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Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later
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• Several methodologies to achieve this:
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– real-time heuristic search: plan few steps towards the goal and re-plan later

edgecost changes

edgecost changes, goal changes

robot pose changes/deviates off the path

robot pose changes/deviates off the path
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Only Goal Changes

Any ideas how to handle it?
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Only Goal Changes

Any ideas how to handle it?

Re-compute heuristics with respect to the new goal, and 

continue searching until the new goal state is expanded
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Only Goal Changes
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Only Robot Pose Changes

Any ideas how to handle it?
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Only Robot Pose Changes

Any ideas how to handle it?

Do the search backwards:

Then, the problem becomes “Only Goal Changes” that we know how to solve already
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What if both Robot Pose and its Goal change?

Too bad! 

Typically, you are better of re-planning from scratch then. 
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Changes to Edgecosts

• Two main reasons
– Noisy perception (e.g., flickering obstacles, sensed position of obstacles is 

shifting, robot localization is noisy, etc.)

– Partially-known environment
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Changes to Edgecosts

• Two main reasons
– Noisy perception (e.g., flickering obstacles, sensed position of obstacles is 

shifting, robot localization is noisy, etc.)

– Partially-known environment

Typically, it is important to do clever filtering 

to minimize flicker as much as possible without sacrificing safety

What should we assume about unknown space?

Freespace Assumption: Assume that any “unknown” space is traversable

until sensed otherwise!
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Changes to Edgecosts
• The robot doesn’t initially know the status of the door

door

We ran an uninformed A* search backwards 

(that is, all g-values are costs to sgoal)
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Changes to Edgecosts
• The robot doesn’t initially know the status of the door

door

We ran an uninformed A* search backwards 

(that is, all g-values are costs to sgoal)

Why backwards?
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Changes to Edgecosts
• The robot doesn’t initially know the status of the door

during execution, the robot found out that the door is closedStates with 

changed 

g-values
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Changes to Edgecosts
• The robot doesn’t initially know the status of the door

during execution, the robot found out that the door is closedStates with 

changed 

g-values

How does “blocking” a cell 

translate to edgecost changes?
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Changes to Edgecosts
• The robot doesn’t initially know the status of the door

during execution, the robot found out that the door is closedStates with 

changed 

g-values

Can we reuse these g-values from one search to

another? – incremental A*
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• D*/D* Lite: Incremental Heuristic Search Algorithms

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Incremental Heuristic Search
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• So far, ComputePathwithReuse() could only deal with 

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states 

(v(s) < g(s))
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4

suppose the robot 

updates an edge cost 
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• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)
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5

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)

v(s1) <  g(s1)
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• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) =  ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes
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ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

update g(sgoal)
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• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes
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ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

fix sgoal

no more underconsistent states!
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• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 
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ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand s3
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• Edge cost increases may introduce underconsistent states (v(s) < g(s))
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• Edge cost increases may introduce underconsistent states (v(s) < g(s))
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A* with Reuse of State Values

after ComputePathwithReuse terminates: 

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)
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D* Lite

• Optimal re-planning algorithm

• Simpler and with nicer theoretical properties version of 

D*

until goal is reached

ComputePathwithReuse();

publish optimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

//modified to fix underconsistent states
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Anytime Incremental Heuristic Search

• Anytime D*: 

– decrease  and update edge costs at the same time

– re-compute a path by reusing previous state-values

set  to large value;

until goal is reached

ComputePathwithReuse();

publish  -suboptimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

//modified to fix underconsistent states

What for?
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What You Should Know…

• How to handle changes to Robot Pose Only or Goal Only

• What is Freespace Assumption

• What is D*/D* Lite and the general principles behind it 

(don’t need to know the exact algorithm)


