
16-350

Planning Techniques for Robotics

Search Algorithms:

Uninformed A* Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

2

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Searching Graphs for a Least-cost Path

• Once a graph is constructed (from skeletonization or cell decomposition

or whatever else), we need to search it for a least-cost path

Carnegie Mellon University

OR OR

3

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Searching Graphs for a Least-cost Path

• Once a graph is constructed (from skeletonization or cell decomposition

or whatever else), we need to search it for a least-cost path

Carnegie Mellon University

OR OR

the cost c(s1,sgoal) of

an edge from s1 to sgoal

4

• Many searches (including A*) work by computing g*
values for graph vertices (states)

– g*(s) – the cost of a least-cost path from sstart to s

S2 S1

Sgoal

2
g*=1 g*=3

g*=?2

S4 S3

3

g*=2 g*=5

1

Sstart

1

1

g*=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University

5

• Many searches (including A*) work by computing g*
values for graph vertices (states)

– g*(s) – the cost of a least-cost path from sstart to s

S2 S1

Sgoal

2
g*=1 g*=3

g*=52

S4 S3

3

g*=2 g*=5

1

Sstart

1

1

g*=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University

How did you

compute this g*?

6

• Many searches (including A*) work by computing g*
values for graph vertices (states)

– g*(s) – the cost of a least-cost path from sstart to s

– g* values satisfy: g*(s) = mins’’ pred(s) g*(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g*=1 g*=3

g*=52

S4 S3

3

g*=2 g*=5

1

Sstart

1

1

g*=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University

7

• Many searches (including A*) work by computing g*
values for graph vertices (states)

– g*(s) – the cost of a least-cost path from sstart to s

– g* values satisfy: g*(s) = mins’’ pred(s) g*(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g*=1 g*=3

g*=52

S4 S3

3

g*=2 g*=5

1

Sstart

1

1

g*=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University

How?

Once g*-values are computed,

a least-cost path from sstart to sgoal

can be easily computed!

8

• Least-cost path is a greedy path computed by backtracking:

– start with sgoal and from any state s backtrack to the predecessor
state s’ such that

)),''()''(*(minarg')('' sscsgs spreds

Searching Graphs for a Least-cost Path

Carnegie Mellon University

S2 S1

Sgoal

2
g*=1 g*=3

g*=52

S4 S3

3

g*=2 g*=5

1

Sstart

1

1

g*=0

9

• Example on a Grid-based Graph:

Searching Graphs for a Least-cost Path

Carnegie Mellon University

?

?

?

?

?

?

?

?

R

?

?

2.4

?

?

?

?

?

?

G

?

?

?? 3.4

1

1

1

1
1.4

1.4
1.4

1.4

8-connected grid

How can we compute g*-values?

10

• Example on a Grid-based Graph:

Searching Graphs for a Least-cost Path

Carnegie Mellon University

?

?

?

?

?

?

?

?

R

?

?

2.4

?

?

?

?

?

?

G

?

?

?? 3.4

1

1

1

1
1.4

1.4
1.4

1.4

8-connected grid

How can we compute g*-values?

Intuition behind uninformed A*:

Starting with the start state (marked R),

always compute next the state with smallest g* value!

11

• Example on a Grid-based Graph:

Searching Graphs for a Least-cost Path

Carnegie Mellon University

3.8

2.8

2

3.4

2.4

1

3.8

2.8

0

4.2

3.8

2.4

1

4.4

3.4

2.4

2

4.8

3.8

3.4

3

1.42.4 3.4

1

1

1

1
1.4

1.4
1.4

1.4

8-connected grid

12

• Example on a Grid-based Graph:

Searching Graphs for a Least-cost Path

Carnegie Mellon University

3.8

2.8

2

3.4

2.4

1

3.8

2.8

0

4.2

3.8

2.4

1

4.4

3.4

2.4

2

4.8

3.8

3.4

3

1.42.4 3.4

1

1

1

1
1.4

1.4
1.4

1.4

8-connected grid

Use g* to compute the least-cost path by back-tracking

13

• Example on a Grid-based Graph:

Searching Graphs for a Least-cost Path

Carnegie Mellon University

3.8

2.8

2

3.4

2.4

1

3.8

2.8

0

4.2

3.8

2.4

1

4.4

3.4

2.4

2

4.8

3.8

3.4

3

1.42.4 3.4

1

1

1

1
1.4

1.4
1.4

1.4

8-connected grid

Use g* to compute the least-cost path by back-tracking

14

• Computes g*-values for relevant (not all) states

g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

at any point of time:

Uninformed A* Search

Carnegie Mellon University

15

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; //compute least-cost path using g-values

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g= g=

1

Sstart

1

1

g=0

set of candidates for expansion

for every expanded state

g(s) is optimal (g(s) = g*(s))

Uninformed A* Search

Carnegie Mellon University

16

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

expand s;

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g= g=

1

Sstart

1

1

g=0

17

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;
set of states that have already been expanded

tries to decrease g(s’) using the

found path from sstart to s

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g= g=

1

Sstart

1

1

g=0

18

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g= g=

1

Sstart

1

1

g=0

19

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Uninformed A* Search

Carnegie Mellon University

g= g=

g=

g= g=

g=0

20

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

g=1 g=

g=

g= g=

g=0

21

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

g=1 g=

g=

g= g=

g=0

22

• Computes g*-values for relevant (not all) states

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: ?

Uninformed A* Search

Carnegie Mellon University

g=1 g=3

g=

g= 2 g=

g=0

23

• Computes g*-values for relevant (not all) states

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s4

Uninformed A* Search

Carnegie Mellon University

g=1 g=3

g=

g= 2 g=

g=0

24

• Computes g*-values for relevant (not all) states

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s4}

OPEN = {s1,s3}

next state to expand: ?

Uninformed A* Search

Carnegie Mellon University

g=1 g=3

g=

g= 2 g= 5

g=0

25

• Computes g*-values for relevant (not all) states

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s4}

OPEN = {s1,s3}

next state to expand: s1

Uninformed A* Search

Carnegie Mellon University

g=1 g=3

g=

g= 2 g= 5

g=0

26

• Computes g*-values for relevant (not all) states

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s4,s1}

OPEN = {s3,sgoal}

next state to expand: ?

Uninformed A* Search

Carnegie Mellon University

g=1 g=3

g= 5

g= 2 g= 5

g=0

27

• Computes g*-values for relevant (not all) states

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s4,s1}

OPEN = {s3,sgoal}

next state to expand: sgoal

Uninformed A* Search

Carnegie Mellon University

g=1 g=3

g= 5

g= 2 g= 5

g=0

Optional but useful optimization:

If OPEN contains multiple states with the smallest g-values

and sgoal is one of them,

then select sgoal for expansion

28

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s4,s1,sgoal}

OPEN = {s3}

done

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

g=1 g=3

g= 5

g= 2 g= 5

g=0

29

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University

for every expanded state g(s)=g*(s)

for every other state g(s) ≥ g*(s)

we can now compute a least-cost path

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

g=1 g=3

g= 5

g= 2 g= 5

g=0

30

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University

for every expanded state g(s)=g*(s)

for every other state g(s) ≥ g*(s)

we can now compute a least-cost path

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

g=1 g=3

g= 5

g= 2 g= 5

g=0

31

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s)=g*(s)

for every other state g(s) ≥ g*(s)

we can now compute a least-cost path
why?

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

g=1 g=3

g= 5

g= 2 g= 5

g=0

32

Theorem 1. For every expanded state s, it is guaranteed

that g(s)=g*(s)

Sketch of proof by induction:
- consider state s getting selected for expansion and assume that all previously

expanded states had their g-values equal to g*-values

- since s was selected for expansion, then g(s) – min among states in OPEN

- OPEN is a frontier of states that separates previously expanded states from the

states that have never been seen by the search

- thus, the cost of the path from sstart to s via any state in OPEN or any state not

previously seen will be worse than g(s) (assuming positive costs)

- therefore, g(s) (the cost of the best path found so far) is already optimal

Uninformed A* Search: Proofs

Carnegie Mellon University

33

Theorem 2. Once the search terminates, it is guaranteed that

g(sgoal)=g*(sgoal)

Sketch of proof:

Uninformed A* Search: Proofs

Carnegie Mellon University

Proof?

34

Theorem 3. Once the search terminates, the least-cost path

from sstart to sgoal can be re-constructed by backtracking

(start with sgoal and from any state s backtrack to the predecessor state

s’ such that)

Sketch of proof:
- every backtracking step from state s moves to a predecessor state s’ that

continues to be on a least-cost path (because all predecessors u not on a least-

cost path will have have g(u)+cost(u,s) that are strictly larger than

g(s’)+cost(s’,s))

Uninformed A* Search: Proofs

Carnegie Mellon University

)),''()''((minarg')('' sscsgs spreds

35

• Given g*-values, how to re-construct a least-cost path

• Operation of Uninformed A*

• Properties of uninformed A* search

– g-values of expanded states are optimal (g=g*)

– for every expanded state, one can re-construct a least-cost path

to it via back-tracking

• Sketch of proof for why uninformed A* returns a least-

cost path

What You Should Know…

Carnegie Mellon University

