16-350

 Planning Techniques for Robotics

 Planning Techniques for Robotics}

Search Algorithms: Uninformed A*Search

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Searching Graphs for a Least-cost Path

- Once a graph is constructed (from skeletonization or cell decomposition or whatever else), we need to search it for a least-cost path

Searching Graphs for a Least-cost Path

- Once a graph is constructed (from skeletonization or cell decomposition or whatever else), we need to search it for a least-cost path

Searching Graphs for a Least-cost Path

- Many searches (including A*) work by computing g^{*} values for graph vertices (states)
$-g^{*}(s)$ - the cost of a least-cost path from $s_{\text {start }}$ to s

Searching Graphs for a Least-cost Path

- Many searches (including A*) work by computing g* values for graph vertices (states)
$-g^{*}(s)$ - the cost of a least-cost path from $s_{\text {start }}$ to s

Searching Graphs for a Least-cost Path

- Many searches (including A*) work by computing g* values for graph vertices (states)
$-g^{*}(s)$ - the cost of a least-cost path from $s_{\text {start }}$ to s
$-\mathrm{g}^{*}$ values satisfy: $\quad g^{*}(s)=\min _{s^{\prime \prime} \in \operatorname{pred}(s)} g^{*}\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)$

Searching Graphs for a Least-cost Path

- Many searches (including A*) work by computing g* values for graph vertices (states)
$-g^{*}(s)$ - the cost of a least-cost path from $s_{\text {start }}$ to s
$-\mathrm{g}^{*}$ values satisfy: $\quad g^{*}(s)=\min _{s^{\prime \prime} \in \operatorname{pred}(s)} g^{*}\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)$

Searching Graphs for a Least-cost Path

- Least-cost path is a greedy path computed by backtracking:
- start with $s_{\text {goal }}$ and from any state s backtrack to the predecessor state s ' such that

$$
s^{\prime}=\arg \min _{s^{\prime \prime} \in \operatorname{pred}(s)}\left(g^{*}\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)\right)
$$

Searching Graphs for a Least-cost Path

- Example on a Grid-based Graph:

How can we compute g^{*}-values?

8-connected grid

$?$	$?$	$?$	$?$	$?$	$?$
$?$	$?$	$?$	$?$	$?$	G
$?$	$?$			$?$	$?$
$?$	$?$	\mathbf{R}	$?$	$?$	$?$

Searching Graphs for a Least-cost Path

- Example on a Grid-based Graph:

How can we compute g^{*}-values?

8-connected grid

$?$	$?$	$?$	$?$	$?$	$?$
$?$	$?$	$?$	$?$	$?$	G
$?$	$?$			$?$	$?$
$?$	$?$	R	$?$	$?$	$?$

Intuition behind uninformed A^{*} :
Starting with the start state (marked R),
always compute next the state with smallest g^{*} value!

Searching Graphs for a Least-cost Path

- Example on a Grid-based Graph:

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

Searching Graphs for a Least-cost Path

- Example on a Grid-based Graph:

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

Searching Graphs for a Least-cost Path

- Example on a Grid-based Graph:

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

Uninformed A* Search

- Computes g^{*}-values for relevant (not all) states
at any point of time:

Uninformed A* Search

- Computes g^{*}-values for relevant (not all) states

Main function

$g\left(s_{\text {start }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {start }}\right\}$;
ComputePath();
publish solution; //compute least-cost path using g-values

ComputePath function

```
set of candidates for expansion
``` while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\)
remove \(s\) with the smallest \(g(s)\) from \(O P E N\);
expand \(s\);

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(O P E N \neq 0\))
remove \(s\) with the smallest \(g(s)\) from \(O P E N\);
expand \(s\);

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\) if \(g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right)\) \(g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ;\) set of states that have already been expanded
tries to decrease \(g\left(s^{\prime}\right)\) using the
found path from \(s_{\text {start }}\) to \(s\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\begin{aligned}
\text { if } g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\{ \}\)
OPEN \(=\left\{s_{\text {start }}\right\}\)
next state to expand: \(s_{\text {start }}\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\{ \}\)
OPEN \(=\left\{s_{\text {star }}\right\}\)
next state to expand: \(s_{\text {start }}\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\);
insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\begin{aligned}
\text { if } g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}\right\}\)
OPEN \(=\left\{s_{2}\right\}\)
next state to expand: \(s_{2}\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\begin{aligned}
\text { if } g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}, s_{2}\right\}\) OPEN \(=\left\{s_{1}, s_{4}\right\}\)
next state to expand: ?

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\begin{aligned}
\text { if } g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}, s_{2}\right\}\) OPEN \(=\left\{s_{1}, s_{4}\right\}\)
next state to expand: \(s_{4}\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{4}\right\}\) OPEN \(=\left\{s_{1}, s_{3}\right\}\) next state to expand: ?

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{4}\right\}\) OPEN \(=\left\{s_{1}, s_{3}\right\}\)
next state to expand: \(s_{1}\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{4}, s_{1}\right\}\) OPEN \(=\left\{s_{3}, s_{\text {goal }}\right\}\) next state to expand: ?

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\) - valuecs Optional but useful optimization: ComputePath function If OPEN contains multiple states with the smallest \(g\)-values while \(\left(s_{g o a l}\right.\) is not expanded and Or, then select \(s_{\text {goal }}\) for expansion remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\begin{aligned}
\text { if } g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{4}, s_{l}\right\}\) OPEN \(=\left\{s_{3}, s_{\text {goal }}\right\}\)
next state to expand: \(s_{\text {goal }}\)

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded and \(\left.O P E N \neq 0\right)\) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{4}, s_{1}, s_{\text {goal }}\right\}\) OPEN \(=\left\{s_{3}\right\}\)
done

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;
for every expanded state \(g(s)=g^{*}(s)\) for every other state \(g(s) \geq g^{*}(s)\) we can now compute a least-cost path

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;
for every expanded state \(g(s)=g^{*}(s)\) for every other state \(g(s) \geq g^{*}(s)\) we can now compute a least-cost path

\section*{Uninformed A* Search}
- Computes \(\mathrm{g}^{*}\)-values for relevant (not all) states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded and \(O P E N \neq 0\)) remove \(s\) with the smallest \(g(s)\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;
for every expanded state \(g(s)=g^{*}(s)\) for every other state \(g(s) \geq g^{*}(s)\) we can now compute a least-cost path

\section*{Uninformed A* Search: Proofs}

\section*{Theorem 1. For every expanded state \(s\), it is guaranteed that \(g(s)=g^{*}(s)\)}

Sketch of proof by induction:
- consider state s getting selected for expansion and assume that all previously expanded states had their \(g\)-values equal to \(g^{*}\)-values
- since \(s\) was selected for expansion, then \(g(s)\) - min among states in OPEN
- OPEN is a frontier of states that separates previously expanded states from the states that have never been seen by the search
- thus, the cost of the path from \(s_{\text {start }}\) to \(s\) via any state in OPEN or any state not previously seen will be worse than \(g(s)\) (assuming positive costs)
- therefore, \(g(s)\) (the cost of the best path found so far) is already optimal

\section*{Uninformed A* Search: Proofs}

Theorem 2. Once the search terminates, it is guaranteed that \(g\left(s_{\text {goal }}\right)=g^{*}\left(s_{\text {goal }}\right)\)

Sketch of proof:

\section*{Proof?}

\section*{Uninformed A* Search: Proofs}

Theorem 3. Once the search terminates, the least-cost path from \(s_{\text {start }}\) to \(s_{\text {goal }}\) can be re-constructed by backtracking (start with \(s_{\text {gong }}\) and from any state s backtrack to the predecessor state \(s^{\prime}\) such that \(s^{\prime}=\arg _{\min }^{s^{\prime \prime} \text { pred }(s)}\left(g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)\right)\))

Sketch of proof:
- every backtracking step from state s moves to a predecessor state s' that continues to be on a least-cost path (because all predecessors \(u\) not on a leastcost path will have have \(g(u)+\operatorname{cost}(u, s)\) that are strictly larger than \(\left.g\left(s^{\prime}\right)+\operatorname{cost}\left(s^{\prime}, s\right)\right)\)

\section*{What You Should Know...}
- Given \(\mathrm{g}^{*}\)-values, how to re-construct a least-cost path
- Operation of Uninformed A*
- Properties of uninformed A* search
- g-values of expanded states are optimal \(\left(g=g^{*}\right)\)
- for every expanded state, one can re-construct a least-cost path to it via back-tracking
- Sketch of proof for why uninformed A* returns a leastcost path```

