16-782

Planning & Decision-making in Robotics

Planning Representations: Probabilistic Roadmaps for Continuous Spaces

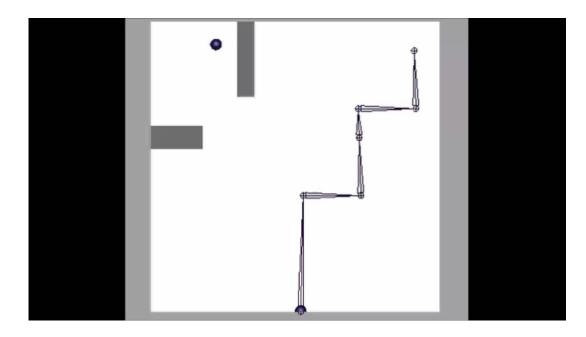
Maxim Likhachev

Robotics Institute

Carnegie Mellon University

• Planning for manipulation

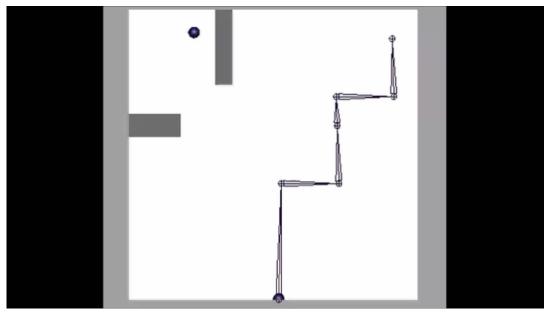
• Planning for manipulation



- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}

Constraints?

- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}
 - Constraints:
 - All joint angles should be within corresponding joint limits
 - No collisions with obstacles and no self-collisions

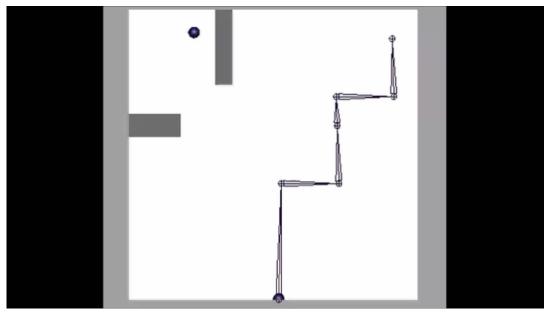


- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}

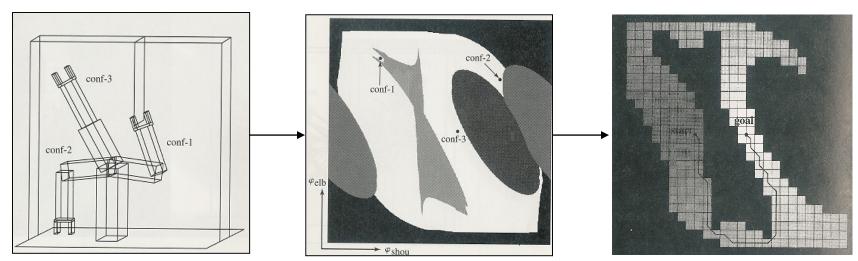
Can we use a grid-based

representation for planning?

- Constraints:
 - All joint angles should be within corresponding joint limits
 - No collisions with obstacles and no self-collisions



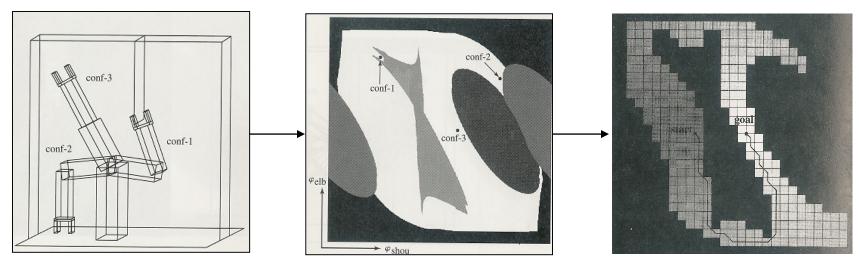
- Resolution complete planning (e.g. Grid-based):
 - generate a systematic (uniform) representation (graph) of a free C-space (C_{free})
 - search the generated representation for a solution guaranteeing to find it if one exists (completeness)
 - can interleave the construction of the representation with the search (i.e., construct only what is necessary)



the example above is borrowed from "AI: A Modern Approach" by S. RusselL & P. Norvig

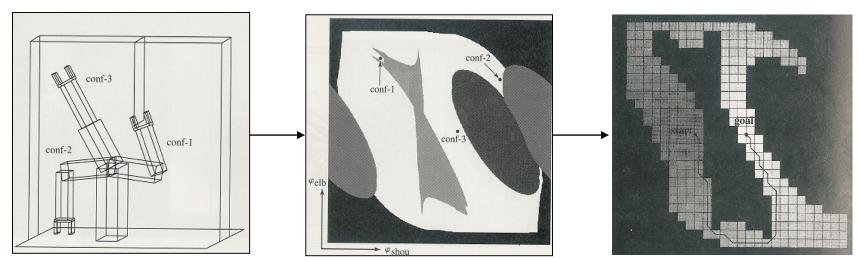
• Resolution complete planning (e.g. Grid-based):

complete and provide sub-optimality bounds on the solution



the example above is borrowed from "AI: A Modern Approach" by S. RusselL & P. Norvig

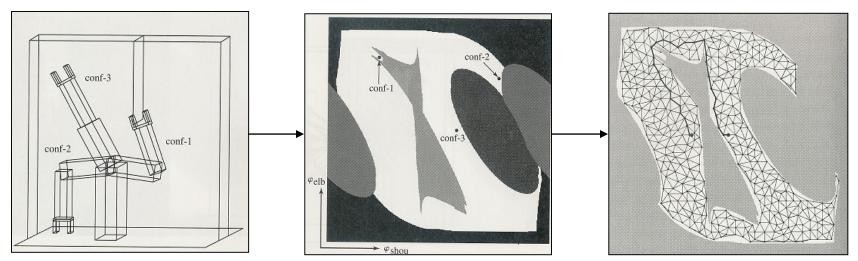
- Resolution complete planning (e.g. Grid-based):
 - complete and provide sub-optimality bounds on the solution
 - can get computationally very expensive, especially in high-D



the example above is borrowed from "AI: A Modern Approach" by S. RusselL & P. Norvig

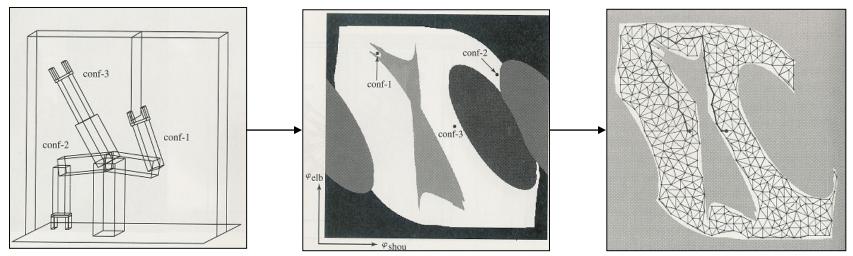
• Sampling-based planning:

Main observation: The space is continuous and rather benign!



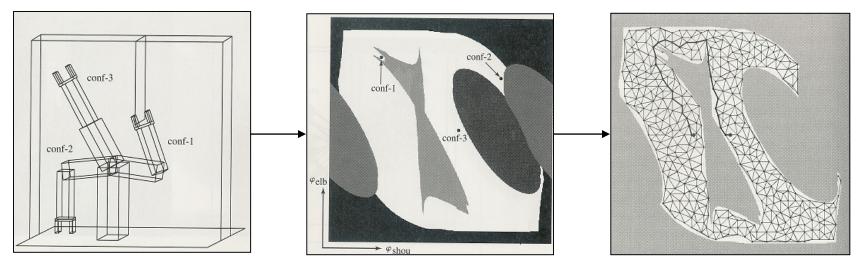
the example above is borrowed from "AI: A Modern Approach" by S. RusselL & P. Norvig

- Sampling-based planning:
 - generate a sparse (sample-based) representation (graph) of a free C-space (C_{free})
 - search the generated representation for a solution



the example above is borrowed from "AI: A Modern Approach" by S. RusselL & P. Norvig

- Sampling-based planning:
 - provide **probabilistic** completeness guarantees
 - guaranteed to find a solution, if one exists, but only in the limit of the number of samples (that is, only as the number of samples approaches infinity)
 - well-suited for high-dimensional planning

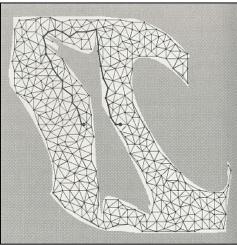


the example above is borrowed from "AI: A Modern Approach" by S. RusselL & P. Norvig

Main Questions in Sampling-based Planning

- How to select samples to construct a "good" graph
- How to search the graph
- Can we interleave these steps

- **Step 1. Preprocessing Phase:** Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
- **Step 2. Query Phase:** Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G



- **Step 1. Preprocessing Phase:** Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
- **Step 2. Query Phase:** Given a start configuration q_I and goal configuration q_G , connect them to the roadmap G using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G

- **Step 1. Preprocessing Phase:** Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
- **Step 2. Query Phase:** Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G

Can be as simple as a straight line (interpolation) connecting start (or goal) configuration to the nearest vertex in the roadmap

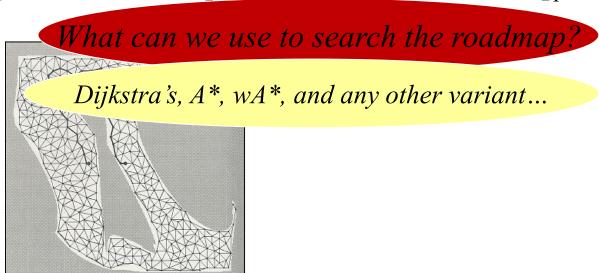
Any ideas for the local planner?

- **Step 1. Preprocessing Phase:** Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
- **Step 2. Query Phase:** Given a start configuration q_I and goal configuration q_G , connect them to the roadmap G using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G

- **Step 1. Preprocessing Phase:** Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
- **Step 2. Query Phase:** Given a start configuration q_I and goal configuration q_G , connect them to the roadmap G using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G



Step 1: Preprocessing Phase.

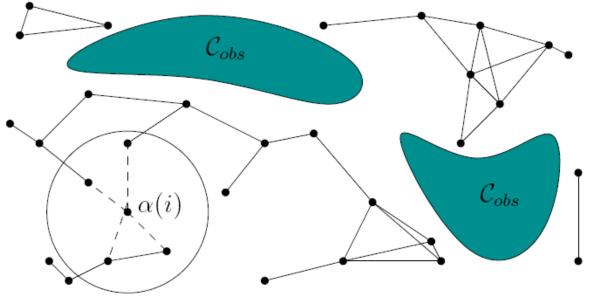
BUILD_ROADMAP

- 1 $\mathcal{G}.init(); i \leftarrow 0;$
- 2 while i < N

6

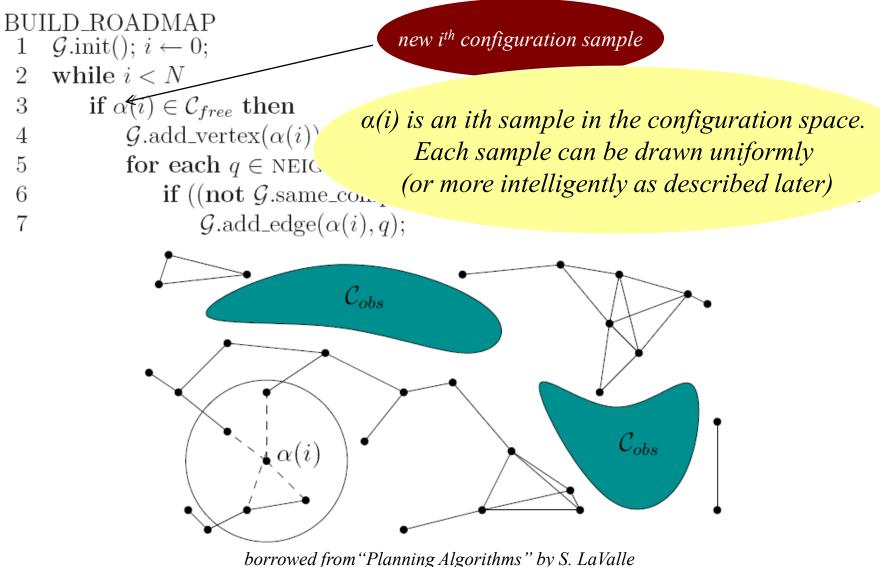
7

- 3 if $\alpha(i) \in \mathcal{C}_{free}$ then
- 4 $\mathcal{G}.add_vertex(\alpha(i)); i \leftarrow i+1;$
- 5 for each $q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G})$
 - if $((\text{not } \mathcal{G}.\text{same_component}(\alpha(i), q))$ and $\text{CONNECT}(\alpha(i), q))$ then $\mathcal{G}.\text{add_edge}(\alpha(i), q);$

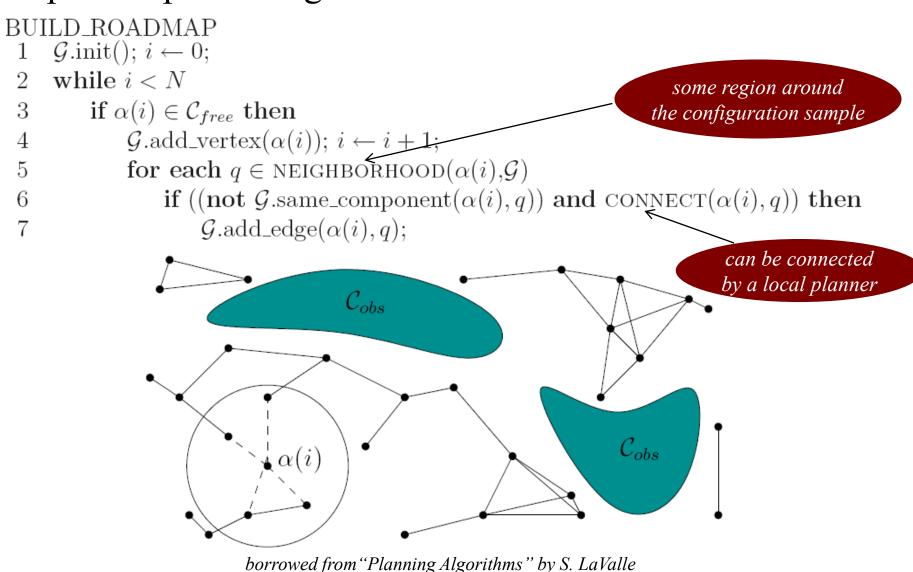


borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

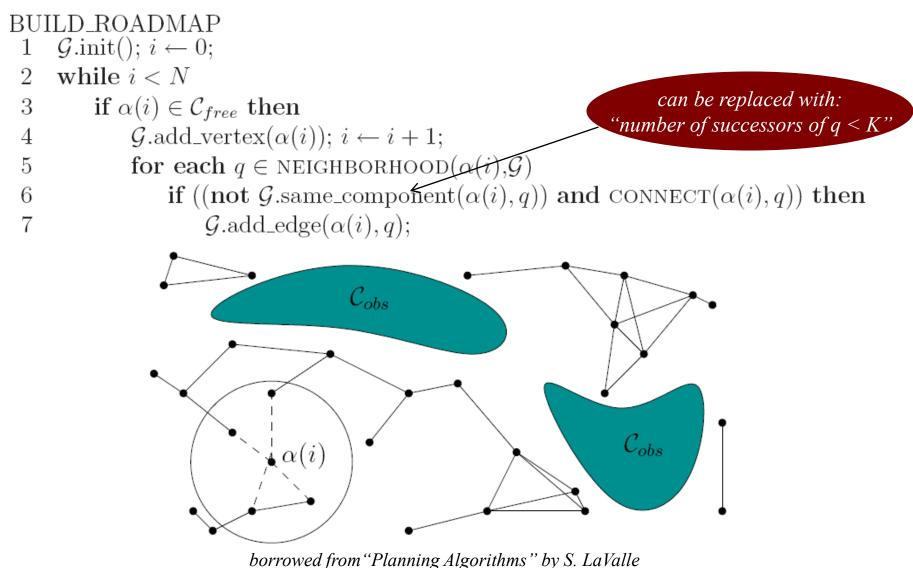


Step 1: Preprocessing Phase.



Carnegie Mellon University

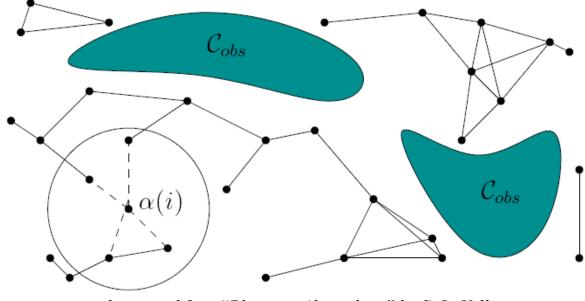
Step 1: Preprocessing Phase.



Step 1: Preprocessing Phase.

Efficient implementation of $q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G})$

- select K vertices closest to $\alpha(i)$
- select K (often just 1) closest points from each of the components in $\boldsymbol{\mathcal{G}}$
- select all vertices within radius *r* from $\alpha(i)$



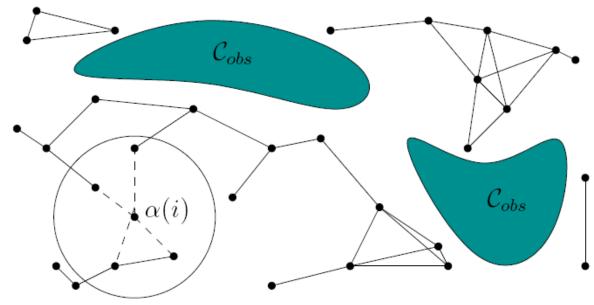
borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase

Sampling strategies

- sample uniformly from C_{free}

Why do we need anything better than uniform sampling?



borrowed from "Planning Algorithms" by S. LaValle

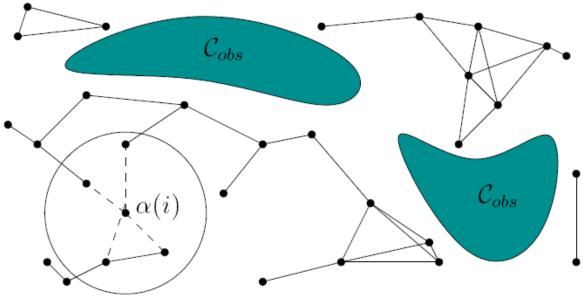
Step 1: Preprocessing Phase.

Sampling strategies

- sample uniformly from C_{free}

- select at random an existing vertex with a probability distribution inversely proportional to how well-connected a vertex is, and then generate a random motion from it to get a sample $\alpha(i)$

- bias sampling towards obstacle boundaries



borrowed from "Planning Algorithms" by S. LaValle

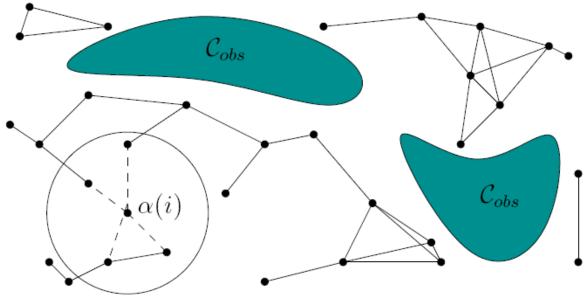
Step 1: Preprocessing Phase.

Sampling strategies

- sample q_1 and q_2 from Gaussian around q_1 and if either is in C_{obs} , then the other one is set as $\alpha(i)$

- sample q_1, q_2, q_3 from Gaussian around q_2 and set q_2 as $\alpha(i)$ if q_2 is in C_{free} , and q_1 and q_3 are in C_{obs}

- bias sampling away from obstacles



borrowed from "Planning Algorithms" by S. LaValle

What You Should Know...

- Pros and Cons of Resolution-complete approaches (like Grid-based or Lattice-based graphs) vs.
 Sampling-based approaches
- What domains are more suitable for each
- How PRM works