# 16-350

# **Planning Techniques for Robotics**

# Interleaving Planning and Execution: Anytime Heuristic Search

Maxim Likhachev Robotics Institute Carnegie Mellon University

• Planning is a <u>repeated</u> process!



- Planning is a <u>repeated</u> process!
  - partially-known environments
  - dynamic environments
  - imperfect execution of plans
  - imprecise localization

ATRV navigating initially-unknown environment



planning map and path



- Planning is a <u>repeated</u> process!
  - partially-known environments
  - dynamic environments
  - imperfect execution of plans
  - imprecise localization



#### planning in dynamic environments

- Planning is a <u>repeated</u> process!
  - partially-known environments
  - dynamic environments
  - imperfect execution of plans
  - imprecise localization
- Need to be able to re-plan fast!
- Several methodologies to achieve this:
  - anytime heuristic search: return the best plan possible within T msecs
  - incremental heuristic search: speed up search by reusing previous efforts
  - real-time heuristic search: plan few steps towards the goal and re-plan later

- Planning is a <u>repeated</u> process!
  - partially-known environments
  - dynamic environments
  - imperfect execution of plans
  - imprecise localization
- Need to be able to re-plan fast!
- Several methodologies to achieve this:

this class

next two classes

- anytime heuristic search: return the best plan possible within T msecs
- incremental heuristic search: speed up search by reusing previous efforts
- real-time heuristic search: plan few steps towards the goal and re-plan later

# Anytime Algorithms

- Anytime algorithms are algorithms that are:
  - capable of returning **some** solution whenever they are interrupted
  - improve the solution over time until they are interrupted or until convergence to an optimal solution, whichever is first
- Anytime Planners
  - capable of returning some plans whenever they are interrupted
  - improve the plans over time until they are interrupted or until convergence to an optimal plan

### Anytime Planning for an Autonomous Vehicle

• Running ARA\* Search



- Constructing anytime search based on weighted A\*:
  - find the best path possible given some amount of time for planning
  - do it by running a series of weighted A\* searches with decreasing  $\varepsilon$ :



- Constructing anytime search based on weighted A\*:
  - find the best path possible given some amount of time for planning
  - do it by running a series of weighted A\* searches with decreasing  $\varepsilon$ :



- Constructing anytime search based on weighted A\*:
  - find the best path possible given some amount of time for planning
  - do it by running a series of weighted A\* searches with decreasing  $\varepsilon$ :



*solution=11 moves* 

*solution=11 moves* 

*solution=10 moves* 

- Inefficient because
  - many state values remain the same between search iterations
  - we should be able to reuse the results of previous searches

- Constructing anytime search based on weighted A\*:
  - find the best path possible given some amount of time for planning
  - do it by running a series of weighted A\* searches with decreasing  $\varepsilon$ :



- ARA\* (Anytime Repairing A\*)
  - efficient version of above that reuses state values between iterations

• Alternative view of A\*

all v-values initially are infinite;

#### **ComputePath function**

while( $s_{goal}$  is not expanded AND  $OPEN \neq 0$ ) remove *s* with the smallest [g(s) + h(s)] from OPEN; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');

insert *s* ' into *OPEN*;

### • Alternative view of A\*

all *v*-values initially are infinite;

#### **ComputePath function**

v-value – the value of a state during its expansion (infinite if state was never expanded)

while( $s_{goal}$  is not expanded AND  $OPEN \neq 0$ ) remove *s* with the smallest [g(s) + h(s)] from OPEN; insert *s* into *CLOSED*;

v(s)=g(s);

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

• Alternative view of A\*

all *v*-values initially are infinite;

#### **ComputePath function**

while( $s_{goal}$  is not expanded AND  $OPEN \neq 0$ ) remove *s* with the smallest [g(s) + h(s)] from OPEN; insert *s* into *CLOSED*;

v(s)=g(s);

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

• 
$$g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$$

Alternative view of A\*

all *v*-values initially are infinite;

#### **ComputePath function**

```
while(s_{goal} is not expanded AND OPEN \neq 0)
remove s with the smallest [g(s) + h(s)] from OPEN;
insert s into CLOSED;
```

v(s)=g(s);

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

• 
$$g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$$

• *OPEN*: a set of states with  $v(s) \ge g(s)$ all other states have v(s) = g(s)

overconsistent state

consistent state

• Alternative view of A\*

all *v*-values initially are infinite;

#### **ComputePath function**

while( $s_{goal}$  is not expanded AND  $OPEN \neq 0$ ) remove *s* with the smallest [g(s) + h(s)] from OPEN; insert *s* into *CLOSED*;

v(s)=g(s);

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

- $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$
- OPEN: a set of states with v(s) > g(s) all other states have v(s) = g(s)
- <u>A\* expands overconsistent states in the order of their f-values</u>

• Making A\* reuse old values:

initialize OPEN with all overconsistent states;

#### ComputePathwithReuse function

while( $f(s_{goal}) > \text{minimum } f\text{-value in } OPEN$ ) remove s with the smallest [g(s) + h(s)] from OPEN; insert s into CLOSED;

v(s)=g(s);

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

- $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$
- *OPEN*: a set of states with v(s) > g(s)all other states have v(s) = g(s)
- <u>A\* expands overconsistent states in the order of their f-values</u>

all you need to do to

make it reuse old values!

 Making A\* reuse old values: Why do we need this change? initialize OPEN with all overconsistent states; ComputePathwithReuse function while(f(s<sub>goal</sub>) > minimum f-value in OPEN)
remove s with the smallest [g(s) + h(s)] from OPEN; insert s into CLOSED;

v(s)=g(s);

for every successor *s* ' of *s* such that *s* 'not in *CLOSED* 

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

- $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$
- *OPEN*: a set of states with v(s) > g(s)all other states have v(s) = g(s)
- <u>A\* expands overconsistent states in the order of their f-values</u>







after ComputePathwithReuse terminates: all g-values of states are equal to final A\* g-values



we can now compute a least-cost path

• Making weighted A\* reuse old values:

initialize OPEN with all overconsistent states;

#### **ComputePathwithReuse function**

while(f(s<sub>goal</sub>) > minimum f-value in OPEN )
remove s with the smallest [g(s)+ ɛh(s)] from OPEN;
insert s into CLOSED;

the exact same thing as with  $A^*$ 

v(s)=g(s);

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

• Making weighted A\* reuse old values:

initialize OPEN with all overconsistent states;

#### **ComputePathwithReuse function**

while( $f(s_{goal}) > \text{minimum } f$ -value in *OPEN*) remove *s* with the smallest  $[g(s) + \varepsilon h(s)]$  from *OPEN*; insert *s* into *CLOSED*;

v(s)=g(s);

for every successor s' of s

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s'); if s' not in CLOSED then insert s' into OPEN; To maintain the invariant:  $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$ 

the exact same

thing as with A\*

# Anytime Repairing A\* (ARA\*)

• Efficient series of weighted A\* searches with decreasing  $\varepsilon$ :

set  $\varepsilon$  to large value;

 $g(s_{start}) = 0$ ; v-values of all states are set to infinity;  $OPEN = \{s_{start}\}$ ; while  $\varepsilon \ge 1$ 

 $CLOSED = \{\};$ 

ComputePathwithReuse();

publish current  $\varepsilon$  suboptimal solution;

decrease *ɛ*;

initialize OPEN with all overconsistent states;

• Efficient series of weighted A\* searches with decreasing  $\varepsilon$ :

set  $\varepsilon$  to large value;

 $g(s_{start}) = 0$ ; v-values of all states are set to infinity;  $OPEN = \{s_{start}\}$ ; while  $\varepsilon \ge 1$ 

 $CLOSED = \{\};$ 

ComputePathwithReuse();

publish current  $\varepsilon$  suboptimal solution;

decrease *ɛ*;

initialize OPEN with all overconsistent states;



• Efficient series of weighted A\* searches with decreasing  $\varepsilon$ :

initialize OPEN with all overconsistent states;

#### **ComputePathwithReuse function**

while(f(s<sub>goal</sub>) > minimum f-value in OPEN )
remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');if s' not in CLOSED then insert s' into OPEN;

Does OPEN contain ALL overconsistent states (i.e., states s' whose v(s') > g(s'))?

• Efficient series of weighted A\* searches with decreasing  $\varepsilon$ :

initialize OPEN with all overconsistent states;

#### **ComputePathwithReuse function**

while(f(s<sub>goal</sub>) > minimum f-value in OPEN )
remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
if s' not in CLOSED then insert s' into OPEN;
otherwise insert s' into INCONS

• *OPEN U INCONS* = all overconsistent states

• Efficient series of weighted A\* searches with decreasing  $\varepsilon$ :

set  $\varepsilon$  to large value;

 $g(s_{start}) = 0$ ; *v*-values of all states are set to infinity;  $OPEN = \{s_{start}\}$ ; while  $\varepsilon \ge 1$ 

 $CLOSED = \{\}; INCONS = \{\};$ 

ComputePathwithReuse();

publish current  $\varepsilon$  suboptimal solution;

decrease *ɛ*;

initialize *OPEN* = *OPEN U INCONS*;

all overconsistent states (exactly what we need!)

• A series of weighted A\* searches



• Simple example on the board!

- Reasons for repeated planning
- What are anytime algorithms, anytime planners
- How ARA\* operates
- Theoretical properties of ARA\*