16-350

Planning Techniques for Robotics

Planning under Uncertainty: Expected Value Formulation

Maxim Likhachev Robotics Institute Carnegie Mellon University

Minimax Formulation is Often Too Conservative

Example:

moving over the hill has 10% chance of slipping

• Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$

expectation over outcomes

Expectation of a Random Variable

X - a random variable $E{X}$ - expected value of X (e.g., if you were to draw infinitely many samples of X, what would be the average of the drawn values)

 $E{X} = \Sigma_i X_i P(X_i)$ (X_i - all possible values of X)

X - a random variable $E{X}$ - expected value of X (e.g., if you were to draw infinitely many samples of X, what would be the average of the drawn values)

 $E{X} = \Sigma_i X_i P(X_i)$ (X_i - all possible values of X)

• Suppose you roll a die. What is the expected value of the die?

X - a random variable $E{X}$ - expected value of X (e.g., if you were to draw infinitely many samples of X, what would be the average of the drawn values)

 $E{X} = \Sigma_i X_i P(X_i)$ (X_i - all possible values of X)

• Suppose you get a <u>random</u> coin from a pool of 5 nickels, 3 dimes and 2 quarters? What is the expected amount you get?

• Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$

expectation over outcomes

• expected cost-to-goal for π_1 =(go through s₄) is

1 + 1 + 3 + 1 = 6

• cost-to-goal for π_2 =(try to go through s_1) is: 0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*(1+2+2+2+2+2+2+2) + ...=5.444

- Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$
- Optimal expected cost policy $\pi^* = \pi_2 = (go \ through \ s_1)$

- Optimal policy π*: minimizes the *expected* cost-to-goal π* = argmin_π E{cost-to-goal}
- Optimal expected cost policy $\pi^* = \pi_2 = (go \ through \ s_1)$

In contrast, optimal policy for minimax formulation was π_1 =(go through s₄)

Maxim Likhachev

Carnegie Mellon University

What You Should Know...

- Expected cost formulation for solving MDPs
- How to compute the expected cost of a given policy
- Expected cost vs. minimax cost formulations