (AD*) combines ARA* (Likhachev, Gordon,
and Thrun 2004) with D* Lite. It performs a series of
searches with decreasing inflation factors to iteratively gen-
erate solutions with improved bounds. If there is a change
in the environment, AD* puts locally affected inconsistent
states into OPEN and recomputes a path of bounded sub-
optimality by propagating the cost changes.

The pseudocode of a basic version of AD* is shown in
Figure 2. The Main function first sets the inflation factor to
a chosen value (ε0) and generates an initial suboptimal plan.
Then, unless changes in edge costs are detected, the Main

4



function decreases the ε bound and improves the quality of
its solution until it is guaranteed to be optimal (lines 32-36,
Figure 2). This part of AD* is an exact match with ARA*.

When changes in edge costs are detected, there is a chance
that the current solution will no longer be ε-suboptimal. AD*
updates the costs of affected states following Invariant 1
and puts the inconsistent states in OPEN (Invariant 2).
The cost change information is then propagated by expand-
ing states in OPEN , until there is no state in OPEN with
a key value less than that of sstart and sstart itself is not
underconsistent (similar to D* Lite).

The handling of keys (for inconsistent states) in AD* is
different than D* Lite. AD* uses inflated heuristic values for
the overconsistent states (line 3, Figure 2) to provide a depth-
first bias to the search. However, for the underconsistent
states, it uses uninflated heuristic values (line 5, Figure 2),
in order to guarantee that the underconsistent states correctly
propagate their new costs to the affected neighbors. By in-
corporating this dual mechanism, AD* can handle changes
in the edge costs as well as changes to the inflation factor.

1 procedure StorePath(s)
2 path(s) = ∅;
3 while (s 6= sgoal) AND (bp(s) /∈ TRUNCATED)
4 insert bp(s) in path(s); s = bp(s);
5 procedure ObtainPathfromTruncated(s)
6 if path(s) = null return;
7 else append path(s) to Path;
8 ObtainPathfromTruncated(end state of path(s))
9 procedure ObtainPath
10 s = sstart; insert s in Path;
11 while (s 6= sgoal)
12 if bp(s) ∈ TRUNCATED
13 ObtainPathfromTruncated (s); return;
14 insert bp(s) in Path; s = bp(s);
15 procedure ComputeGpi(s)
16 visited = ∅; cost = 0; s′ = s;
17 while (s′ 6= sgoal)
18 if (s′ ∈ visited) OR (bp(s′) = null)
19 cost =∞; break;
20 if (s′ ∈ TRUNCATED)
21 cost = cost+ gπ(s′); break;
22 insert s′ in visited; cost = cost+ c(s′, bp(s′)); s = bp(s′);
23 gπ(s′) = cost;

Figure 3: Auxiliary routines for TD* Lite

The suboptimality guarantee of AD* is derived from the
fact that whenever an overconsistent state (say s) is selected
for expansion, a) g(s) ≤ ε ∗ g∗(s), and b) the path con-
structed by greedily following the bp- pointers from s to
sgoal, is guaranteed to have cost ≤ g(s). Thus, when sstart
has the minimum key in OPEN and v(sstart) ≥ g(sstart),
the path from sstart to sgoal has cost ≤ ε ∗ g∗(sstart).

Truncated D* Lite
While AD* speeds up planning by using inflated heuristics
and performs an unrestricted cost propagation for replan-
ning, TD* Lite adopts a completely orthogonal approach. It
uses a consistent heuristic to do the planning but speeds up
replanning by selectively truncating the cost propagations.
TD* Lite only propagates the cost changes when it is essen-
tial to ensure the suboptimality bound and reuses the previ-
ous search values for all other states.

1 procedure key(s)
2 return [min(g(s), v(s)) + h(sstart, s);min(g(s), v(s))];
3 procedure InitState(s)
4 v(s) = g(s) = gπ(s) =∞; bp(s) = null;
5 procedure UpdateState(s)
6 if s was never visited InitState(s);
7 if (s 6= sgoal)
8 bp(s) = argmin(s′′∈Succ(s))v(s

′′) + c(s, s′′);
9 g(s) = v(bp(s)) + c(s, bp(s));
10 if (g(s) 6= v(s))

11 if (s /∈ TRUNCATED) insert/update s inOPEN with priority key(s);
12 else if s ∈ OPEN remove s fromOPEN ;
13 procedure ComputePath(ε)
14 whileOPEN.Minkey() < key(sstart) OR v(sstart) < g(sstart)

15 s = OPEN.Top();
16 ComputeGpi(sstart);
17 if (gπ(sstart) ≤ ε ∗ (min(g(s), v(s)) + h(sstart, s))) return;
18 remove s fromOPEN ;
19 if (v(s) > g(s))
20 v(s) = g(s); for each s′ in Pred(s) UpdateState (s′);
21 else
22 ComputeGpi(s);
23 if (gπ(s) + h(sstart, s) ≤ ε ∗ (v(s) + h(sstart, s)))
24 StorePath(s); insert s in TRUNCATED;
25 else
26 v(s) =∞; for each s′ in Pred(s)∪s UpdateState(s′);
27 procedure Main(ε)
28 InitState(sstart); InitState(sgoal); g(sgoal) = 0;
29 OPEN = TRUNCATED = ∅;
30 insert sgoal intoOPEN with key(sgoal) as priority;
31 forever
32 ComputePath(ε);
33 Scan graph for changes in edge costs;
34 If any edge costs changed
35 CHANGED = TRUNCATED; TRUNCATED = ∅;
36 for each directed edges (u, v) with changed edge costs
37 update the edge cost c(u, v); insert u in CHANGED;
38 for each v ∈ CHANGED UpdateState(v);

Figure 4: TD* Lite

In addition to g- and v- values, TD* Lite computes an-
other goal distance estimate for each state s, called gπ(s).
gπ(s) denotes cost of the path from s to sgoal computed by
following the current bp- pointers.

TD* Lite uses these gπ- values in two ways, i) for the un-
derconsistent states, gπ values are used to decide whether a
state has already discovered a path through it that satisfies
the chosen suboptimality bound (ε) and if so, then that state
is truncated (removed fromOPEN without expansion), and
ii) before each expansion, gπ(sstart) is computed to decide
whether the current path from sstart to sgoal can be im-
proved by more than the ε-factor by continuing the search,
and if not, then the search iteration is terminated. Formally,
the truncation rules for TD* Lite are described by the fol-
lowing statements.

Rule 1. An underconsistent state s having key(s) ≤
key(u),∀u ∈ OPEN is truncated if gπ(s)+h(sstart, s) ≤
ε ∗ (v(s) + h(sstart, s)).

Rule 2. A state s having key(s) ≤ key(u),∀u ∈ OPEN
is truncated if ε ∗ (min(v(s), g(s)) + h(sstart, s)) ≥
gπ(sstart). Also, if any state s is truncated using Rule 2,
all states s′ ∈ OPEN are truncated.

A basic version of the TD* Lite algorithm is presented
in Figures 3 and 4. The Main function computes ε-optimal

5



(a) Original Graph (b) After cost changes (c) Wrong truncation (d) Two step policy (e) Correct cost propagation

Figure 5: Truncation with inflated heuristics

solutions by repeatedly calling ComputePath. After each
ComputePath invocation, the states in TRUNCATED are
moved to CHANGED (line 35, Figure 4). The states
that are affected by the cost changes are also put in
CHANGED (line 37, Figure 4). For all these states the
g- and bp- values are recomputed following Invariant 1 and
the resulting inconsistent states are put back to OPEN en-
suring Invariant 2. As the key computation remains exactly
the same as D* Lite, Invariant 3 is always maintained.

The ComputePath function uses the gπ- values to apply
the truncation rules. Before each expansion, gπ(sstart) (line
16, Figure 4) is computed to check whether Rule 2 can
be applied. If the check at line 17, Figure 4 is satisfied,
TD* Lite terminates with solution cost = gπ(sstart). Oth-
erwise, it continues to expand states in the increasing or-
der of their priorities. If the state s selected for expansion
is underconsistent, gπ(s) is computed (line 22, Figure 4) to
check whether Rule 1 can be applied. If the check at line 23,
Figure 4 is satisfied, ComputePath truncates s (puts s into
TRUNCATED) after storing the current path. Apart from
the application of truncation rules, the expansion of states is
similar to D* Lite, the only difference being that a truncated
state is never reinserted into OPEN during the current iter-
ation (line 11, Figure 4).

The suboptimality guarantee of TD* Lite is derived
from the fact that whenever a state s has key(s) ≤
OPEN.Minkey(), a) its min(g(s), v(s)) ≤ g∗(s), and b)
if v(s) ≥ g(s) or s ∈ TRUNCATED, the path computed
by the ObtainPath routine has cost ≤ ε ∗min(g(s), v(s)) +
(ε− 1) ∗ h(sstart, s). As h(sstart, sstart) = 0, when Com-
putePath exits, the path cost from the sstart to sgoal returned
by the ObtainPath routine is ≤ ε ∗ g∗(sstart).

Anytime Truncated D*
In this section, we formally describe the Anytime Truncated
D* (ATD*) algorithm and discuss its properties. We start by
explaining new truncation rules in comparison to the rules
used in TD* Lite.

Truncation Rules with Inflated Heuristics
As discussed earlier, AD* and TD* Lite use completely
orthogonal approaches to obtain bounded suboptimal so-
lutions. For AD*, the path estimates are guaranteed to be
within the chosen bound of g∗ while the actual path cost is
guaranteed to be less than or equal to the estimate, whereas
for TD* Lite, the estimates are always a lower bound on g∗
while the actual path costs lie within the chosen bound of
this estimate. Thus, it may seem that we can combine them

seamlessly using two suboptimality bounds (say ε1 and ε2).
If the path estimates are within ε1 bound of the optimal cost
and the actual path costs are within ε2 bound of the path es-
timates, then we can guarantee that the final path cost lies
within ε1 ∗ ε2 of the optimal cost.

However, this approach only works for the truncation of
the overconsistent states (states for which v(s) > g(s)) and
not for the truncation of the underconsistent states. This is
due the fact that in AD*, heuristic values for the overcon-
sistent states are inflated whereas an underconsistent state
uses an uninflated heuristic. Therefore, when an overconsis-
tent s1 is selected for expansion (in AD*) we have g(s1) ≤
ε1∗g∗(s1), but when an underconsistent state (s2) is selected
for expansion, there is no guarantee that v(s2) ≤ ε1∗g∗(s2).

In Figure 5, we present an example of this phenomenon.
After the first iteration, a) the path to C through B degrades
and C becomes underconsistent, and b) the path to A im-
proves making A overconsistent (Figure 5b). In OPEN , C
lies above A, as A uses an inflated heuristic and C does not,
although there is a better path to C through A. Now, if C is
truncated (say by Rule 1), information about the improved
path through A will not be propagated to G. This may cause
a bound violation v(C) > ε1 ∗ g∗(C) (Figure 5c) 2.

Therefore, we can not the guarantee the suboptimality
bound ε1 ∗ ε2, if we combine the TD* Lite truncation rules
with AD*, due the differential handling of keys in AD*. On
the other hand, if we inflate the heuristic functions for both
overconsistent and underconsistent states, then AD* is no
longer guaranteed to be either complete or bounded subop-
timal (Likhachev and Koenig 2005). To overcome this prob-
lem, we propose a two step method for truncating under-
consistent states in ATD*. In the following, we describe this
method by highlighting the difference between the new trun-
cation rules and the corresponding TD* Lite rules.

Truncation Rule 1: As noted earlier, Rule 1 is applicable
for the underconsistent states only. TD* Lite truncates the
cost propagation for an underconsistent state s (selected for
expansion), if gπ(s)+h(sstart, s) ≤ ε∗(v(s)+h(sstart, s)).
In ATD*, when an underconsistent state s is selected for
expansion for the first time (in a ComputePath iteration),
we compute its gπ- value and check whether gπ(s) +
h(sstart, s) ≤ ε2 ∗ (v(s)+h(sstart, s)) similar to TD* Lite.
However, we do not truncate s immediately if this check is
true. Instead, we mark s as a state that can be potentially

2This does not violate the suboptimality guarantee of AD*, as
AD* forces an underconsistent state (s) to become overconsistent
making v(s) = ∞, and if s is later expanded as an overconsistent
state, g(s) ≤ ε1 ∗ g∗(s) is guaranteed.

6



truncated (we set a variable mark(s) = true), postpone its
cost propagation, and update its position inOPEN by alter-
ing its key value from key(s) = [v(s)+h(sstart, s); v(s)] to
key(s) = [v(s) + ε1 ∗ h(sstart, s); v(s)] (Step 1). If an un-
derconsistent state smarked earlier is selected for expansion
again (i.e., selected for expansion with the inflated heuristic
key), we truncate s (Step 2).

Using this two step policy, on one hand we ensure that
we do not propagate cost changes for an underconsistent
state (s) when it has already discovered a good enough path
(depending on ε2), on other hand, we cover for the fact
that at this point v(s) may be ≥ ε1 ∗ g∗(s). The updated
key(s) guarantees that if later s is selected for expansion
as underconsistent state then v(s) ≤ ε1 ∗ g∗(s) (otherwise
v(s) > g(s)), and thus can be truncated without violating
the bounds.

This behavior is depicted in Figures 5d and 5e. After C
is marked for truncation, its position in OPEN is updated
using an inflated key (Figure 5d). As there is as better path to
C through A, expansion of A will pass this information by
updating g(C), so that g(C) ≤ ε1 ∗ g∗(C). Now, if v(C) >
ε1 ∗ g∗(C), this will convert C into an overconsistent state
(v(C) > g(C)) ensuring that this information will propagate
to G (Figure 5e). Below, we formally state Truncation Rule
1 for ATD*.

ATD* Rule 1. An underconsistent state s having key(s) ≤
key(u),∀u ∈ OPEN and mark(s) = false is marked
for truncation if gπ(s) + h(sstart, s) ≤ ε2 ∗ (v(s) +
h(sstart, s)), and its key value is changed to key(s) =
[v(s) + ε1 ∗ h(sstart, s); v(s)]. An underconsistent state s
having key(s) ≤ key(u),∀u ∈ OPEN and mark(s) =
true is truncated.

Truncation Rule 2: Rule 2 (for TD* Lite) is applicable
for both underconsistent and overconsistent states. In ATD*,
we apply this rule in unchanged manner for an overconsis-
tent state. However, for an underconsistent state, we apply
Rule 2 only when it has earlier been marked as a state that
can be potentially truncated (i.e., it has been selected for ex-
pansion with the modified key), as otherwise the bounds can
be violated. For ATD*, Rule 2 is formulated in the following
statement:

ATD* Rule 2. A state s having key(s) ≤ key(u),∀u ∈
OPEN is truncated if ε2∗key1(s) ≥ gπ(sgoal) and if either
v(s) > g(s) or mark(s) = true. Also, if any state s is
truncated using Rule 2, all states s′ ∈ OPEN are truncated
as ∀s′ ∈ OPEN, key1(s′) ≥ key1(s).

ATD* Algorithm
The pseudocode for ATD* is included in Figures 6 and 7.
The auxiliary routines used in ATD* (ComputeGpi, Obtain-
Path, and others) are the same as described in Figure 3. The
Main function for ATD* starts with initializing the variables
and the suboptimality bounds (lines 2-4, Figure 7). At the
start, relatively high values are chosen for both ε1 and ε2,
so the first search can converge quickly. The suboptimal-
ity bounds are then iteratively reduced (line 24, Figure 7)
to search for better quality solutions (as in AD*).

1 procedure key(s)
2 if v(s) ≥ g(s) return [g(s) + ε1 ∗ h(sstart, s); g(s))];
3 else
4 if (mark(s) = true) return [v(s) + ε1 ∗ h(sstart, s); v(s))];
5 else return [v(s) + h(sstart, s); v(s))];
6 procedure InitState(s)
7 v(s) = g(s) = gπ(s) =∞; bp(s) = null;mark(s) = false;
8 procedure UpdateSetMemberShip(s)
9 if (g(s) 6= v(s))

10 if (s /∈ TRUNCATED)
11 if (s /∈ CLOSED)
12 insert/update s inOPEN with key(s) as priority;
13 else if (s /∈ INCONS) insert s in INCONS;
14 else
15 if (s ∈ OPEN ) remove s fromOPEN ;
16 else if (s ∈ INCONS) remove s from INCONS;
17 procedure ComputePath()
18 whileOPEN.Minkey() < key(sstart) OR v(sstart) < g(sstart)

19 s = OPEN.Top();
20 if (v(s) > g(s))
21 ifmark(s) = true

22 mark(s) = false; remove s fromMARKED;
23 ComputeGpi(sstart);
24 if (gπ(sstart) ≤ ε2 ∗ (g(s) + h(sstart, s))) return;
25 else
26 remove s fromOPEN ;
27 v(s) = g(s);
28 insert s in CLOSED;
29 for each s′ in Pred(s)
30 if s′ was never visited InitState(s′);
31 if g(s′) > g(s) + c(s′, s)

32 g(s′) = g(s) + c(s′, s); bp(s′) = s;
33 UpdateSetMembership(s′);
34 else
35 ifmark(s) = true

36 ComputeGpi(sstart);
37 if (gπ(sstart) ≤ ε2 ∗ (v(s) + h(sstart, s))) return;
38 else
39 remove s fromMARKED;mark(s) = false;
40 insert s in TRUNCATED;
41 else
42 ComputeGpi(s);
43 if (gπ(s) + h(sstart, s) ≤ ε2 ∗ (v(s) + h(sstart, s)))
44 StorePath(s);mark(s) = true; insert s inMARKED;
45 UpdateSetMembership(s);
46 else
47 v(s) =∞; UpdateSetMembership(s);
48 for each s′ in Pred(s)
49 if s′ was never visited InitState(s′);
50 if bp(s′) = s

51 bp(s′) = argmin(s′′∈Succ(s′))v(s
′′) + c(s′, s′′);

52 g(s′) = v(bp(s′)) + c(s′, bp(s′));
53 UpdateSetMembership(s′);

Figure 6: ComputePath routine for ATD*

After each call of ComputePath, the states in the lists
MARKED, TRUNCATED and INCONS need to be
processed in an efficient manner to ensure minimal reexpan-
sions. If the edge costs do not change and only the subop-
timality bounds change before a ComputePath call (check
at line 8, Figure 7 returns false), we can reuse the stored
paths for truncated states if they still satisfy the bound con-
ditions (lines 27 and 32, Figure 7). These states (that sat-
isfy the bound) are therefore put back to INCONS with
mark(s) = true. For others, the stored paths are dis-
carded and they are put back to INCONS withmark(s) =
false. All the states in INCONS are then merged with
OPEN . If the edge costs of the graph change before a Com-

7



putePath call (line 8, Figure 7), the states in MARKED
and TRUNCATED need to be reevaluated as their old
estimates may no longer remain correct. Therefore, after
each cost change, the states in TRUNCATED are put to
CHANGED and the states in MARKED are discarded
(as MARKED ⊂ OPEN ). The inconsistent states in
CHANGED are put back to OPEN after their costs are
updated, maintaining Invariant 1 and Invariant 2 (lines 18-
22, Figure 7).

1 procedure Main()
2 InitState(sstart); InitState(sgoal); g(sgoal) = 0;
3 OPEN = CLOSED = TRUNCATED = INCONS =

MARKED = ∅;
4 InitSuboptimalityBounds();
5 insert sgoal intoOPEN with key(sgoal) as priority;
6 ComputePath(); ObtainPath and publish solution;
7 forever
8 if changes in edge costs are detected
9 CHANGED = ∅;
10 for each state s ∈ TRUNCATED
11 remove s from TRUNCATED;mark(s) = false;
12 insert s in CHANGED;
13 for each state s ∈MARKED

14 remove s fromMARKED;mark(s) = false;
15 TRUNCATED = MARKED = ∅;
16 for each directed edges (u, v) with changed edge costs
17 update the edge cost c(u, v); insert u in CHANGED;
18 for each v ∈ CHANGED
19 if (v 6= sgoal) AND (v was visited before)
20 bp(v) = argmin(s′∈Succ(v))v(s

′) + c(v, s′);
21 g(v) = v(bp(v)) + c(v, bp(v));
22 UpdateSetMembership(v);
23 if ε1 > 1.0 OR ε2 > 1.0

24 UpdateSuboptimalityBounds();
25 ifMARKED 6= ∅
26 for each s ∈MARKED

27 if (gπ(s) + h(sstart, s) ≥ ε2 ∗ (v(s) + h(sstart, s)))
28 remove s fromMARKED;mark(s) = false;
29 if TRUNCATED 6= ∅
30 for each s ∈ TRUNCATED
31 remove s from TRUNCATED; insert s in INCONS;
32 if (gπ(s) + h(sstart, s) ≤ ε2 ∗ (v(s) + h(sstart, s)))
33 insert s inMARKED;mark(s) = true;
34 else
35 mark(s) = false;
36 move states from INCONS intoOPEN ;
37 update the priorities ∀s ∈ OPEN according to key(s);
38 CLOSED = TRUNCATED = ∅;
39 ComputePath(); ObtainPath and publish solution;
40 if ε1 = 1.0 AND ε2 = 1.0

41 wait for changes in edge costs;

Figure 7: Main function for ATD*

The ComputePath function uses the gπ- values to ap-
ply the ATD* truncation rules. For an overconsistent state
s selected for expansion, gπ(sstart) is computed to check
whether Rule 2 can be applied. If the check at line 24,
Figure 6 is satisfied, ATD* terminates with solution cost
= gπ(sstart). If an underconsistent state s is selected for
expansion for the first time (mark(s) = false), gπ(s) is
computed (line 42, Figure 6) to check whether Rule 1 can be
applied. If the check at line 43, Figure 6 is satisfied, Com-
putePath sets mark(s) = true and updates is position in
OPEN using the new key value (as computed in line 4,
Figure 6). If a marked state s is selected for expansion with

v(s) < g(s) (underconsistent), ComputePath either exits (if
Rule 2 can be applied) or it truncates s (lines 35-40, Figure
6). On the other hand, if a marked state s is selected for ex-
pansion with v(s) > g(s), it is removed from MARKED
and mark(s) is set to false before s is processed as a reg-
ular overconsistent state (line 22, Figure 6). If ComputePath
terminates at line 24 or line 37 (Figure 6), a finite cost path
from the sstart to sgoal having cost≤ ε1∗ε2∗g∗(sstart) can
be computed by calling the ObtainPath routine, otherwise no
such path exists.

Theoretical Properties
In (Aine and Likhachev 2013a), we prove a number of prop-
erties of Anytime Truncated D*. Here, we state the most im-
portant of these theorems.
Theorem 1. When the ComputePath function exits the fol-
lowing holds

1. For any state s with (c∗(sstart, s) < ∞
∧
v(s) ≥

g(s)
∧
key(s) ≤ key(u),∀u ∈ OPEN), g(s) ≤ ε1 ∗

g∗(s) and gπ(s)+h(sstart, s) ≤ ε2∗(g(s)+h(sstart, s)).
2. For any state s with (c∗(sstart, s) < ∞

∧
v(s) <

g(s)
∧
key(s) ≤ key(u),∀u ∈ OPEN) and s ∈

TRUNCATED, v(s) ≤ ε1 ∗ g∗(s) and gπ(s) +
h(sstart, s) ≤ ε2 ∗ (v(s) + h(sstart, s)).

3. The cost of the path from sstart to sgoal obtained using the
ObtainPath routine is no larger than ε1 ∗ ε2 ∗ g∗(sstart).
Theorem 1 states the bounded suboptimality of ATD*

(bound = ε1 ∗ ε2). The suboptimality guarantee stems from
the fact that using the two step truncation approach, ATD*
ensures that whenever a state is expanded in an overconsis-
tent manner or truncated, we have a) the minimum of the g-
and v- value remains within ε1 bound on the optimal path
cost, and b) the paths stored for truncated states ensure that
the actual path costs are never larger than the lower bound
estimate by more than the ε2 factor. Theorem 2 shows that
ATD* retains the efficiency properties of AD*.
Theorem 2. No state is expanded more than twice during
the execution of the ComputePath function.

Experimental Results
We evaluated ATD* comparing it to ARA* (Likhachev, Gor-
don, and Thrun 2004), AD* (Likhachev et al. 2008) and TD*
Lite (Aine and Likhachev 2013b) for 2D and 3D path plan-
ning domains. All the experiments were performed on an
Intel i7− 3770 (3.40GHz) PC with 16GB RAM.

2D Path Planning : For this domain, the environments
were randomly generated 5000 × 5000 16-connected grids
with 10% of the cells blocked. We used Euclidean distances
as the heuristics. We performed two types of experiments,
for the first experiment (known terrain) the map was given
as input to the robot. We randomly changed the traversabil-
ity of 1% of cells from blocked to unblocked and an equal
number of cells from unblocked to blocked after 10 moves
made by the robot, forcing it to replan. This procedure was
iterated until the robot reached the goal. For the second ex-
periment, the robot started with an empty map (all cells are
traversable) and dynamically updated the traversability of

8



the cells sensing a 100 × 100 grid around its current posi-
tion. If the traversability information changed, it replanned.

In Table 1 we include the speedup results for AD*, TD*
Lite and ATD* over ARA* (i.e., the total planning time
taken by ARA* divided by the total planning time taken
by a given given), when searching for an ε-bounded so-
lution. As ATD* uses two suboptimality bounds, we dis-
tributed the original bound so that ε = ε1 ∗ ε2. We set
ε2 = min(1.10,

√
ε) and ε1 = ε/ε2.

Suboptimality Known Environment Unknown Environment
Bound AD* TD* Lite ATD* AD* TD* Lite ATD*

5.0 0.81 0.46 0.92 3.13 0.28 3.41
2.0 0.86 0.52 0.91 1.58 0.45 1.55
1.5 1.21 0.82 1.12 1.45 0.78 2.32
1.1 1.47 1.15 1.51 5.54 4.66 5.34
1.05 1.66 3.58 3.20 10.63 13.26 13.07
1.01 2.51 10.28 9.03 17.08 24.62 23.14

Table 1: Average speedup vs ARA*, for AD*, TD* Lite, ATD*
with different ε choices.

The results show that for high ε values both AD* and
ARA* performs better than TD* Lite, as TD* Lite does not
use an inflated heuristic. On the other hand, for low ε values,
TD* Lite performs much better than AD*/ARA*, as it can
reuse the previously generated paths more effectively. ATD*
shows better consistency compared to both AD* and TD*
Lite. When searching with high ε values, its performance
is close to AD*, while it can retain the efficacy of TD* Lite
when searching for close-to-optimal solutions. For unknown
terrains, incremental searches generally perform better (than
ARA*), as the cost changes happen close to the agent, and
thus large parts of the search tree can be reused.

Environment ARA* AD* ATD*
ε Cost ε Cost ε Cost

Known 1.178 1.051 1.082 1.008 1.021 1.003
Unknown 1.058 1.008 1.025 1.006 1.016 1.006

Table 2: Comparison between ARA*, AD* and ATD* in anytime
mode. Every planner was given 0.5 seconds to plan per episode.

We also ran the planners in an anytime mode where each
planner was given 0.5 seconds per planning episode. All
planners started with ε = 5.0, which was reduced by 0.2
after each iteration. When the environment changed, if the
last satisfied ε ≤ 2.0, we set ε = 2.0 and replanned, oth-
erwise the last ε value was retained. For ATD*, ε2 was set
to 1.1 at the start of each replanning episode and then itera-
tively decreased in the following way: if 1.2 < ε ≤ 2.0, we
set ε2 = 1.05; if 1.0 < ε ≤ 1.2, we set ε2 = 1.01; other-
wise ε2 = 1.0. In Table 2, we present the average ε-bounds
satisfied and average path costs (over optimal path costs ob-
tained using A*) for both type of environments. The results
show the potential of ATD* in producing better bounds as
well as better quality paths, when run in anytime mode, as it
can effectively use both inflation and truncation.

3D Path Planning : For the 3D planning, we modeled the
environment as a planar world and a polygonal robot with
three degrees of freedom: x, y, and θ (heading). The search

objective is to plan smooth paths for non-holonomic robots,
i.e., the paths must satisfy the minimum turning radius con-
straints. The actions used to get successors for states are a
set of motion primitives (short kinematically feasible motion
sequences) (Likhachev and Ferguson 2009). Heuristics were
computed by running a 16-connected 2D Dijkstra search.
For 3D planning, we performed similar experiments as de-
scribed earlier (for 2D), but with maps of size 1000× 1000.
For the unknown environments, the sensor range was set to
2-times the length of the largest motion primitive.

Suboptimality Known Environment Unknown Environment
Bound AD* TD* Lite ATD* AD* TD* Lite ATD*

5.0 0.53 0.09 2.15 1.18 0.14 2.33
2.0 0.87 0.18 3.73 2.48 0.57 9.81
1.5 1.09 1.30 8.02 1.84 2.11 9.20
1.1 1.35 2.50 3.75 2.39 2.40 11.34
1.05 2.71 6.66 7.62 4.37 5.95 7.19
1.01 1.41 4.48 3.84 3.83 7.37 5.76

Table 3: Average speedup vs ARA*, for AD*, TD* Lite, ATD*
with different ε choices.

In Table 3 we include the results comparing ATD* with
ARA*, AD* and TD* Lite when searching for a fixed ε-
bound, and in Table 4 we present the results for the any-
time runs where each planner was given 2 seconds to plan
per episode. Overall, the results show the same trend as
found for 2D. However, for this domain, ATD* shows even
more improvement over AD*/ARA*/TD* Lite in most of
the cases, as the environments are more complex and thus
provide greater opportunities to combine truncation with
heuristic inflation.

Environment ARA* AD* ATD*
ε Cost ε Cost ε Cost

Known 1.631 1.147 1.492 1.066 1.121 1.048
Unknown 1.558 1.091 1.269 1.037 1.056 1.020

Table 4: Comparison between ARA*, AD* and ATD* in anytime
mode. Every planner was given 2.0 seconds to plan per episode.

Overall, the results show that incremental search is useful
when planning a path requires substantial effort (if searching
for close-to-optimal solutions or if the search space has large
local minima), otherwise (when planning is relatively easy),
the overhead of replanning can become prohibitive, making
ARA* a better choice. Among incremental planners, AD* is
better in quickly finding suboptimal paths whereas TD* Lite
is better in reusing complete/partial paths from earlier plans.
ATD* can simultaneously benefit from both these strategies
and thus can outperform both AD* and TD* Lite.

Conclusions
We have presented Anytime Truncated D*, an anytime in-
cremental search algorithm that combines heuristic inflation
(for planning) with truncation (for replanning). Experimen-
tal results on 2D and 3D path planning domains demonstrate
that ATD* provides more flexibility and efficacy over AD*
(current state-of-the-art), and thus can be a valuable tool
when planning for complex dynamic systems.

9



References
Aine, S., and Likhachev, M. 2013a. Anytime Truncated D* :
The Proofs. Technical Report TR-13-08, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA.
Aine, S., and Likhachev, M. 2013b. Truncated Incremental
Search : Faster Replanning by Exploiting Suboptimality. In
To appear in AAAI. AAAI Press.
Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA* - A
window constrained anytime heuristic search algorithm. In
Veloso (2007), 2250–2255.
Ferguson, D., and Stentz, A. 2006. Using interpolation to
improve path planning: The field D* algorithm. J. Field
Robotics 23(2):79–101.
Koenig, S., and Likhachev, M. 2005. Adaptive A*. In
Dignum, F.; Dignum, V.; Koenig, S.; Kraus, S.; Singh, M. P.;
and Wooldridge, M., eds., AAMAS, 1311–1312. ACM.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
Planning A*. Artif. Intell. 155(1-2):93–146.
Likhachev, M., and Ferguson, D. 2009. Planning Long Dy-
namically Feasible Maneuvers for Autonomous Vehicles. I.
J. Robotic Res. 28(8):933–945.
Likhachev, M., and Koenig, S. 2005. A Generalized Frame-
work for Lifelong Planning A* Search. In Biundo, S.; My-
ers, K. L.; and Rajan, K., eds., ICAPS, 99–108. AAAI.
Likhachev, M.; Ferguson, D.; Gordon, G. J.; Stentz, A.; and
Thrun, S. 2008. Anytime search in dynamic graphs. Artif.
Intell. 172(14):1613–1643.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems 16. Cam-
bridge, MA: MIT Press.
Pohl, I. 1970. Heuristic Search Viewed as Path Finding in a
Graph. Artif. Intell. 1(3):193–204.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy
of forgetting: Faster anytime search via restarting. In Braf-
man, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A., eds.,
ICAPS, 137–144. AAAI.
Stentz, A. 1995. The Focussed D* Algorithm for Real-Time
Replanning. In IJCAI, 1652–1659. Morgan Kaufmann.
Sun, X., and Koenig, S. 2007. The Fringe-Saving A* Search
Algorithm - A Feasibility Study. In Veloso (2007), 2391–
2397.
Sun, X.; Yeoh, W.; Uras, T.; and Koenig, S. 2012. Incre-
mental ARA*: An Incremental Anytime Search Algorithm
for Moving-Target Search. In McCluskey, L.; Williams, B.;
Silva, J. R.; and Bonet, B., eds., ICAPS. AAAI.
Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized Adap-
tive A*. In Padgham, L.; Parkes, D. C.; Müller, J. P.; and
Parsons, S., eds., AAMAS (1), 469–476. IFAAMAS.
Sun, X.; Yeoh, W.; and Koenig, S. 2010. Generalized
Fringe-Retrieving A*: faster moving target search on state
lattices. In van der Hoek, W.; Kaminka, G. A.; Lespérance,
Y.; Luck, M.; and Sen, S., eds., AAMAS, 1081–1088. IFAA-
MAS.

Thayer, J. T.; Benton, J.; and Helmert, M. 2012. Better
parameter-free anytime search by minimizing time between
solutions. In Borrajo, D.; Felner, A.; Korf, R. E.; Likhachev,
M.; López, C. L.; Ruml, W.; and Sturtevant, N. R., eds.,
SOCS. AAAI Press.
Trovato, K. I., and Dorst, L. 2002. Differential A*.
IEEE Transactions on Knowledge and Data Engineering
14(6):1218–1229.
Veloso, M. M., ed. 2007. Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2007, Hyderabad, India, January 6-12, 2007. Morgan Kauf-
mann.
Zhou, R., and Hansen, E. A. 2002. Multiple sequence align-
ment using anytime a*. In Proceedings of 18th National
Conference on Artificial Intelligence AAAI’2002, 975–976.
Zhou, R., and Hansen, E. A. 2005. Beam-stack search:
Integrating backtracking with beam search. In Proceedings
of the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05), 90–98.

10




