16-350
 Planning Techniques for Robotics

Planning under Uncertainty: Minimax Formulation

Maxim Likhachev
Robotics Institute Carnegie Mellon University

Uncertainty in Robotics

- So far our planners assumed no uncertainty
- execution is perfect

Uncertainty in Robotics

- So far our planners assumed no uncertainty
- execution is perfect

- Any deviations from the plan are dealt by re-planning
- Could be quite suboptimal and sometimes dangerous
- planning a path along cliff does not take into account slippage
- others examples???

Uncertainty in Robotics

Uncertainty in Robotics

- Modeling uncertainty in execution during planning

- at least one action in the graph has more than one outcome
- each outcome is associated with probability and cost

Uncertainty in Robotics

- Modeling uncertainty in execution during planning

- at least one action in the graph has more than one outcome
- each outcome is associated with probability and cost

$$
\begin{aligned}
\text { example: } & s_{3}, s_{4}, s_{5} \epsilon \operatorname{succ}\left(s_{2}, a_{S E}\right), \\
& P\left(s_{5} \mid a_{s e}, s_{2}\right)=0.9, \quad c\left(s_{2}, a_{s e}, s_{5}\right)=1.4 \\
& P\left(s_{3} \mid a_{s e}, s_{2}\right)=0.05, c\left(s_{2}, a_{s e}, s_{3}\right)=1.0 \\
& P\left(s_{4} \mid a_{s e}, s_{2}\right)=0.05, c\left(s_{2}, a_{s e}, s_{4}\right)=1.0
\end{aligned}
$$

Moving along Cliff Example

- Example on the board

Moving-Target Search Example

- Uncertainty in the target moves
-What is a state-space and action space?

Planning in MDPs

-What plan to compute?

- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost

- Without uncertainty, plan is a single path:
a sequence of states (a sequence of actions)
- In MDPs, plan is a policy π :
mapping from a state onto an action

Planning in MDPs

-What plan to compute?

- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost

- Without uncertainty, plan is a single path:
a sequence of states (a sequence of actions)
- In MDPs, plan is a policy π :
mapping from a state onto an action
Why?

Minimax Formulation

- Optimal policy π^{*} :

$$
\pi^{*}=\operatorname{argmin}_{\pi} \max _{\text {outcomes of } \pi\{\text { cost-to-goal }\}}
$$

- worst cost-to-goal for $\pi_{1}=\left(\right.$ go through $\left.\mathrm{s}_{4}\right)$ is:

$$
1+1+3+1=6
$$

- worst cost-to-goal for $\pi_{2}=\left(\right.$ try to go through $\left.s_{1}\right)$ is:

$$
1+2+2+2+2+2+2+\ldots=\infty
$$

Minimax Formulation

- Optimal policy π^{*} :
minimizes the worst cost-to-goal
$\pi^{*}=\operatorname{argmin}_{\pi} \max _{\text {outcomes of } \pi\{\text { cost-to-goal }\}}$
- Optimal minimax policy $\pi^{*}=$ (go through s_{4}) $=$ $\left[\left\{s_{\text {starr }} a_{n e}\right\},\left\{s_{2}, a_{\text {south }}\right\},\left\{s_{4}, a_{\text {eass }},\left\{\left\{_{3}, a_{\text {ne }}\right\},\left\{\left\{_{\text {goal }}\right.\right.\right.\right.\right.$ null $\} ;$

Computing Minimax Plans

- Minimax backward A*:
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; $O P E N=\left\{s_{\text {goal }}\right.$;
while $\left(s_{\text {start }}\right.$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{\boldsymbol{u}} \epsilon \operatorname{succ}\left(s^{\prime}, a\right) \\
& g\left(s^{\prime}\right)=\max _{\boldsymbol{u}} \epsilon \operatorname{\epsilon succ(s^{\prime },a)} c\left(s^{\prime}, u\right)+g(u)+g(u) \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

- Minimax backward A*:
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; $O P E N=\left\{s_{\text {goal }}\right.$;
while $\left(s_{\text {start }}\right.$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\text { if } \begin{aligned}
& g\left(s^{\prime}\right)>\max _{u} \epsilon \operatorname{succ}\left(s^{\prime}, a\right) \\
& g\left(s^{\prime}\right)=\max _{\boldsymbol{u}} \epsilon \operatorname{succ}\left(s^{\prime}, a\right) \\
&\left.s^{\prime}, u\right)+g\left(s^{\prime}, u\right)+g(u) ;
\end{aligned}
$$ insert s ' into $O P E N$;

Computing Minimax Plans

- Minimax backward A*:
next state to expand: $s_{\text {goal }}$
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \text {; } \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

$$
\begin{aligned}
& \text { CLOSED }=\{ \} \\
& \text { OPEN }=\left\{s_{\text {goal }}\right.
\end{aligned}
$$

- Minimax backward A*:
next state to expand: $s_{\text {goal }}$
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from OPEN;
insert s into CLOSED;
for every s ' s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) ; \\
& \text { insert } s^{\prime} \text { into OPEN; } \quad \text { After } s_{\text {goal }} \text { expanded, }
\end{aligned}
$$

Computing Minimax Plans

- Minimax backward A*:
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; $O P E N=\left\{s_{\text {goal }}\right\}$;
while $\left(s_{\text {start }}\right.$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

- Minimax backward A*:
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s ' s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

- Minimax backward A*:

CLOSED $=\left\{s_{\text {goal }}, S_{3}, s_{4}\right\}$ OPEN $=\left\{s_{2}\right\}$

$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; $O P E N=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \text {; } \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

- Minimax backward A*:
next state to expand: $s_{\text {start }}$
$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from OPEN;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \text {; } \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from OPEN;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from nnrar insert s into CLOSED;

What are its branches?
for every s ' s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for som. Why DAG?

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& g\left(s^{\prime}\right)=\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(u) \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
$$

Computing Minimax Plans

$g\left(s_{\text {goal }}\right)=0$; all other g-values are infinite; OPEN $=\left\{s_{\text {goal }}\right\}$;
while ($s_{\text {start }}$ not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from OPEN;
insert s into CLOSED;
for every s^{\prime} s.t $s \in \operatorname{succ}\left(s^{\prime}, a\right)$ for some a and s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>\max _{u \in \operatorname{succ}\left(s^{\prime}, a\right)} c\left(s^{\prime}, u\right)+g(1,) \\
& g\left(s^{\prime}\right)=\max _{u \epsilon \operatorname{succ}\left(s^{\prime}, a\right)} \text { clo Minimax } A^{*} \text { guarantees to find an optimal plan, } \\
& \text { insert } s \text { ' into OPEN; }
\end{aligned}
$$

Computing Minimax Plans

- Pros/cons of minimax plans
- robust to uncertainty
- overly pessimistic
- harder to compute than normal paths
- especially if backwards minimax A* does not apply
- even if backwards minimax A* does apply, still more expensive than computing a single path with A* (heuristics are not guiding well)

Why?

What You Should Know..

- What is and MDP (Markov Decision Process) and how it differs from normal Graphs
- What is Minimax solution to MDPs
- Pros and cons of Minimax solutions
- Operation of Minimax backward A*

