16-350

Planning Techniques for Robotics

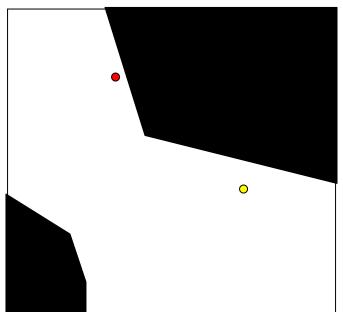
Planning Representations: Explicit vs. Implicit Graphs Skeletonization-, Grid- and Lattice-based Graphs

Maxim Likhachev Robotics Institute Carnegie Mellon University

2D Planning for Omnidirectional Point Robot

Planning for omnidirectional point robot:

What is $M^R = \langle x, y \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal} \rangle$



Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem *This class*

2. Search the graph for a (hopefully, close-to-optimal) path *Next lecture*

The two steps above are often interleaved

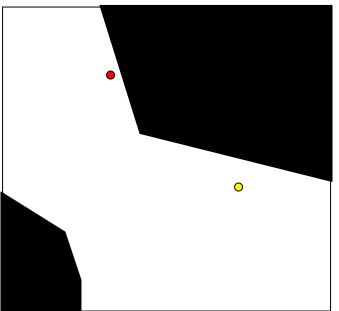
More on this in this & later classes

2D Planning for Omnidirectional Point Robot

Planning for omnidirectional point robot:

What is $M^R = \langle x, y \rangle$ What is $M^W = \langle obstacle/free space \rangle$ What is $s^{R}_{current} = \langle x_{current}, y_{current} \rangle$ What is $s^{W}_{current} = constant$ What is C = Euclidean Distance What is $G = \langle x_{goal}, y_{goal} \rangle$

Any ideas on how to construct a graph for planning?



- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps 👡

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

Will be covered

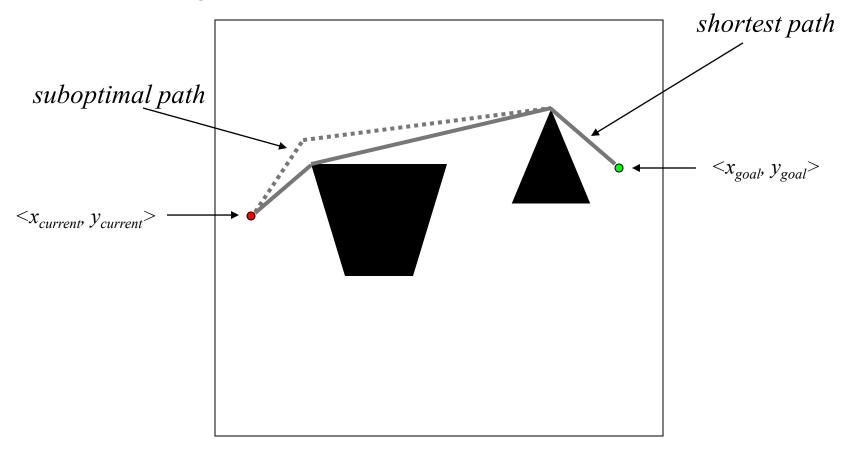
in a later class

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

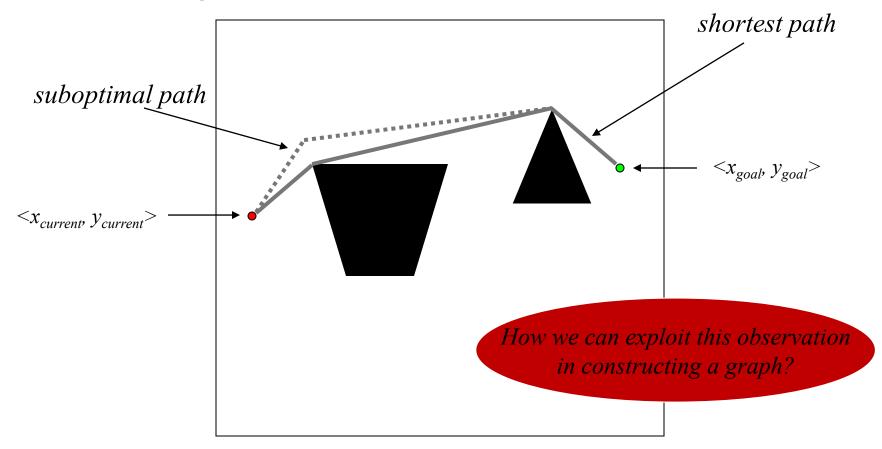
• Visibility Graphs [Wesley & Lozano-Perez '79]

- based on idea that *the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal*



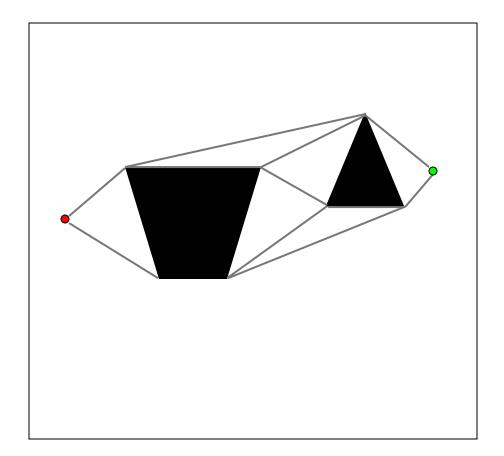
• Visibility Graphs [Wesley & Lozano-Perez '79]

- based on idea that *the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal*



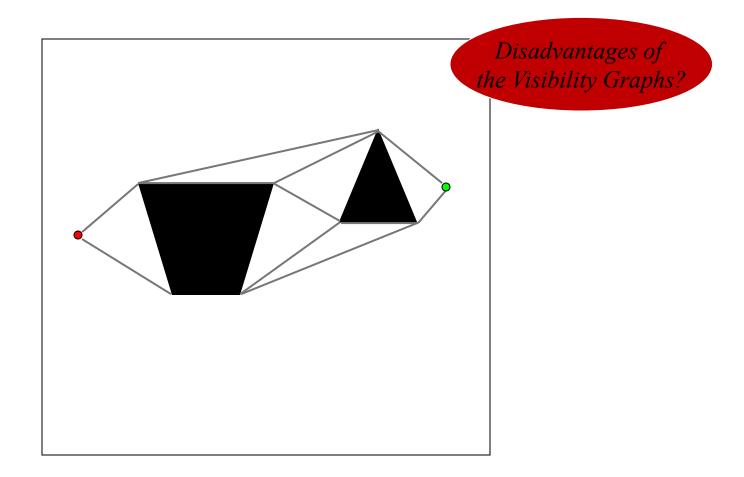
• Visibility Graphs [Wesley & Lozano-Perez '79]

- construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $O(n^2)$, where n - # of vert.)



• Visibility Graphs [Wesley & Lozano-Perez '79]

- construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $O(n^2)$, where n - # of vert.)



- Visibility Graphs
 - advantages:
 - independent of the size of the environment
 - disadvantages:
 - path is too close to obstacles
 - hard to deal with the cost function that is not distance
 - hard to deal with non-polygonal obstacles
 - hard to maintain the polygonal representation of obstacles
 - can be expensive in spaces higher than 2D

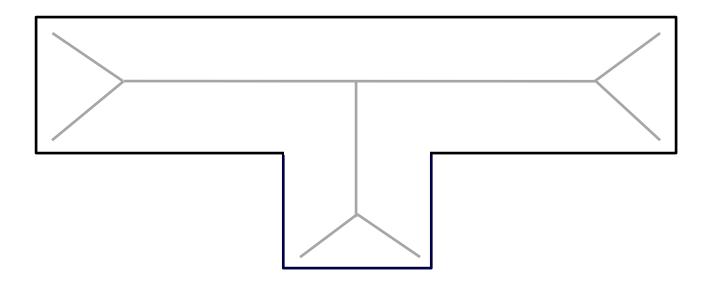
- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

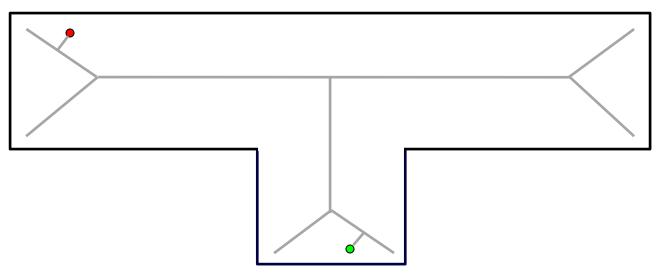
• Voronoi diagram [Rowat '79]

- set of all points that are equidistant to two nearest obstacles

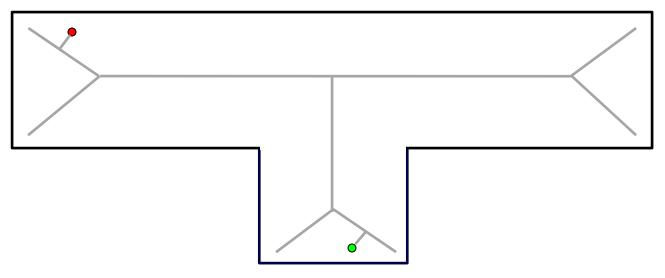
(can be computed O (n log n), where n - # of points that represent obstacles)



- Voronoi diagram-based graph
 - Edges: Boundaries in Voronoi diagram
 - Vertices: Intersection of boundaries
 - Add start and goal vertices
 - Add edges that correspond to:
 - shortest path segment from start to the nearest segment on the Voronoi diagram
 - shortest path segment from goal to the nearest segment on the Voronoi diagram



- Voronoi diagram-based graph
 - Edges: Boundaries in Voronoi diagram
 - Vertices: Intersection of boundaries
 - Add start and goal vertices
 - Add edges that correspond to:
 - shortest path segment from start to the nearest segment on the Voronoi diagram
 - shortest path segment from goal to the nearest segment on the Voronoi diagram



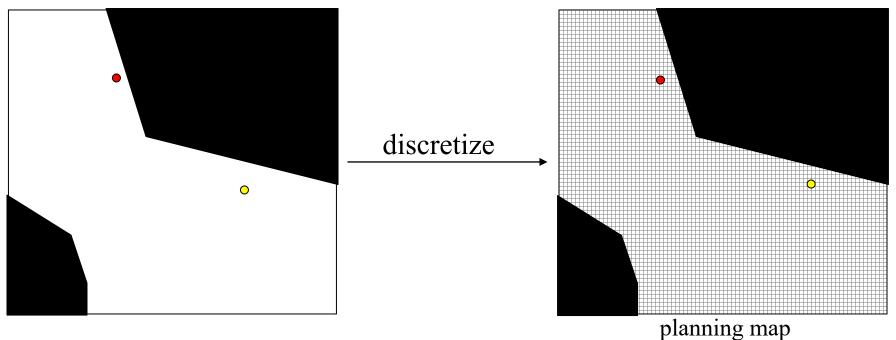
Disadvantages of the Voronoi diagram-based Graphs?

- Voronoi diagram-based graph
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - can work with any obstacles represented as set of points
 - disadvantages:
 - can result in highly suboptimal paths
 - hard to deal with the cost function that is not distance
 - hard to use/maintain beyond 2D

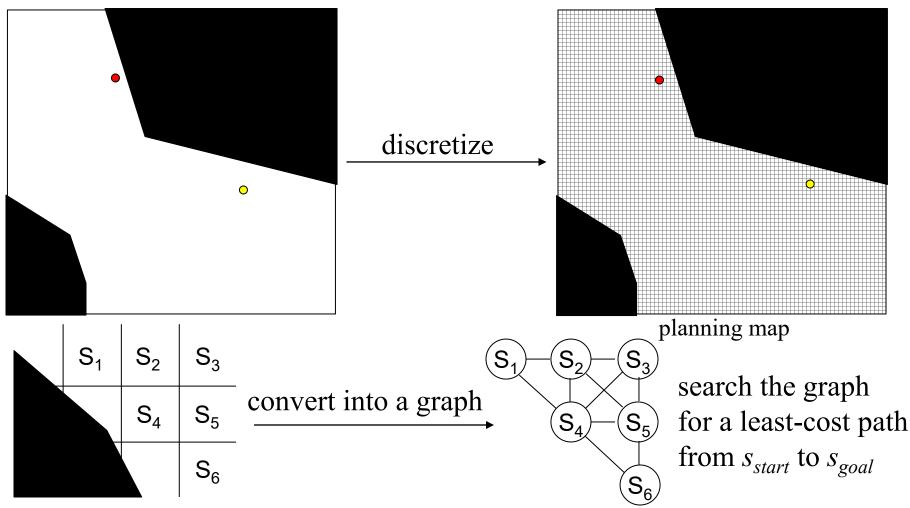
- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

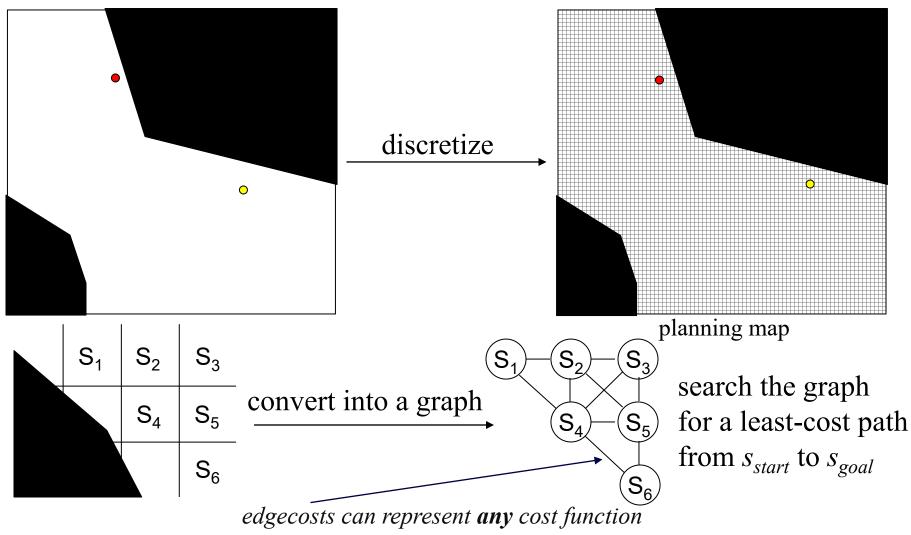
- Approximate Cell Decomposition:
 - overlay uniform grid (discretize)



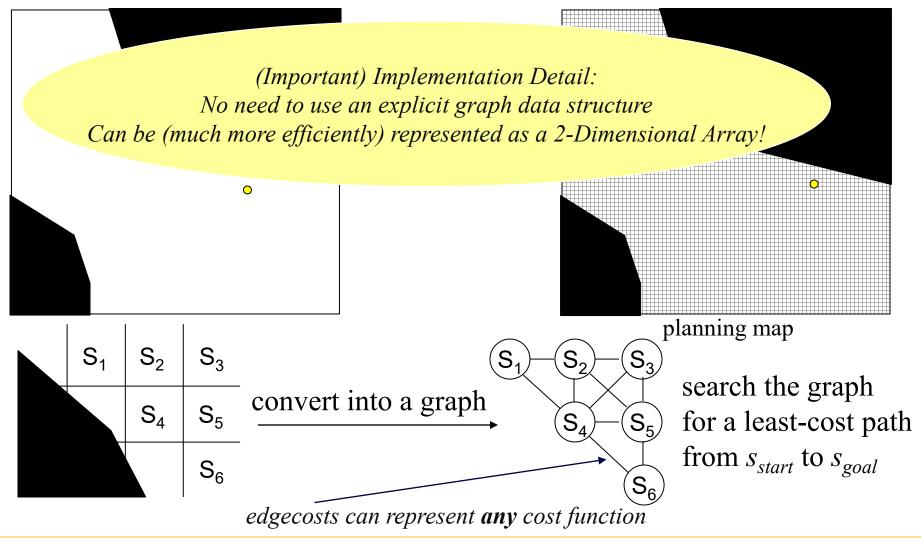
- Approximate Cell Decomposition:
 - construct a graph



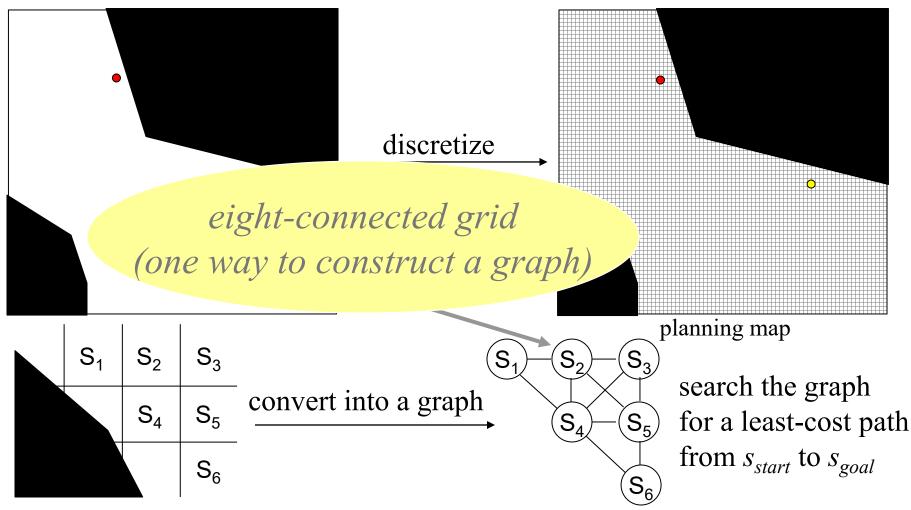
- Approximate Cell Decomposition:
 - construct a graph



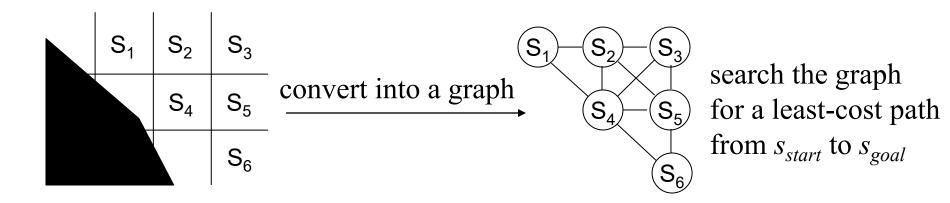
- Approximate Cell Decomposition:
 - construct a graph



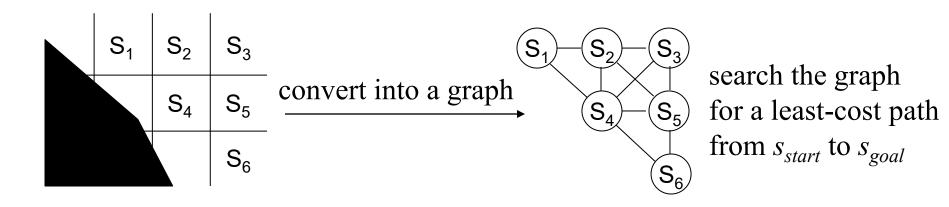
- Approximate Cell Decomposition:
 - construct a graph



- Approximate Cell Decomposition:
 - what to do with partially blocked cells?

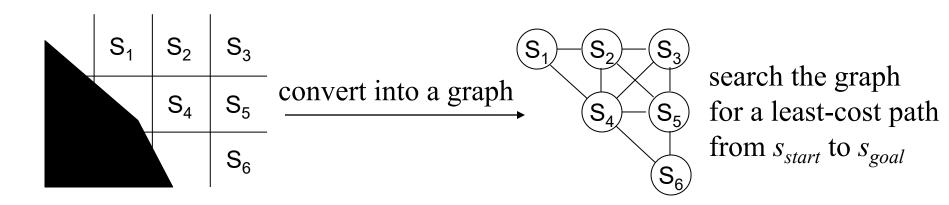


- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it untraversable incomplete (may not find a path that exists)

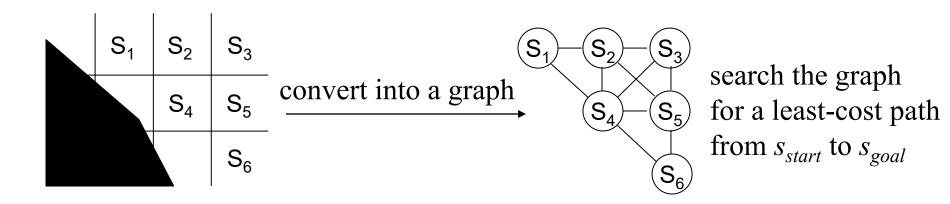


- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it traversable unsound (may return invalid path)

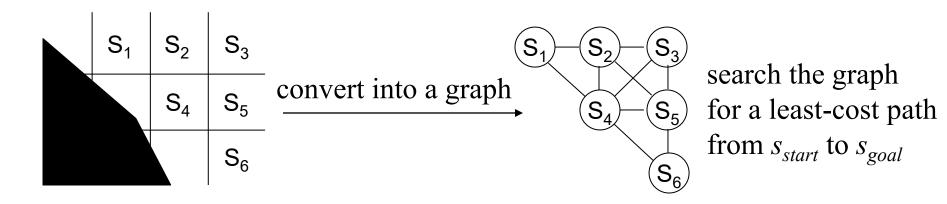
so, what's the solution?



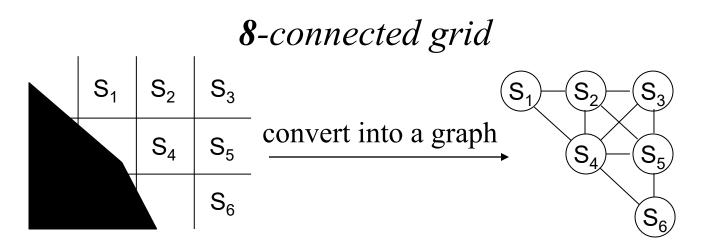
- Approximate Cell Decomposition:
 - solution 1:
 - make the discretization very fine
 - expensive, especially in high-D



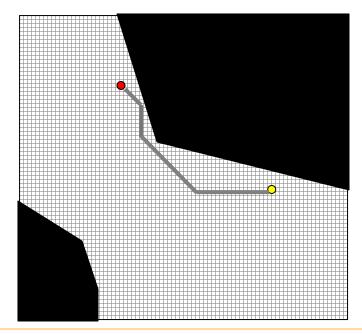
- Approximate Cell Decomposition:
 - solution 2:
 - make the discretization adaptive
 - various ways possible



- Graph construction:
 - connect neighbors

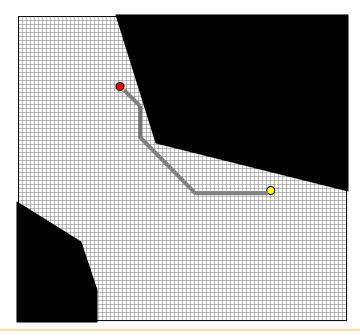


- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees



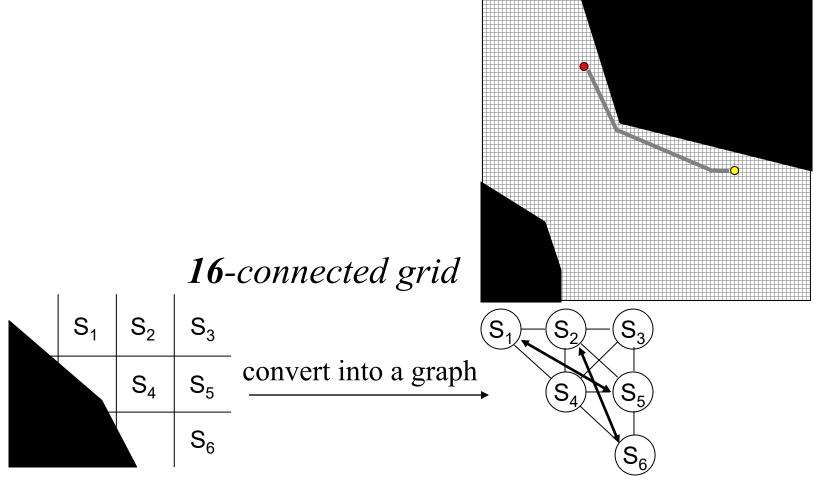
Carnegie Mellon University

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

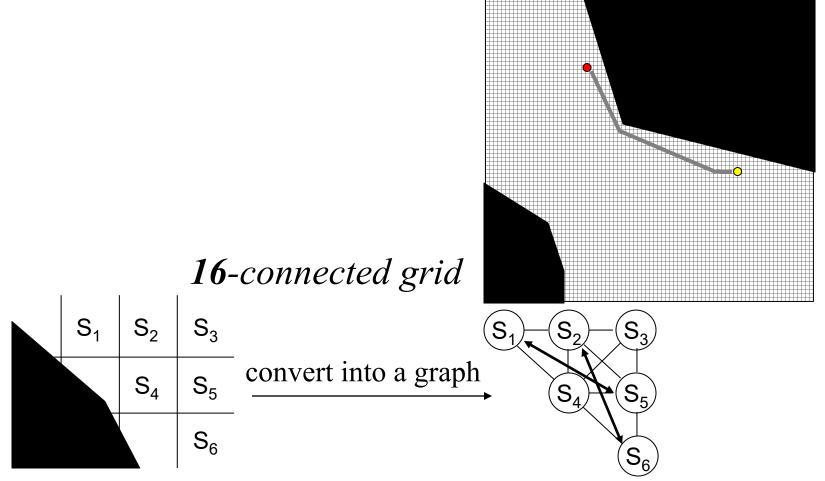


Carnegie Mellon University

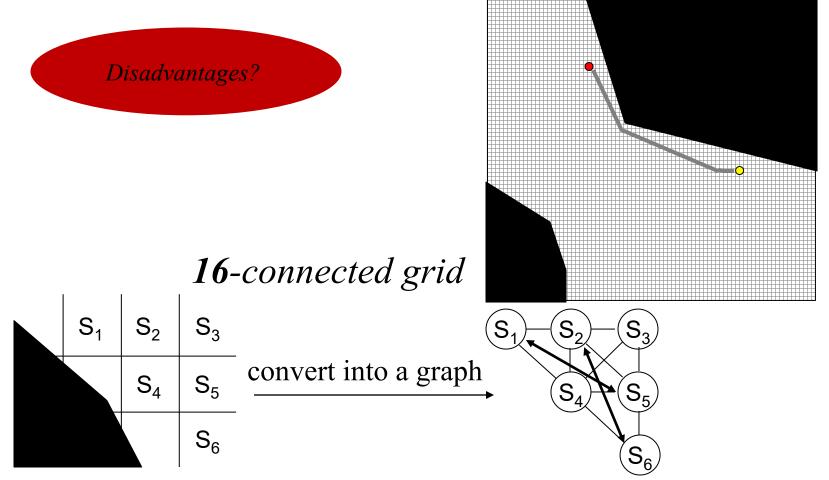
- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to ? degrees



- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to 26.6°/63.4° degrees



- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to 26.6°/63.4° degrees



Cell Decomposition-based Graphs

- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - expensive to maintain/compute grids of dimensions > 3

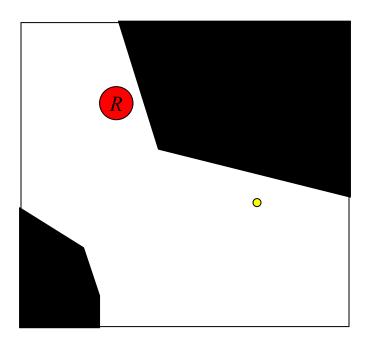
Cell Decomposition-based Graphs

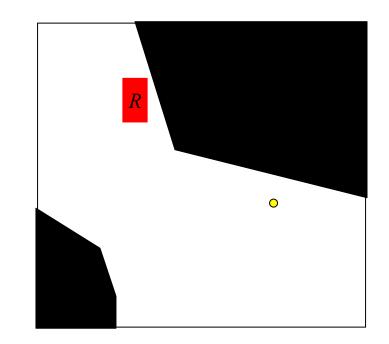
- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - expensive to maintain/compute grids of dimensions > 3

More on this later: Implicit vs. Explicit Graph representations

Planning for omnidirectional point robot:

What is $M^R = \langle x, y \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal} \rangle$





Configuration Space

- Configuration is legal if it does not intersect any obstacles and is valid
- Configuration Space is the set of legal configurations

Legal configurations for the base of the robot:

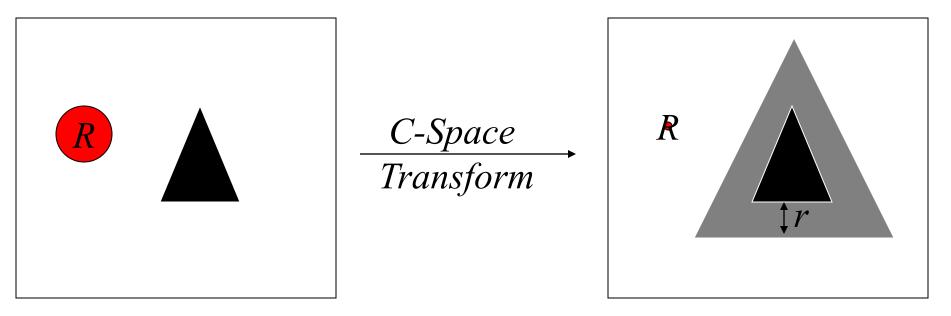
Configuration Space

- Configuration is legal if it does not intersect any obstacles and is valid
- Configuration Space is the set of legal configurations

Legal configurations for the base of the robot:

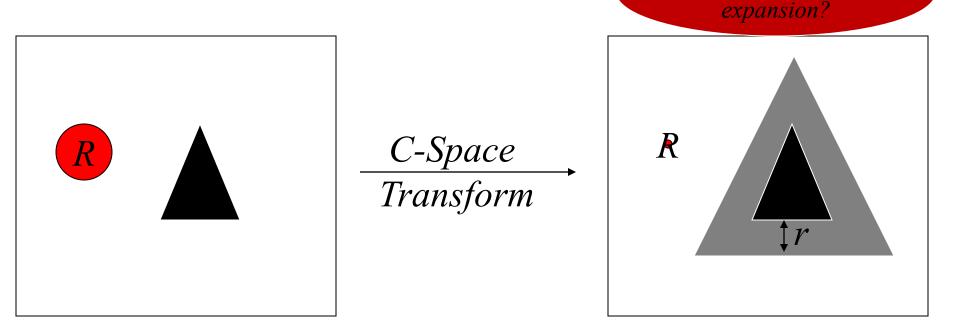
What is the dimensionality of this configuration space?

Configuration space for a robot base in 2D world is:
2D if robot's base is circular



- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

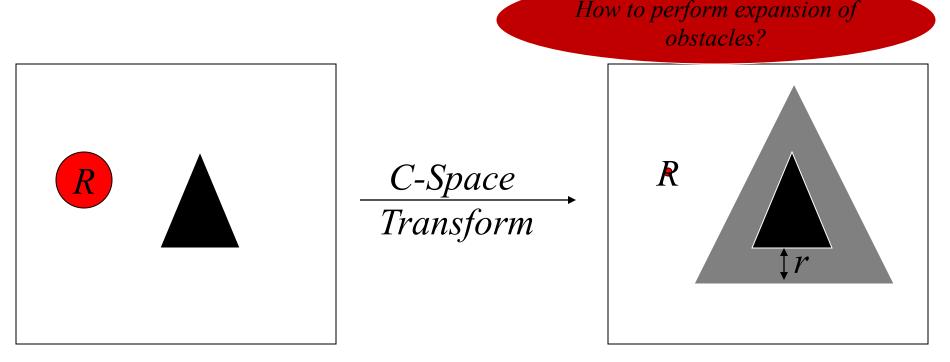
Configuration space for a robot base in 2D world is:
2D if robot's base is circular



- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

Is this a correct

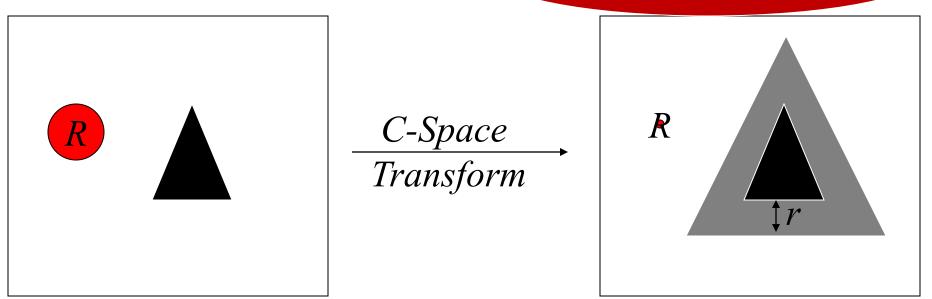
Configuration space for a robot base in 2D world is:
2D if robot's base is circular



- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

Configuration space for a robot bac O(n) methods exist to compute distance transforms efficiently
 2D if robot's base is circular

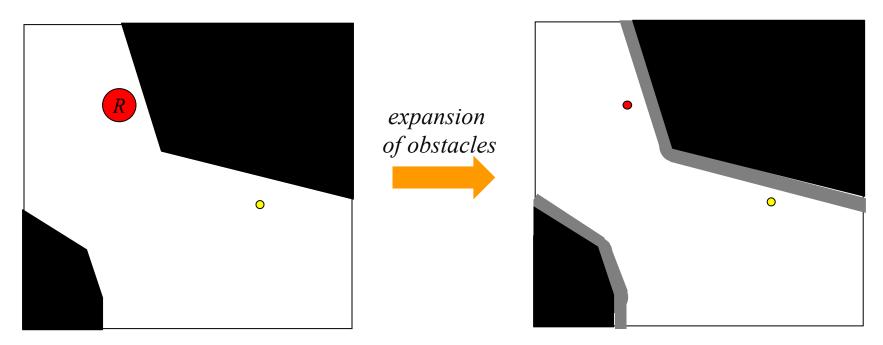
How to perform expansion of obstacles?



- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

Planning for omnidirectional circular robot:

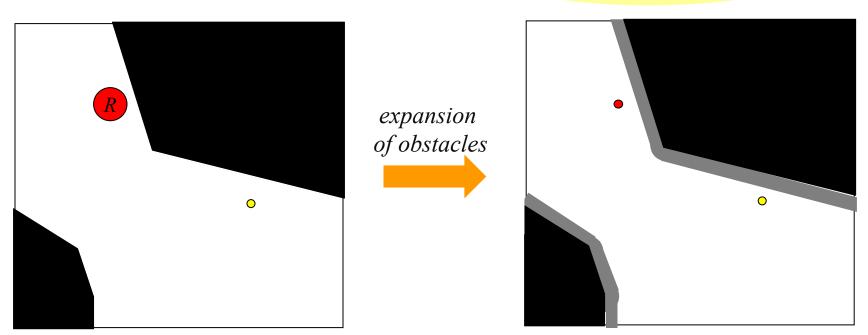
What is $M^R = \langle x, y \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal} \rangle$



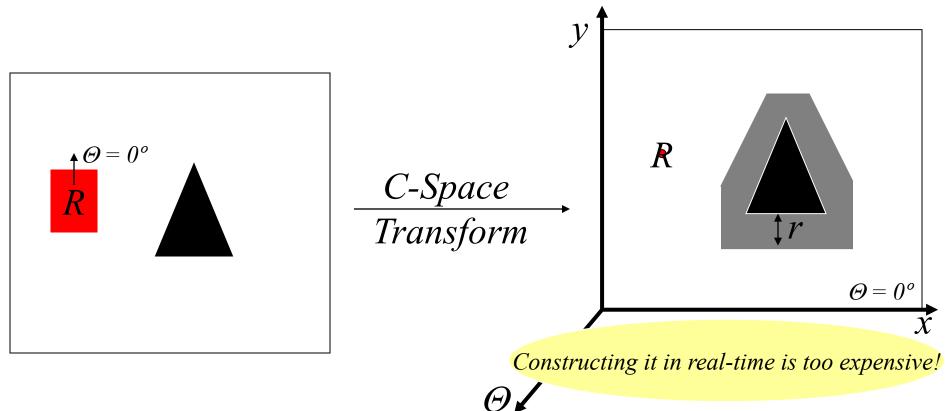
Planning for omnidirectional circular robot:

What is $M^R = \langle x, y \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal} \rangle$

We can now construct a graph using previously discussed methods (grids, Voronoi graphs, Visibility graphs)



Configuration space for a robot base in 2D world is:
3D if robot's base is non-circular



Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Graph Search using an **Explicit Graph** (allocated prior to the search itself):

1. Create the graph $G = \{V, E\}$ in-memory

2. Search the graph

Using Explicit Graphs is typical for low-D (i.e., 2D) problems in Robotics (with the exception of PRMs, covered in a later lecture)

Graph Search using an **Implicit Graph** (allocated as needed by the search):

- 1. Instantiate Start state
- 2. Start searching with the Start state using functions
 - a) Succs = GetSuccessors (State s, Action)
 b) ComputeEdgeCost (State s, Action a, State s')

and allocating memory for the generated states

Using Implicit Graphs is critical for most (>2D) problems in Robotics

• **Board example** for deciding whether to use an Explicit graph or Implicit graph

- Planning for (x, y, Θ) for
 - 20 by 20 m environment discretized into 25 cm cells with 8 heading Θ values

Is it feasible to use Explicit Graph (memory and pre-computation time reqs)?

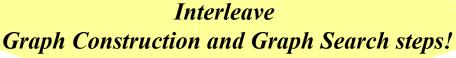
• **Board example** for deciding whether to use an Explicit graph or Implicit graph

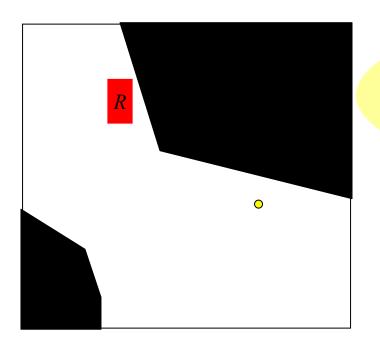
- Planning for (x, y, Θ) for
 - 200 by 200 m environment discretized into 25 cm cells with 16 heading Θ values for a real vehicle

Is it feasible to use Explicit Graph (memory and pre-computation time reqs)?

Planning for omnidirectional non-circular robot:

What is $M^{R} = \langle x, y, \Theta \rangle$ What is $M^{W} = \langle obstacle/free \ space \rangle$ What is $s^{R}_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$ What is $s^{W}_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$

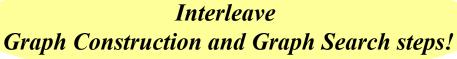


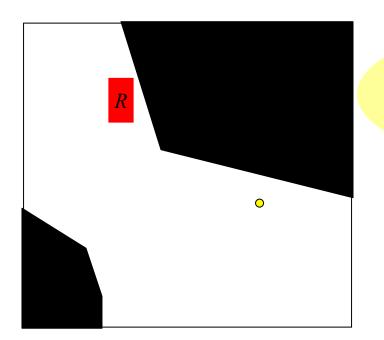


Construct a 3D grid (x,y,Θ) assuming point robot (i.e., a cell (x,y,Θ) is free whenever its (x,y) is free) and compute the **actual** validity of only those cells that get computed by the graph search

Planning for omnidirectional non-circular robot:

What is $M^{R} = \langle x, y, \Theta \rangle$ What is $M^{W} = \langle obstacle/free \ space \rangle$ What is $s^{R}_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$ What is $s^{W}_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$





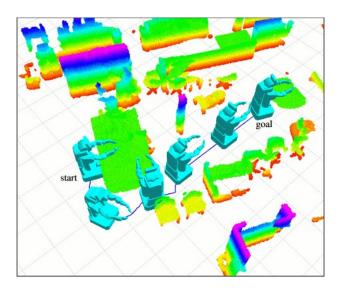
Construct a 3D grid (x,y,Θ) assuming point robot (i.e., a cell (x,y,Θ) is free whenever its (x,y) is free) and compute the **actual** validity of only those cells that get computed by the graph search

How to compute the actual validity of cell (x,y,Θ) ?

Planning for omnidirectional non-circular robot:

What is $M^{R} = \langle x, y, \Theta \rangle$ What is $M^{W} = \langle obstacle/free \ space \rangle$ What is $s^{R}_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$ What is $s^{W}_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$

Interleave Graph Construction and Graph Search steps!

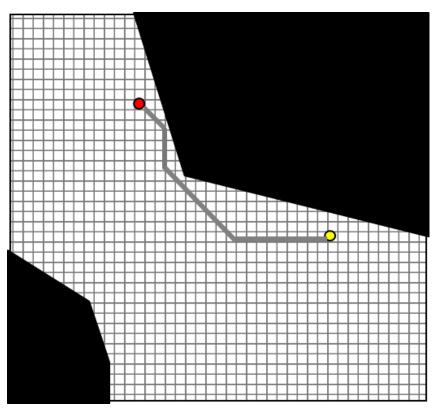


Two Classes of Graph Construction Methods

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

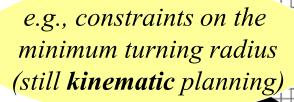
- Cell decomposition
 - X-connected grids
 - lattice-based graphs

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?



What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

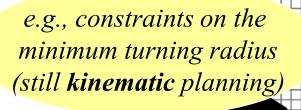
"Can't turn in place"



e.g., constraints on turning rate (rate of change in wheel orientation) and inertial constraints (kinodynamic planning)

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

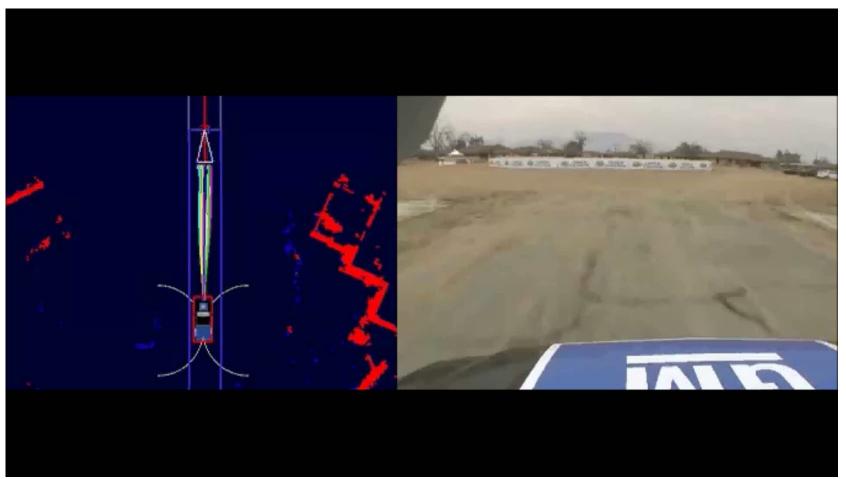
"Can't turn in place"



e.g., constraints on turning rate (rate of change in wheel orientation) and inertial constraints (kinodynamic planning)

Kinodynamic planning: Planning representation includes $\{X, \dot{X}\}$, where X-configuration and \dot{X} -derivative of X (dynamics of X)

 (x,y,Θ,v) planning with Anytime D* (Anytime Incremental A*) on Lattice Graphs



 (x,y,Θ) planning with ARA*-based algorithm on Lattice Graphs

Joint work with V. Kumar (Upenn), I. Kaminer (NPS) and V. Dobrokhodov (NPS) [thakur et al., '13]

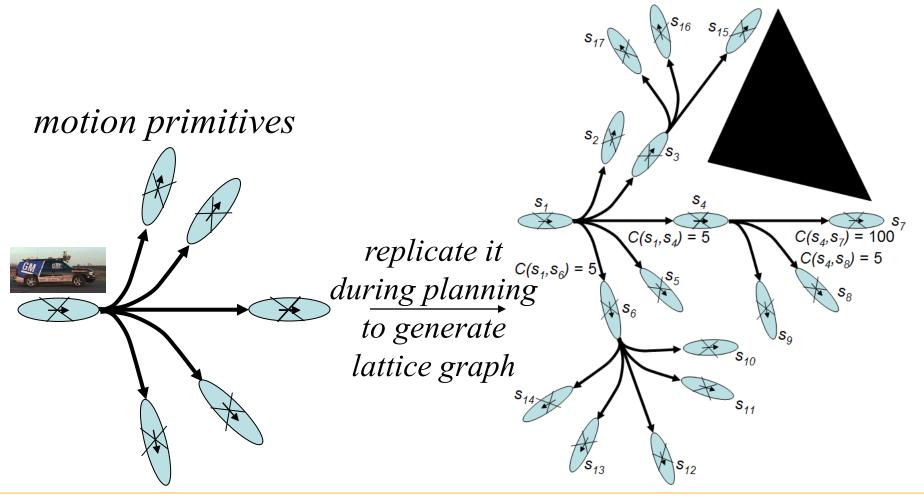
- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

each transition is feasible (typically, constructed beforehand)

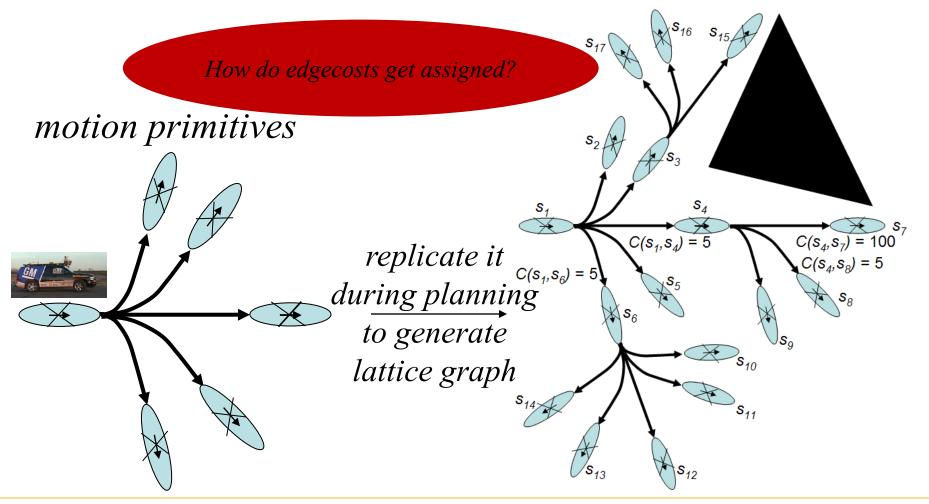
motion primitives

outcome state is the center of the corresponding cell in a grid

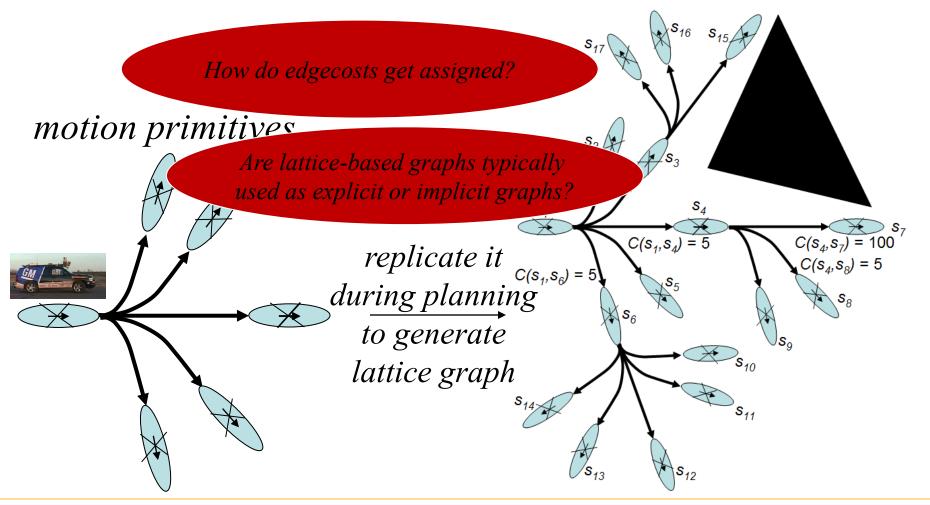
- Graph {V, E} where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions



- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions



- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions



• **Board example** for (x, y, Θ) planning for a unicycle model (minimum turning radius)

- What visibility graphs are
- What Voronoi diagram-based graphs are
- X-connected N-dimensional grids
- Configuration Space, C-Space Transform
- Lattice-based graphs
- Explicit vs. Implicit graphs and pros/cons of each