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Decision Trees Review

Simple Training Data Set

Day   Outlook    Temperature   Humidity    Wind   PlayTennis?

Each internal node: test one discrete-valued attribute Xi 

Each branch from a node: selects one value for Xi 

Each leaf node: predict Y  (or P(Y|X ∈ leaf))

A Decision tree for  
f: (Outlook, Temperature, Humidity, Wind) ! PlayTennis? 
    (   X1            X2                  X3        X4    ) !        Y



Entropy
Entropy H(X) of a random variable X

Specific conditional entropy H(X|Y=v) of X given Y=v :

Mutual information (aka Information Gain) of X and Y :

Conditional entropy H(X|Y) of X given Y :

Information Gain is the mutual information between 
input attribute A and target variable Y 

Information Gain is the expected reduction in entropy 
of target variable Y for data sample S, due to sorting 
on variable A  

Example in class
• Try to find IG(Y,X1), IG(Y,X2) and 

IG(Y,X3)

X1 X2 X3 Y
1 1 1 +
1 1 0 +

0 0 1 -
1 0 0 -

Example in class
• H(Y) = 1  
• H(Y|X1=1) = -1/3 log2(1/3) - 2/3 log2(2/3) = 

0.92 
• H(Y|X1=0) = -1log2(1) = 0 
• H(Y|X1) = 3/4 * H(Y|X1=1) +1/4* H(Y|X1=0) ~ 

0.92 
• IG(Y,X1) ~ 0.31 

X1 X2 X3 Y
1 1 1 +
1 1 0 +
0 0 1 -
1 0 0 -



Example in class
• H(Y) = 1  
• H(Y|X2=1) = -1log2(1) = 0 
• H(Y|X2=0) = -1log2(1) = 0 
• H(Y|X2) = 1/2 * H(Y|X2=1) +1/2* H(Y|X2=0)=0 
• IG(Y,X2) = 1 

• Pick X2!
X1 X2 X3 Y
1 1 1 +
1 1 0 +
0 0 1 -
1 0 0 -

Example in class
• H(Y) = 1  
• H(Y|X3=1) = -1/2log2(1/2) -1/2log2(1/2) = 1 
• H(Y|X3=0) = -1/2log2(1/2) -1/2log2(1/2) = 1 
• H(Y|X3) = 1/2 * H(Y|X3=1) +1/2* H(Y|X3=0)=1 
• IG(Y,X3) = 0 

• X3 doesn’t help at all at this step
X1 X2 X3 Y
1 1 1 +
1 1 0 +
0 0 1 -
1 0 0 -

Which Tree Should We Output?
• ID3 performs heuristic search through space 

of decision trees 
• It stops at smallest acceptable tree. Why?

Occam’s razor: prefer the 
simplest hypothesis that fits the 

data

Why Prefer Short Hypotheses? (Occam’s Razor)

Argument in favor: 
• Fewer short hypotheses than long ones 
! a short hypothesis that fits the data is less likely to 

be a statistical coincidence 
! highly probable that a sufficiently complex 

hypothesis will fit the data 

Argument opposed: 
• Also fewer hypotheses with prime number of nodes 

and attributes beginning with “Z” 
• What’s so special about “short” hypotheses?



Overfitting
Consider a hypothesis h and its 
• Error rate over training data: 
• True error rate over all data:  

We say h overfits the training data if 

Amount of overfitting = 



Split data into training and validation set

Create tree that classifies training set correctly

Random Forests
Key idea:  
1. learn a collection of many trees 
2. classify by taking a weighted vote of the trees 

Empirically successful.  Widely used in industry. 
• human pose recognition in Microsoft kinect 
• medical imaging – cortical parcellation 
• classify disease from gene expression data 

How to train different trees 
1. Train on different random subsets of data 
2. Randomize the choice of decision nodes



Random Forests
Key idea:  
1. learn a collection of many trees 
2. classify by taking a weighted vote of the trees 

Empirically successful.  Widely used in industry. 
• human pose recognition in Microsoft kinect 
• medical imaging – cortical parcellation 
• classify disease from gene expression data 

How to train different trees 
• Train on different random subsets of data 
• Randomize the choice of decision nodes

more to come

later lecture on boosting

Questions to think about (1)
• Consider target function f: (x1,x2) ! y, 

where x1 and x2 are real-valued, y is boolean.  
What is the set of decision surfaces 
describable with decision trees that use each 
attribute at most once?

Questions to think about (2)
• ID3 and C4.5 are heuristic algorithms that 

search through the space of decision trees.  
Why not just do an exhaustive search?

Questions to think about (3)
• Why use Information Gain to select attributes 

in decision trees?  What other criteria seem 
reasonable, and what are the tradeoffs in 
making this choice?  



The Perceptron

Inspired by biological neurons

Dendrites 
(inputs from 
other neurons, 
can be 
excitatory or 
inhibitory)

Axon (output 
to other 
neurons)

Perceptron

b



Perceptron

b

prediction 
= SIGN(a) 

a = b+
DX

d=1

wdxd

Error driven learning

• At each step, return SIGN(a) 
• if SIGN(a)≠ y update parameter
• otherwise don’t change

a = b+
DX

d=1

wdxd
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Algorithm 5 PerceptronTrain(D, MaxIter)
1: wd  0, for all d = 1 . . . D // initialize weights
2: b  0 // initialize bias
3: for iter = 1 . . . MaxIter do
4: for all (x,y) 2 D do
5: a  ÂD

d=1 wd xd + b // compute activation for this example
6: if ya  0 then
7: wd  wd + yxd, for all d = 1 . . . D // update weights
8: b  b + y // update bias
9: end if

10: end for
11: end for
12: return w0, w1, . . . , wD, b

Algorithm 6 PerceptronTest(w0, w1, . . . , wD, b, x̂)
1: a  ÂD

d=1 wd x̂d + b // compute activation for the test example
2: return sign(a)

on to the next one. Second, it is error driven. This means that, so
long as it is doing well, it doesn’t bother updating its parameters.

The algorithm maintains a “guess” at good parameters (weights
and bias) as it runs. It processes one example at a time. For a given
example, it makes a prediction. It checks to see if this prediction
is correct (recall that this is training data, so we have access to true
labels). If the prediction is correct, it does nothing. Only when the
prediction is incorrect does it change its parameters, and it changes
them in such a way that it would do better on this example next
time around. It then goes on to the next example. Once it hits the
last example in the training set, it loops back around for a specified
number of iterations.

The training algorithm for the perceptron is shown in Algo-
rithm 4.2 and the corresponding prediction algorithm is shown in
Algorithm 4.2. There is one “trick” in the training algorithm, which
probably seems silly, but will be useful later. It is in line 6, when we
check to see if we want to make an update or not. We want to make
an update if the current prediction (just sign(a)) is incorrect. The
trick is to multiply the true label y by the activation a and compare
this against zero. Since the label y is either +1 or �1, you just need
to realize that ya is positive whenever a and y have the same sign.
In other words, the product ya is positive if the current prediction is
correct. It is very very important to check

ya  0 rather than ya < 0. Why??The particular form of update for the perceptron is quite simple.
The weight wd is increased by yxd and the bias is increased by y. The
goal of the update is to adjust the parameters so that they are “bet-
ter” for the current example. In other words, if we saw this example

from http://ciml.info/dl/v0_99/ciml-v0_99-ch08.pdf

Example: y = 1 and prediction is -1
• update w’ = w +yx = w + x  
• b’ = b + y = b+1



Does this move a in the right direction?

• update w’ = w +yx = w + x  
• b’ = b + y = b+1
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twice in a row, we should do a better job the second time around.
To see why this particular update achieves this, consider the fol-

lowing scenario. We have some current set of parameters w1, . . . , wD, b.
We observe an example (x, y). For simplicity, suppose this is a posi-
tive example, so y = +1. We compute an activation a, and make an
error. Namely, a < 0. We now update our weights and bias. Let’s call
the new weights w0

1, . . . , w0
D, b0. Suppose we observe the same exam-

ple again and need to compute a new activation a0. We proceed by a
little algebra:

a0 =
D

Â
d=1

w0
dxd + b0 (4.3)

=
D

Â
d=1

(wd + xd)xd + (b + 1) (4.4)

=
D

Â
d=1

wdxd + b +
D

Â
d=1

xdxd + 1 (4.5)

= a +
D

Â
d=1

x2
d + 1 > a (4.6)

So the difference between the old activation a and the new activa-
tion a0 is Âd x2

d + 1. But x2
d � 0, since it’s squared. So this value is

always at least one. Thus, the new activation is always at least the old
activation plus one. Since this was a positive example, we have suc-
cessfully moved the activation in the proper direction. (Though note
that there’s no guarantee that we will correctly classify this point the
second, third or even fourth time around!) This analysis hold for the case pos-

itive examples (y = +1). It should
also hold for negative examples.
Work it out.

?

Figure 4.3: training and test error via
early stopping

The only hyperparameter of the perceptron algorithm is MaxIter,
the number of passes to make over the training data. If we make
many many passes over the training data, then the algorithm is likely
to overfit. (This would be like studying too long for an exam and just
confusing yourself.) On the other hand, going over the data only
one time might lead to underfitting. This is shown experimentally in
Figure 4.3. The x-axis shows the number of passes over the data and
the y-axis shows the training error and the test error. As you can see,
there is a “sweet spot” at which test performance begins to degrade
due to overfitting.

One aspect of the perceptron algorithm that is left underspecified
is line 4, which says: loop over all the training examples. The natural
implementation of this would be to loop over them in a constant
order. The is actually a bad idea.

Consider what the perceptron algorithm would do on a data set
that consisted of 500 positive examples followed by 500 negative
examples. After seeing the first few positive examples (maybe five),
it would likely decide that every example is positive, and would stop

Does this move a in the right direction?

• update w’ = w +yx = w + x  
• b’ = b + y = b+1

44 a course in machine learning

twice in a row, we should do a better job the second time around.
To see why this particular update achieves this, consider the fol-

lowing scenario. We have some current set of parameters w1, . . . , wD, b.
We observe an example (x, y). For simplicity, suppose this is a posi-
tive example, so y = +1. We compute an activation a, and make an
error. Namely, a < 0. We now update our weights and bias. Let’s call
the new weights w0

1, . . . , w0
D, b0. Suppose we observe the same exam-

ple again and need to compute a new activation a0. We proceed by a
little algebra:

a0 =
D

Â
d=1

w0
dxd + b0 (4.3)

=
D

Â
d=1

(wd + xd)xd + (b + 1) (4.4)

=
D

Â
d=1

wdxd + b +
D

Â
d=1

xdxd + 1 (4.5)

= a +
D

Â
d=1

x2
d + 1 > a (4.6)

So the difference between the old activation a and the new activa-
tion a0 is Âd x2

d + 1. But x2
d � 0, since it’s squared. So this value is

always at least one. Thus, the new activation is always at least the old
activation plus one. Since this was a positive example, we have suc-
cessfully moved the activation in the proper direction. (Though note
that there’s no guarantee that we will correctly classify this point the
second, third or even fourth time around!) This analysis hold for the case pos-

itive examples (y = +1). It should
also hold for negative examples.
Work it out.

?

Figure 4.3: training and test error via
early stopping

The only hyperparameter of the perceptron algorithm is MaxIter,
the number of passes to make over the training data. If we make
many many passes over the training data, then the algorithm is likely
to overfit. (This would be like studying too long for an exam and just
confusing yourself.) On the other hand, going over the data only
one time might lead to underfitting. This is shown experimentally in
Figure 4.3. The x-axis shows the number of passes over the data and
the y-axis shows the training error and the test error. As you can see,
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One aspect of the perceptron algorithm that is left underspecified
is line 4, which says: loop over all the training examples. The natural
implementation of this would be to loop over them in a constant
order. The is actually a bad idea.

Consider what the perceptron algorithm would do on a data set
that consisted of 500 positive examples followed by 500 negative
examples. After seeing the first few positive examples (maybe five),
it would likely decide that every example is positive, and would stop

a becomes more positive 
(not guaranteed that a>0)

Does this move a in the right direction?

• update w’ = w +yx = w + x  
• b’ = b + y = b+1
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The only hyperparameter of the perceptron algorithm is MaxIter,
the number of passes to make over the training data. If we make
many many passes over the training data, then the algorithm is likely
to overfit. (This would be like studying too long for an exam and just
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One aspect of the perceptron algorithm that is left underspecified
is line 4, which says: loop over all the training examples. The natural
implementation of this would be to loop over them in a constant
order. The is actually a bad idea.

Consider what the perceptron algorithm would do on a data set
that consisted of 500 positive examples followed by 500 negative
examples. After seeing the first few positive examples (maybe five),
it would likely decide that every example is positive, and would stop

What is the update if 
y=-1 and we predict 1

When do we stop?
• Hyperparameter MaxIter 
• training too long could lead to overfitting 
• training for too few steps could lead to 

underfitting

test

train
error

# of training epochs



Randomizing samples helps
• permute the samples before starting 
• even better: permute the samples for 

each iteration

test (unpermuted)

test (permuted)
error

# of training epochs

What is the decision boundary?

What is the decision boundary?

w

a = b+
DX

d=1

wdxd = 0

How good is this algorithm?
• Convergence: an entire pass without 

changing the weights. 

• If the data is linearly separable, the 
algorithm will converge. But not 
necessarily to the “best” boundary



Notion of margin
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vector that separates the data. (And if the data is inseparable, then it
will never converge.) This is great news. It means that the perceptron
converges whenever it is even remotely possible to converge.

The second question is: how long does it take to converge? By
“how long,” what we really mean is “how many updates?” As is the
case for much learning theory, you will not be able to get an answer
of the form “it will converge after 5293 updates.” This is asking too
much. The sort of answer we can hope to get is of the form “it will
converge after at most 5293 updates.”

What you might expect to see is that the perceptron will con-
verge more quickly for easy learning problems than for hard learning
problems. This certainly fits intuition. The question is how to define
“easy” and “hard” in a meaningful way. One way to make this def-
inition is through the notion of margin. If I give you a data set and
hyperplane that separates itthen the margin is the distance between
the hyperplane and the nearest point. Intuitively, problems with large
margins should be easy (there’s lots of “wiggle room” to find a sepa-
rating hyperplane); and problems with small margins should be hard
(you really have to get a very specific well tuned weight vector).

Formally, given a data set D, a weight vector w and bias b, the
margin of w, b on D is defined as:

margin(D, w, b) =

(
min(x,y)2D y

�
w · x + b

�
if w separates D

�• otherwise
(4.8)

In words, the margin is only defined if w, b actually separate the data
(otherwise it is just �•). In the case that it separates the data, we
find the point with the minimum activation, after the activation is
multiplied by the label. So long as the margin is not �•,

it is always positive. Geometrically
this makes sense, but why does
Eq (4.8) yield this?

?For some historical reason (that is unknown to the author), mar-
gins are always denoted by the Greek letter g (gamma). One often
talks about the margin of a data set. The margin of a data set is the
largest attainable margin on this data. Formally:

margin(D) = sup
w,b

margin(D, w, b) (4.9)

In words, to compute the margin of a data set, you “try” every possi-
ble w, b pair. For each pair, you compute its margin. We then take the
largest of these as the overall margin of the data.1 If the data is not 1 You can read “sup” as “max” if you

like: the only difference is a technical
difference in how the �• case is
handled.

linearly separable, then the value of the sup, and therefore the value
of the margin, is �•.

There is a famous theorem due to Rosenblatt2 that shows that the 2 Rosenblatt 1958

number of errors that the perceptron algorithm makes is bounded by
g�2. More formally:

Notion of margin
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converges whenever it is even remotely possible to converge.

The second question is: how long does it take to converge? By
“how long,” what we really mean is “how many updates?” As is the
case for much learning theory, you will not be able to get an answer
of the form “it will converge after 5293 updates.” This is asking too
much. The sort of answer we can hope to get is of the form “it will
converge after at most 5293 updates.”

What you might expect to see is that the perceptron will con-
verge more quickly for easy learning problems than for hard learning
problems. This certainly fits intuition. The question is how to define
“easy” and “hard” in a meaningful way. One way to make this def-
inition is through the notion of margin. If I give you a data set and
hyperplane that separates itthen the margin is the distance between
the hyperplane and the nearest point. Intuitively, problems with large
margins should be easy (there’s lots of “wiggle room” to find a sepa-
rating hyperplane); and problems with small margins should be hard
(you really have to get a very specific well tuned weight vector).

Formally, given a data set D, a weight vector w and bias b, the
margin of w, b on D is defined as:

margin(D, w, b) =

(
min(x,y)2D y

�
w · x + b

�
if w separates D

�• otherwise
(4.8)

In words, the margin is only defined if w, b actually separate the data
(otherwise it is just �•). In the case that it separates the data, we
find the point with the minimum activation, after the activation is
multiplied by the label. So long as the margin is not �•,

it is always positive. Geometrically
this makes sense, but why does
Eq (4.8) yield this?

?For some historical reason (that is unknown to the author), mar-
gins are always denoted by the Greek letter g (gamma). One often
talks about the margin of a data set. The margin of a data set is the
largest attainable margin on this data. Formally:

margin(D) = sup
w,b

margin(D, w, b) (4.9)

In words, to compute the margin of a data set, you “try” every possi-
ble w, b pair. For each pair, you compute its margin. We then take the
largest of these as the overall margin of the data.1 If the data is not 1 You can read “sup” as “max” if you

like: the only difference is a technical
difference in how the �• case is
handled.

linearly separable, then the value of the sup, and therefore the value
of the margin, is �•.

There is a famous theorem due to Rosenblatt2 that shows that the 2 Rosenblatt 1958

number of errors that the perceptron algorithm makes is bounded by
g�2. More formally:

If data is linearly separable with margin    and 
||x||≤ 1, then algorithm will converge in    updates

�
1

�2

Relationship to stochastic gradient descent

• We can write the loss function of the 
perceptron as: 

• This is not differentiable, we need to 
learn more about sub-gradient methods  

• At each step, we update using only one 
datapoint 

L(y, ŷ) = max(0,�y(b+
X

d

wdxd))



Neural Networks

Every node is analogous to a neuron

Every node is analogous to a neuron

sigmoid unit

yjaj
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Every node is analogous to a neuron



How to train
• Calculate each output 
• Calculate output error E 
• Back-propagate E (weighting it by the 

gradient of previous layer and activation 
function) 

• Calculate the gradients dE/dw and     
dE/db 

• Update the parameters

Every node is analogous to a neuron

Backprop with one node per layer

sigmoid unit

yL-1      

aL-1

yL-2
wL-1

bL-1

Backprop with one node per layer

sigmoid unit

yL-1      

aL-1

yL-2
wL-1

bL-1

yL      

aL

wL

bL


