Checking Threat Modeling Data Flow Diagrams for
Implementation Conformance and Security

Marwan Abi-Antoun
Carnegie Mellon University
mabianto@cs.cmu.edu

ABSTRACT

Threat modeling is a lightweight approach to reason about
application security and uses Data Flow Diagrams (DFDs)
with security annotations. We extended Reflexion Models
to check the conformance of an as-designed DFD with an
approximation of the as-built DFD obtained from the im-
plementation. We also designed a set of properties and an
analysis to help novice designers think about security threats
such as spoofing, tampering and information disclosure.

Categories and Subject Descriptors: D.2.4 [Software/Pro-

gram Verification]: Validation
General Terms: Design, Documentation, Security

Keywords: Threat modeling, Data Flow Diagrams.

1. INTRODUCTION

For several years, Microsoft, Boeing and other companies
have been using threat modeling [6, 7] to find security design
flaws during development. Threat modeling looks at a sys-
tem from an adversary’s perspective to anticipate security
attacks and is based on the premise that an adversary can-
not attack a system without a means of supplying it with
data or otherwise interacting with it. Documenting the sys-
tem’s entry points, i.e., interfaces it has with the rest of the
world, is crucial for identifying possible vulnerabilities.

Threat modeling uses traditional Data Flow Diagrams
(DFDs) [8] with security-specific annotations to describe
how data enters, leaves and traverses the system. One large
project at Microsoft has over 1,400 completed and reviewed
threat modeling DFDs, so we needed a semi-automated ap-
proach to support and enhance the current threat modeling
process, still mostly manual [4].

We defined a semi-formal DFD representation with an
explicit mapping to the implementation (Section 2). Our
first contribution is checking the conformance between an
as-built DFD and an as-designed DFD (Section 3) using ex-
tensions to Reflexion Models [5]. Our second contribution is
a security analysis at the level of a DFD (Section 4).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’07, November 5-9, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

Daniel Wang
Microsoft Corporation
daniwang@microsoft.com

Peter Torr
Microsoft Corporation
ptorr@microsoft.com

User Input (+) /Graphics Rendering (+)

Game Data (#)\S‘atings (+) | Settings (#)

Game Data (+)
N I I
Game File (#) Settings File (#)
I I
DFD LEGEND
[. |
|
External ! TRUST LEGEND
Interactor Process | Boundary |
Data flow i
N
Data store
N

Figure 1: Minesweeper as-designed DFD.

2. DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) for Minesweeper, a game
that ships with Windows ™™ is shown in Figure 1.

We represent a DFD as a runtime view following the
Component-and-Connector viewtype [2, pp. 364-365]. A
DFD has a fixed set of component types: Process, High-
LevelProcess, DataStore, and Externallnteractor [6].

A Process represents a task in the system that processes
data or performs some action based on the data.

A DataStore represents a repository where data is saved
or retrieved, but not changed. Examples of data stores in-
clude a database, a file, or the Registry — a database of
configuration settings in Windows operating systems.

An Externallnteractor represents an entity that exists out-
side the system being modeled and which interacts with the
system at an entry point: it is either the source or desti-
nation of data. Typically, a human who interacts with the
system is modeled as an Externallnteractor.

One connector type, DataFlow, represents data transferred
between elements.

Typically, a Context Diagram shows the entire functional-
ity of the system represented as a single node. That node is
then broken into multiple elements in a Level-0 diagram.
From there, Level-1, Level-2, etc., diagrams can be con-
structed. In our approach, we check conformance between
two Level-n DFDs, one as-built, and the other as-designed.

3. CHECKING CONFORMANCE

The basic idea to check conformance is to extract the as-
built DFD from the implementation and compare it the as-
designed DFD using Reflexion Models [5], but with some
extensions. In the latter, a source model is extracted using
a third-party tool from the source code. The user posits the
as-designed high-level model and then a mapping between
the source and high-level models. Pushing each interaction
described in the source model through the map produces in-
ferred edges between high-level model entities. A computa-
tion then compares the inferred edges with the edges stated
in the high-level model to produce the reflezion model.

Match Rules, Function Groups map from the source model
to the high-level model.

Match Rules. In Reflexion Models, the mapping be-
tween the source model and the high-level model is specified
entirely each time. In our approach, a reusable catalog of
match rules captures, for a given platform, some of the se-
curity domain expertise regarding security-relevant APIs for
file access, registry access, network access, command-line ac-
cess, event log access, etc.

Function Groups. Match Rules are often sufficient to
obtain a Level-1 DFD. However, obtaining a Level-2 DFD
for an application often requires looking at the internals of
the application binaries. When threat modeling, the ex-
posed API of a subsystem is broken up into a set of logically-
related functions and each set — rather than each individual
function, is modeled as an entry point.

A Function Group logically clusters the services provided
by a set of binaries into a DFD element. The earlier Match
Rules involve system binaries and are reusable across ap-
plications. Function Groups are application- and scenario-
specific, so they are added to the DFD model for a given
scenario. One function group can involve different binaries
as well, since one may want to group in the same logical en-
try point, a wrapper function defined in a binary that simply
calls another function in another binary.

Even for an application as simple as Minesweeper, the con-
formance check revealed several noteworthy absences. The
as-designed DFD (Figure 1) failed to mention two entry
points, the Registry and the Game Explorer (See Figure 2).
The Game Explorer enforces parental controls, so it must
be included as an entry point in the DFD.

Reflexion Models Extensions. The base Reflexion
Models technique produced a large number of false posi-
tives and required excessive manual input. We needed to
extend it make it practical to check existing threat model-
ing DFDs. Although some of these extensions are specific
to DFDs, others are more widely applicable.

First, in Reflexion Models, map entries are considered an
ordered sequence and not a set. Using a set enables a given
source model element to map to multiple elements in the
high-level model and makes for a more stable map.

Building a map from scratch each time is a laborious

DirectX

User API

“User Input Graphics Rendering

Game
Application

ettings | N
S
Y
3
—— I Ga‘ne —
Game File Settings File Explorer Registry
—— I —
CONFORMANCE LEGEND

: |
lOverride - Absence ! Divergence lConvergence
v

Figure 2: Checking conformance for Minesweeper

process. In one Reflexion Models case study, the map of
one product contained more than 1,000 entries [5, p. 372].
We also found ourselves defining similar maps for different
systems. Although our match rules and function groups
could produce the same flat map as Reflexion Models, they
are more structured and separate the shared parts of the
map that are reusable across different applications from the
application-specific ones.

Reflexion Models uses eight different inputs and outputs,
which makes the interaction needlessly complex: (1) source
model; (2) high-level model; (3) mapping; (4) configuration,
i.e., node shapes, colors, etc.; (5) exclusions or exceptions;
(6) reflexion model; (7) traceability information; and (8) er-
rors or unmapped entries. In later implementations, some
of these inputs (e.g., 2,3,4) and outputs were unified.

The computation of the Reflexion Model for DFDs con-
siders the node type defined in the high-level model, and
thus requires a more unified representation (Figure 3). Ba-
sicEntity, the base component type, stores the conformance
finding (discussed below) in the finding property.

Conformance Findings. In Reflexion Models, an edge
difference can be: Convergent, if it is both in the as-built
DFD and in the as-designed DFD; Divergent, if it is in the
as-built DFD, but not in the as-designed DFD; and Absent,
if it is in the as-designed DFD, but not in the as-built DFD.
We defined the following additional classifications:

o Fzxcluded: Self-edges are prohibited in a threat mod-
eling DFD. To reduce the number of false positives,
a self-edge that is automatically inferred is automati-
cally marked as Fxcluded.

o AmbiguousDirection: in some cases, the analysis can-
not determine the directionality of a data flow. To
reduce the number of false positives, if an edge exists
but its direction cannot be determined, the analysis
automatically accepts it as a convergence, but flags it

differently to distinguish it from a true convergence.
An edge with an ambiguous direction is shown as a
solid edge, as opposed to a bold edge for a true con-
vergence. An example of such a finding is the “Game
Data” DataFlow directed from the “Game File” DataS-
tore to the “Game Application” Process in Figure 2.

e FEzxternalEntity: to reduce the number of false posi-
tives, we extended Reflexion Models such that the node
types in the high-level model can affect the mapping
from the source model to the high-level model entities.
A DFD does not show a DataFlow between an External-
Interactor and a DataStore or another Externallnteractor
since those would belong to the DFD of the Externalln-
teractor. Such an edge, when inferred, is automatically
classified as EzternalEntity.

Conformance Exceptions. We generalized Reflexion
Models annotations into conformance exceptions. The user
can manually override any finding in the Reflexion Model
and specify a reason for the override. Each conformance ex-
ception documents the original finding, the overridden find-
ing and the reason for the override in the DFD model.

Traceability. In the base Reflexion Models, traceabil-
ity is discarded between invocations. Our DFD representa-
tion represents the traceability information in the high-level
model (Figure 3) using provided and required services.

Each Process, Externallnteractor and DataStore maintains
a list of services it provides. Each DataFlow shows the ser-
vices involved in the details property, where a connection
binds a required service to a provided service.

During conformance checking, traceability information from
the source model is added to each DataFlow that is not Ab-
sent. For each conformance exception, traceability infor-
mation consisting of the call information is saved with the
conformance exception in the DFD representation. This is
used when re-running the analysis: if there is a conformance
exception associated with a computed edge, the call infor-
mation of the computed edge is compared to the previously
saved call information. If the analysis detects a discrepancy
between the current traceability information and that pre-
viously stored with the conformance exception, it flags the
exception as suspicious.

Evaluation. An evaluation of the approach on subsys-
tems from production code shows that it can find omitted
or outdated information in existing DFDs [1].

4. SECURITY ANALYSIS

High-quality DFDs are often annotated with security rele-
vant information. We formalized a core set of security prop-
erties in the DFD representation. Many of these proper-
ties are enumerations with pre-defined values and a default
value of Unknown. The complete DFD representation with
the conformance findings, traceability to code and security
properties is shown in Figure 3.

For instance, all DFD elements have a trustLevel property.
In addition to the common properties, there are type-specific
properties. Some of the possible DataStore-specific proper-
ties include readProtection and secrecyMethod.

If no meaningful value for a property is specified, and if
providing that additional information can enable additional
checks, the analysis requests more information from the user,
e.g., by suggesting entering a value for the trustLevel of a
DataFlow in relation to its source (other than Unknown).

By definition, the trustLevel of a Process — i.e., code

Model

— settings: Settings

— dfd: List<BasicEntity>
Settings

— binaries: List<String>

— matchrules: List<MatchRule>

— functiongroups: List<FunctionGroup>

— exceptions: List<ConformanceException>
MatchRule

— name: String // e.g., “Registry”

— type: ShapeType // e.g., DataStore

— binary: String // e.g.,“advapi32.dll”

— match: String // e.g., “Reg.+” or “Init”
FunctionGroup

— name: String // e.g., “Contact APIs”

— type: ShapeType // e.g., Process

— services: List<Service>
Service

— binary: String // e.g., “app.dll”

— function: String // e.g., “Initialize”
ConformanceException

— source: BasicEntity
destination: BasicEntity
— details: List<Connection>
finding: Finding

— reason: String
Connection

— provided: Service

— required: Service
Finding: Absent | Convergent | Divergent | Excluded
| Overridden | AmbiguousDirection | ExternalEntity |
Unknown
ShapeType: Process | DataStore | DataFlow ...
BasicEntity

— name: String
shapeType: ShapeType
— services: List<Service>
trustLevel: TrustLevel

— howFound: HowFound

— owner: Owner

— finding: Finding
Process extends BasicEntity

— inputTrustLevel: TrustLevel

— performsAuthentication: boolean

— authenticationMethod: Authentication

— performsAuthorization: boolean
authorizationMethod: Authorization

— performsValidation: boolean

— validationMethod: Validation
DataFlow extends BasicEntity

— source: BasicEntity

— destination: BasicEntity

— secrecyMethod: Secrecy

— integrityMethod: Integrity

— details: List<Connection>
DataStore extends BasicEntity

— readProtection: Protection

— writeProtection: Protection

— secrecyMethod: Secrecy

— integrityMethod: Integrity

Externallnteractor extends BasicEntity
TrustLevel: None | High | Medium | Low | Unknown
HowFound: HardCoded | ...| Mixed | Unknown
Owner: ThisComponent | CompanyTeam | Anybody
| ...| Mixed | Unknown

Protection: None | SystemACLs | ... | Other
Secrecy: None | Encryption | ... | Other
Integrity: None | DigitalSignature | ... | Other
Authentication: None | Windows | ... | Other
Authorization: None | RoleBased | ...| Other
Validation: None | ManualParsing | ... | Other

Figure 3: Extended DFD representation.

that is shipped part of the application, must be High. If
that is not the case, then that element must be represented
as an Externallnteractor. A DataStore, Externallnteractor or
a DataFlow can have any trustLevel. Since an element’s
trustLevel controls several security checks, it is also repre-
sented graphically (See Figure 1).

The analysis looks for security flaws such as Spoofing,
Tampering, Repudation, Information Disclosure, Denial of
Service and Elevation of Privilege (STRIDE) [3, pp. 83-87].

For each of the rules discussed below, the analysis works
as follows (we illustrate it with the tampering rule T1):

e Analyze threats: an attacker tampers with the con-
tents of a DataStore whose trustLevel is High;

e Analyze mitigations: if a readProtection and writePro-
tection are SystemACLs, assume that the threat of tam-
pering is reduced;

e Suggest remedies: if readProtection and writePro-
tection are None, suggest the remedy in the rule: “use
Access Control Lists (ACLs)”. A remedy is often just
an advice for the modeler. Unless the remedy results in
changing the values of some properties, the tool cannot
always check whether they are performed.

The rules, organized by category, include:

Spoofing. An attacker pretends to be someone else.

e S1. Threat: If a DataFlow’s trustLevel is higher than
the trustLevel of the DataFlow’s source, the source can
potentially spoof the trusted data;

Remedy: ensure that the flow is not treated as more
trusted than the source entity.

e S2. Threat: An Externallnteractor with a trustLevel
other than None can be easily spoofed;

Remedy: ensure that strong authentication and autho-
rization constraints are in place;

Mitigation: if performsAuthentication and performsAutho-

rization are set to true, the methods of authentication
and authorization must be set using authentication-
Method and authorizationMethod.

e S3. Threat: If howFound property is set to Unknown,
the entity has no defined mechanism for being located;
Remedy: set the howFound property.

e S4. Threat: If howFound is set to HardCoded, the lo-
cation of entity is hard-coded into the system binaries,
so it cannot be spoofed.

e S5. Threat: If howFound is set to Pointer, the location
of this entity is pointed to by another entity;
Remedy: ensure that the referring entity cannot spoof
the name or location of this entity, or cause the system
to access an unexpected entity.

e S6. Threat: If howFound is set to Mixed, the entity
has some hard-coded and some dynamic entities;
Remedy: include a more detailed diagram that breaks
the entity up into individual parts.

Tampering. Data is changed in transit or at rest.

e T1. Threat: If the trustLevel of a DataStore is other
than None, it is possible for the contents to be tam-
pered with or read by an attacker;

Remedy: add Access Control Lists (ACLs) to the Data-
Store or take other precautions;
Mitigation: readProtection and writeProtection are set
to values other than Unknown or None.
Information Disclosure. An attacker steals data while
in transit or at rest.
e I1. Threat: If the trustLevel of a DataFlow’s source is

higher than that of its destination, information disclo-
sure is possible;

Remedy: ensure that no sensitive information is leaked
in this flow.

e I2. Threat: If the trustLevel of a DataFlow’s source has
a value that is lower than the trustLevel of the destina-
tion, look for potential flaws;

Remedy: ensure that the destination does not implic-
itly trust the input as it could be tainted.

Denial of Service. An attacker interrupts the legitimate
operation of a system. Such a threat may arise if messages
are not validated before use (e.g., by stripping prohibited
escape characters), thus allowing a rogue client to crash the
system and cause a denial of service for other valid clients.

e D1. Threat: An Externallnteractor with a trustLevel
other than High can launch a denial of service attack.

Ownership. To avoid security flaws that arise when
teams make different security assumptions about subsystems
that may interact, each element is assigned an owner:

e O1. Threat: An Externallnteractor’s owner is set to
ThisComponent;

Remedy: mark the entity’s owner as being external or
convert the entity into a process or other type.

e O2. Threat: If an entity’s owner is marked as Any-
body, its trustLevel must be None since this code can
be written by anyone and must be untrusted.
Remedy: either update the entity’s owner or change its
trustLevel.

e O3. Threat: An entity’s owner is CompanyTeam.
Remedy: trade threat models with the other team so
each team is aware of the other’s assumptions.

e O4. Threat: An entity’s owner is Mixed.

Remedy: expand the entity to have a single owner in
a more detailed diagram.

Checking DFDs under development found both ailed san-

ity checks to missing critical security information.

5. CONCLUSION

The Reflexion Models technique is used to check the con-
formance between an as-built DFD and an as-designed DFD.
The check yields valuable traceability information that can
be used by other code quality tools. Finally, extending
the DFD representation with security properties enables an
analysis of early DFDs produced by developers with limited
threat modeling experience.

6. REFERENCES

[1] M. Abi-Antoun, D. Wang, and P. Torr. Checking Threat
Modeling Data Flow Diagrams for Implementation
Conformance and Security. Technical Report
CMU-ISRI-06-124, Carnegie Mellon University, 2006.

[2] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers,

R. Little, R. Nord, and J. Stafford. Documenting Software
Architecture: View and Beyond. Addison-Wesley, 2003.

[3] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft
Press, 2nd edition, 2003.

[4] M. Howard and S. Lipner. The Security Development
Lifecycle. Microsoft Press, 2006.

[5] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
Reflexion Models: Bridging the Gap between Design and
Implementation. IEEE Trans. Softw. Eng., 27(4), 2001.

[6] F. Swiderski and W. Snyder. Threat Modeling. Microsoft
Press, 2004.

[7] P. Torr. Demystifying the Threat-Modeling Process. IEEE
Security and Privacy, 03(5):66—70, 2005.

[8] E. Yourdon. Structured Analysis. Prentice Hall, 1988.

