

10-701 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

K-Means

Matt Gormley Lecture 17 Mar. 20, 2019

K-MEANS

K-Means Outline

- Clustering: Motivation / Applications
- Optimization Background
 - Coordinate Descent
 - Block Coordinate Descent
- Clustering
 - Inputs and Outputs
 - Objective-based Clustering
- K-Means
 - K-Means Objective
 - Computational Complexity
 - K-Means Algorithm / Lloyd's Method
- K-Means Initialization
 - Random
 - Farthest Point
 - K-Means++

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

Useful for:

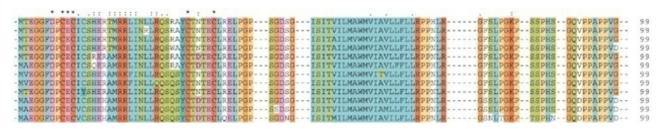
- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).

Applications (Clustering comes up everywhere...)

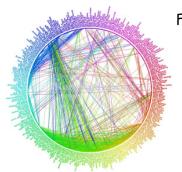
Cluster news articles or web pages or search results by topic.

Cluster protein sequences by function or genes according to expression

profile.



Cluster users of social networks by interest (community detection).



Facebook network



Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

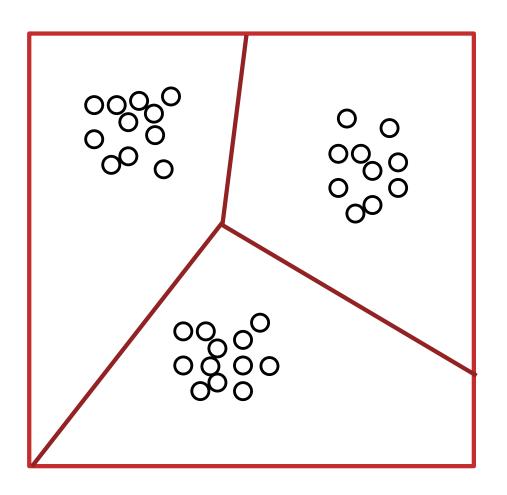
• And many many more applications....

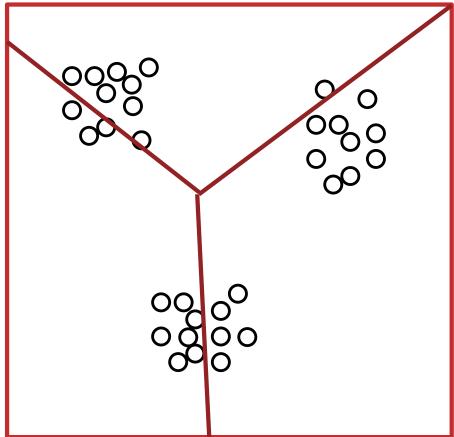
Optimization Background

- Coordinate Descent
- Block Coordinate Descent

Clustering

Question: Which of these partitions is "better"?





Clustering

- Inputs and Outputs
- Objective-based Clustering

K-Means

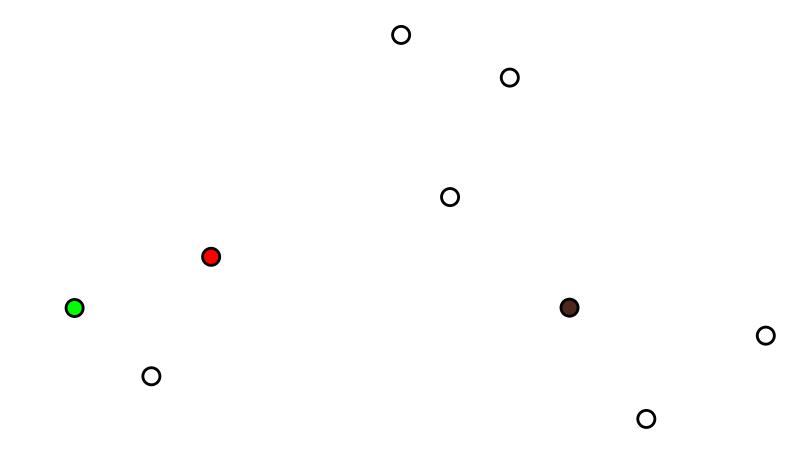
- K-Means Objective
- Computational Complexity
- K-Means Algorithm / Lloyd's Method

K-Means Initialization

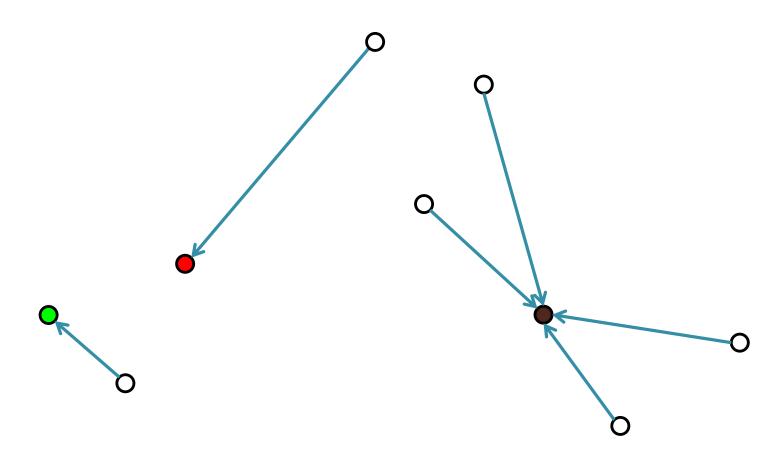
- Random
- Furthest Traversal
- K-Means++

Example: Given a set of datapoints

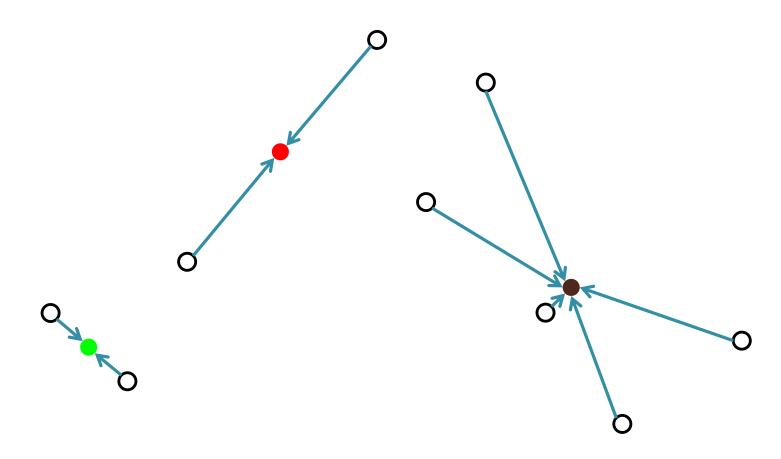
Select initial centers at random



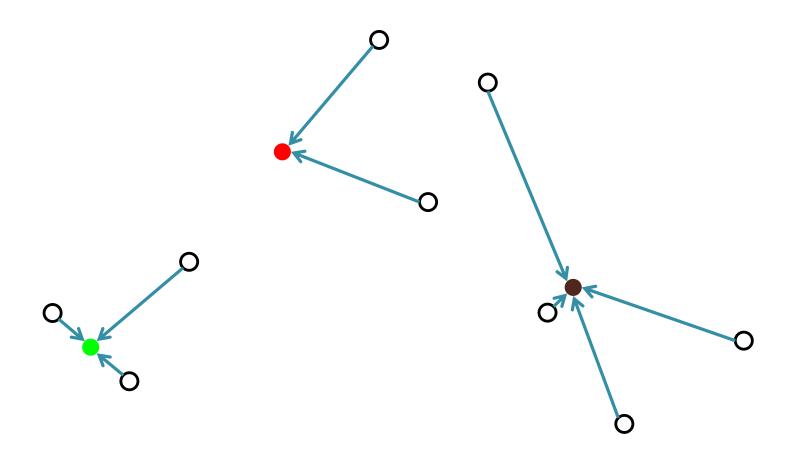
Assign each point to its nearest center



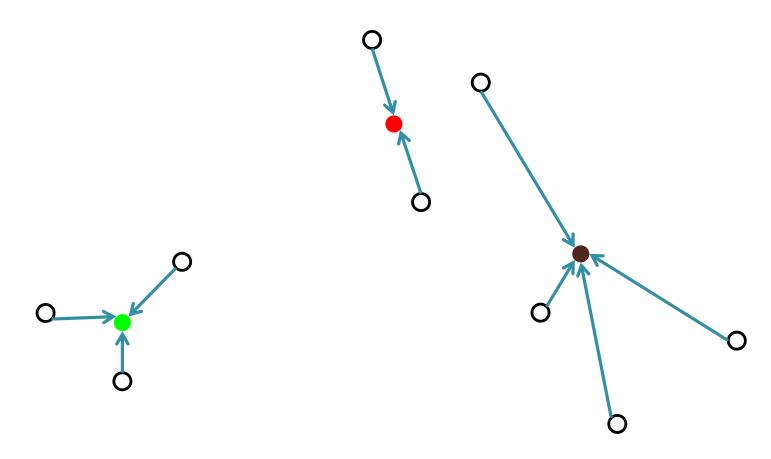
Recompute optimal centers given a fixed clustering



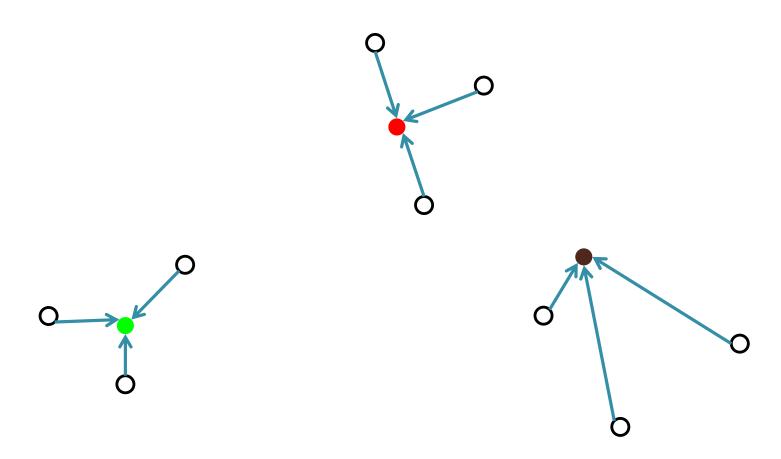
Assign each point to its nearest center



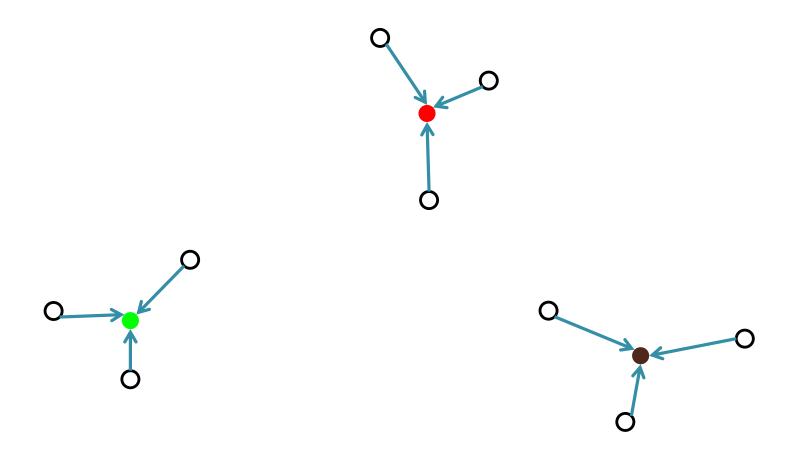
Recompute optimal centers given a fixed clustering



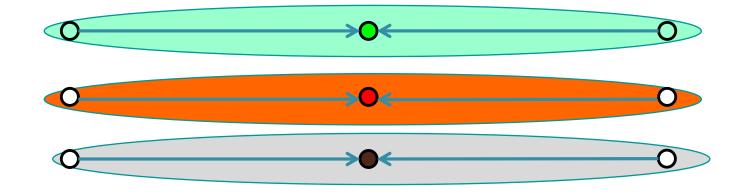
Assign each point to its nearest center



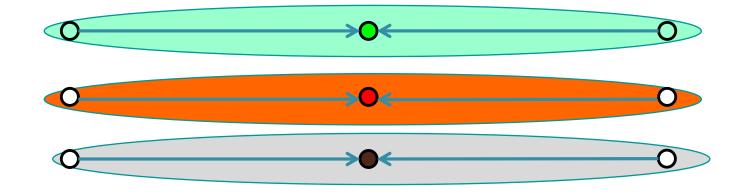
Recompute optimal centers given a fixed clustering



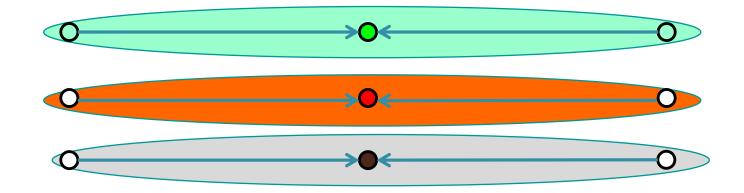
Get a good quality solution in this example.



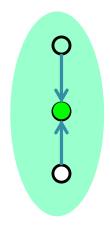
It always converges, but it may converge at a local optimum that is different from the global optimum, and in fact could be arbitrarily worse in terms of its score.

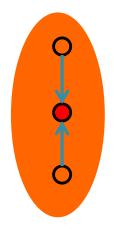


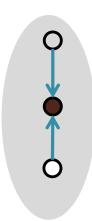
Local optimum: every point is assigned to its nearest center and every center is the mean value of its points.

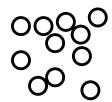


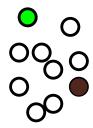
.It is arbitrarily worse than optimum solution....

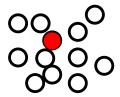




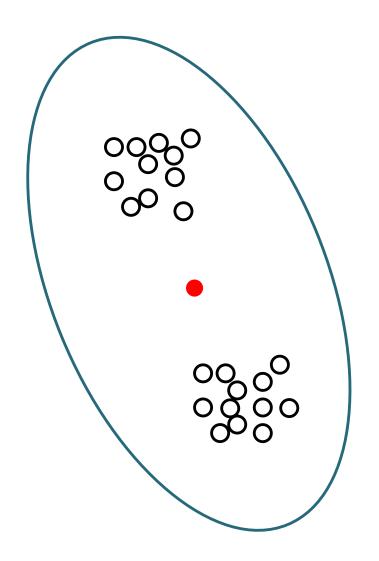


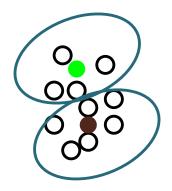






This bad performance, can happen even with well separated Gaussian clusters.





This bad performance, can happen even with well separated Gaussian clusters.

Some Gaussian are combined.....

Learning Objectives

K-Means

You should be able to...

- Distinguish between coordinate descent and block coordinate descent
- Define an objective function that gives rise to a "good" clustering
- 3. Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- 4. Implement the K-Means algorithm
- 5. Connect the nonconvexity of the K-Means objective function with the (possibly) poor performance of random initialization