16-350
 Planning Techniques for Robotics

Interleaving Planning and Execution: Real-time Heuristic Search

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Planning during Execution

- Planning is a repeated process!
- partially-known environments
- dynamic environments
- imperfect execution of plans
- imprecise localization
- Need to be able to re-plan fast!
- Several methodologies to achieve this:
- anytime heuristic search: return the best plan possible within T msecs
- incremental heuristic search: speed up search by reusing previous efforts
- real-time heuristic search: plan few steps towards the goal and re-plan later

Real-time (Agent-centered) Heuristic Search

Enforce a strict limit on the amount of computations (no requirement on planning all the way to the goal)

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

\square - expanded

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (planning with Freespace Assumption):

\square - expanded

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Research issues:

- how to compute partial path
- how to guarantee complete behavior (guarantee to reach the goal)
- provide bounds on the number of steps before reaching the goal

Suppose planner only has time to examine successors

What should the planner decide for the robot's next move?

$h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)+0.4^{*} \min \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)$

	5.	4.2	3.8	3.4	3
	4.	3.8	2.8	2.4	2
	4.			1.4	
5	4	3		1	0

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \text { succ(sstart })}\left(s_{\text {start }} s\right)+h(s)$

$$
h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)+0.4^{*} \min \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)
$$

6.	5.2	4.2	3.8	3.4	3
5.	4.8	3.8	2.8	2.4	2
	4.4			1.4	
5	4	3		1	0

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\operatorname{sstart})} c\left(s_{\text {start }}, s\right)+h(s)$
$h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)+0.4 * \min \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.7	$\rightarrow 4.4$			1.4	1
5	4	3		1	0

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(s s t a r t)} c\left(s_{\text {start }} s\right)+h(s)$
$h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)+0.4 * \min \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.7	4.4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	3		1	0

Any problems?

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\operatorname{sstart})} c\left(s_{\text {starr }}, s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3	6.2	5.2	4.2	3.8	3.4	3	6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2	5.8	4.8	3.8	2.8	2.4	2	5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1	5.4	4.4			1.4	1	5.4	4.4			1.4	1
5	4			1	0	5				1	0	5				1	0

Local minima problem (myopic or incomplete behavior)

Any solutions?

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4				1.4
5	4	3		1	1

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	$\mathbf{5}^{2}$		1	0

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \text { succ(sstart })}\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.2	2	2.8	2.4
5.4	5.2			1.4	1
5	5.4	5		1	0

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2	2.8	2.4
5.4	5.2			1.4	1
5	5.4	5		1	0

h-values guaranteed to remain admissible and consistent

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start, }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2	2.8	2.4
5.4	5.2			1.4	1
5	5.4	5		1	0

- all costs are bounded from below with $\Delta>0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start, }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2	2.8	2.4
5.4	5.2			1.4	1
5	5.4	5		1	0

- all costs are bounded from below with $\Delta>0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

Suppose planner only has time to examine successors

- Repeatedly move the robot to the most promising adjacent state, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$

This algorithm is called LRTA* (Learning Real-time A^{*}) with $N=1$
 robot is guaranteed to reach goal in finite number of steps if:

- all costs are bounded from below with $\Delta>0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

Learning Real-Time A* (LRTA*) with N=1

- expand $N=1$ state, make a move towards a state s in OPEN with smallest $g(s)+h(s)$:

1. expand $s_{\text {start }}$
2. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$
3. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

$$
=\operatorname{argmin}_{s \in \operatorname{succ}(\operatorname{sstart})} g(s)+h(s)
$$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.7	4.4				1.4
	1				
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4				1.4
5	4	3		1	1

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 6.2 & 5.2 & 4.2 & 3.8 & 3.4 & 3 \\ \hline 5.8 & 4.8 & 3.8 & 2.8 & 2.4 & 2 \\ \hline 5.4 & 4.4 & & & 1.4 & 1 \\ \hline 5 & 4 & 5 & & & 1\end{array}\right)$

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

necessary for the guarantee

1. expand N states to reach the goal
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

state s :

- the state that minimizes cost to it plus heuristic estimate of the remaining distance - the state that looks most promising in terms of the whole path from current robot state to goal

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	4		2	1
4	3	2		0

4-connected grid (robot moves in 4 directions)

- expanded

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4
7	6	5	4	3
6			3	2
			2	1
				0

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

\square - expanded

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	∞	∞	3	2	
∞	∞		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	∞	4	3	2	
∞	∞		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
∞	∞		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
∞	6		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: set h-values of expanded states to infinity compute $^{\text {en }} h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until conrergence Does it matter in	
7	6	5	4	3		
6	5	4	3	2		
7	6		2	1		
∞	∞			0		

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
7	6		2	1	
∞	7	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	∞		0

update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence

- expanded

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via $D P:$ set h-values of expanded states to infinity compute $h(s)=$ min $_{s^{\prime}} \in \operatorname{succ}(s)($$\left(\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands: LRTA* one linear pass,

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where }=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	expand $N=7$ states
7	6	5	4	3	
6			3	2	
		2	1	unexpanded state s with smallest $g+h(=5+3)$	
				0	

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where }=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	$\left.\begin{array}{c}\text { update all expanded states } u: \\ \hline 7\end{array}\right) 6$
	5	4	3	$h(u)=f(s)-g(u)$	

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where }=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update all expanded states u :$h(u)=f(s)-g(u)$
7	6	5	4	3	
6	8-3	8-4	3	2	
8-3	8-2		2	1	unexpanded state s with smallest $f(s)=8$
8-2	8-1	8-0		0	

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where }=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update all expanded states u :$h(u)=f(s)-g(u)$
7	6	5	4	3	
6	5	4	3	2	
5	6		2	1	unexpanded state s with smallest $f(s)=8$
6	7	8		0	

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where }=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \operatorname{OPEN}} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

LRTA* vs. RTAA*

LRTA*

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	8		0

RTAA*

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

- Update of h-values in RTAA* is much faster but not as informed
- Both guarantee adimssibility and consistency of heuristics
- For both, heuristics are monotonically increasing
- Both guarantee to reach the goal in a finite number of steps (given the conditions listed previously)

What You Should Know...

- What is Real-time Heuristic Search and what are the challenges associated with it
- Operation of LRTA*
- Operation of RTAA*
- Pros/cons of LRTA* vs. A*

