10-701 Introduction to Machine Learning (PhD)
Lecture 8: Perceptron and Neural Networks

Leila Wehbe
Carnegie Mellon University Decision Trees Review

Machine Learning Department

Slides partially based on Tom Mitchell’s
10-701 Spring 2016 material
Readings: Tom Mitchell Chapter 3
Hal Daumé Il Chapter 4

A Decision tree for

Simple Training Data Set f: (Outlook, Temperature, Humidity, Wind) > PlayTennis?

(% X, Xz X)=> Y

Day Outlook Temperature Humidity Wind PlayTennis?

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes Sunmy Overcast Rain

D4 Rain Mild High Weak Yes < _

D5 Rain Cool Normal Weak Yes Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes High Normal Strong Weak

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes No Yes No Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes Each internal node: test one discrete-valued attribute X;

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes Each branch from a node: selects one value for X;

D14 Rain Mild High Strong No

Each leaf node: predict Y (or P(Y|X € leaf))

Entropy

Entropy H(X) of a random variable X
n
H(X)=-Y P(X =1i)logy P(X =)
i=1

Specific conditional entropy H(X/Y=v) of X given Y=v :

HX[Y =v) = — an P(X = i]Y =v)logy P(X = i[Y =)
=1

Conditional entropy H(X/Y) of X given Y :

H(X\Y): Z P(Y:U)H(X|Y:1))
vEvalues(Y)

Mutual information (aka Information Gain) of X and Y :

I(X,Y) = H(X) - HX|Y) = HY) — HY|X)

Information Gain is the mutual information between
input attribute A and target variable Y

Information Gain is the expected reduction in entropy
of target variable Y for data sample S, due to sorting
on variable A

Gain(S, A) = Is(A,Y) = Hs(Y) — Hs(Y|A)

[29+,35-] Al1="7 [29+,35-] A2="

t f 1 f

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

Example in class

« Try to find IG(Y,X1), IG(Y,X2) and
IG(Y,X3)

SN
1T 1 1 +

1 1 0 +

0 0 1

1 0 O

Example in class

- H(Y)=1

e H(Y[X1=1) = -1/3 log2(1/3) - 2/3 log2(2/3) =
0.92

« H(Y|X1=0) = -1l0g2(1) = 0

o H(Y|X1) = 3/4 * H(Y|X1=1) +1/4* H(Y|X1=0) ~
0.92

. IG(Y,X1) ~ 0.31

oA o - _\E
o o -~ —\E
o =~ o —\E
oo 4 +i

Example in class

.« H(Y)=1

. H(Y|X2=1) = -1l0g2(1) = 0

« H(Y|X2=0) = -1l0g2(1) = 0

o H(Y|X2) = 1/2 * H(Y|X2=1) +1/2* H(Y|X2=0)=0
. IG(Y,X2) = 1

+ Pick X2!

- O - _\E
o O -~ —\E
o -~ o —\E
U . + +i

Example in class

e H(Y)=1

o H(Y|X3=1) = -1/2l0g2(1/2) -1/2l0g2(1/2) = 1

. H(Y|X3=0) = -1/2l0g2(1/2) -1/2l0g2(1/2) = 1

o H(Y|X3) = 1/2 * H(Y|X3=1) +1/2* H(Y|X3=0)=1
. IG(Y,X3) =0

« X3 doesn’t help at all at this step

N = N _\E
o o -~ —xE
o =~ o —\E
LR +ﬁ

Which Tree Should We Output?

» ID3 performs heuristic search through space
of decision trees

* |t stops at smallest acceptable tree. Why?
s

S,
<

ﬁ
-+ + ot

P

A2 A2

-+ — ot N
A3 A4

¢ >

Why Prefer Short Hypotheses? (Occam’s Razor)

Argument in favor:
* Fewer short hypotheses than long ones

- a short hypothesis that fits the data is less likely to
be a statistical coincidence

- highly probable that a sufficiently complex
hypothesis will fit the data

Argument opposed:

» Also fewer hypotheses with prime number of nodes
and attributes beginning with “Z”

* What's so special about “short” hypotheses?

Overfitting in Decision Trees

Consider adding noisy training example #15:
Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Sunny Overcast Rain

High Normal Strong Weak

No Yes No Yes

Overfitting

Consider a hypothesis / and its
* Error rate over training data: error;,.q,(h)
* True error rate over all data: errory..(h)

We say / overfits the training data if
erroriryue(h) > erroriqin(h)

Amount of overfitting =

erroriryue(h) — erroryrqamn(h)

Overfitting in Decision Tree Learning

09
0.85
08
0.75

07}/

Accuracy

0.65 M

0.6 On training data ——
On test data ----

0.55

L 1 1 !

05 L L L L L
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data

e Measure performance over separate validation
data set

e MDL: minimize
size(tree) + size(misclassifications(tree))

Reduced-Error Pruning

Split data into training and validation set
Create tree that classifies fraining set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?

Effect of Reduced-Error Pruning

o
©

o
%
G

o
()

o
9
G

©
3

Accuracy

o
o
&

On training data ——
On test data -—---
On test data (during pruning) -----

o
o

o
9
&

o
v

L L L L L L L L
10 20 30 40 50 60 70 80 920

[=]

Size of tree (number of nodes)

100

Random Forests

Key idea:
1. learn a collection of many trees
2. classify by taking a weighted vote of the trees

Empirically successful. Widely used in industry.
* human pose recognition in Microsoft kinect

» medical imaging — cortical parcellation

+ classify disease from gene expression data

How to train different trees
1. Train on different random subsets of data
2. Randomize the choice of decision nodes

Random Forests Questions to think about (1)

Key idea: » Consider target function f: (x1,x2) > v,
1. learn a collection of many trees where x1 and x2 are real-valued, y is boolean.
2. classify by taking a weighted vote of the trees What is the set of decision surfaces

describable with decision trees that use each
attribute at most once?

more to come

later lecture on boosting

How to train different trees
* Train on different random subsets of data
* Randomize the choice of decision nodes

Questions to think about (2) Questions to think about (3)

» ID3 and C4.5 are heuristic algorithms that * Why use Information Gain to select attributes
search through the space of decision trees. in decision trees? What other criteria seem
Why not just do an exhaustive search? reasonable, and what are the tradeoffs in

making this choice?

Input data

1NN 5NN

g

Decision Tree ogistic Regression

S

The Perceptron

Dendrites ;
(inputs from
other neurons,
can be
excitatory or
inhibitory)

Axon (output
to other
neurons)

Perceptron

in(t) <

out(t)

Perceptron D
a=>b+ Z WL d
d=1

prediction
= SIGN(a)

— out(t)

in(t) <

Error driven learning b
a=>b+ Z WL d
d=1

» At each step, return SIGN(a)
« if SIGN(a)# y update parameter
 otherwise don’t change

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter)
v wy <o, forall d=1...D // initialize weights
x»b+o // initialize bias
5 for iter = 1 ... MaxIter do
+ forall (x,y) € Ddo
5 ﬂ(*dezl wdxd+b
6 if ya <o then
7 Wy < wy +yxg, forall d=1...D / update weights
8;
9:

/I compute activation for this example

b—b+y // update bias
end if
end for
« end for
= return wy, wy, ..., wp, b

from http://ciml.info/dl/v0_99/ciml-vO_99-ch08.pdf

Example: y = 1 and prediction is -1

* update w’ =w +yx=w + X
* b'=b+y=b+1

Does this move a in the right direction?

* update w’ =w +yx =w + X
* b=b+y=b+1

/

Q\
I
[
Iyl
S
W
=
[
|
=

(wd + xd)xd + (b + 1)

I
Mo

i
1L

D
waxs + b+ Zxdxd+1
d=1

I
Mo

i
L

D
a+) x3+1 > a
=1

Does this move a in the right direction?

* update w’ =w +yx=w + X
* b'=b+y=b+1

D
a =Y whixg+ b
d=1
D
=) (wg+x4)xq+ (b+1)

d=1
D D
= wdxd+b+2xdxd+1
d=1 d=1
D
=a+ Z xi +1 > a a becomes more positive
d=1 (not guaranteed that a>0)

Does this move a in the right direction?

* update w’ =w +yx =w + X
* b’=b+y=Db+1

What is the update if
y=-1 and we predict 1

n\
Il

gl

S
S
K

|

[y

Il
Mo

(wq + x4)x4+ (b +1)

N
Il
—_

D
waxg + b+ Zxdxd—l—l
d=1

I
]

N
Il
_

D
a-+ Zxﬁ—l—l > a
d=1

When do we stop?

» Hyperparameter Maxlter
* training too long could lead to overfitting

« training for too few steps could lead to
underfitting

\/ teSt

train

error

of training epochs

Randomizing samples helps

» permute the samples before starting

» even better: permute the samples for
each iteration

\/ test (unpermuted)
error

test (permuted)

of training epochs

What is the decision boundary?

What is the decision boundary?

D
bJrde:z:d:O
d=1
0 o .
@
o o ®
@

How good is this algorithm?

» Convergence: an entire pass without
changing the weights.

« If the data is linearly separable, the
algorithm will converge. But not
necessarily to the “best” boundary

Notion of margin

ming, ep ¥ (w - x+b) if w separates D
-0 otherwise

margin(D,w, b) = {

Notion of margin

ming epy(w - x+b) if w separates D
-0 otherwise

margin(D,w, b) = {

margin(D) = sup margin(D, w, b)

w,b

Notion of margin

ming,epy(w-x+b) if w separates D
—o0 otherwise

margin(D,w, b) = {

margin(D) = sup margin(D, w, b)
w,b

If data is linearly separable with margin”) and
|Ix]|< 1, then algorithm will converge in 1 updates
72

Relationship to stochastic gradient descent

* We can write the loss function of the
perceptron as:

L(y,§) = max(0, —y(b+ Y waza))
d

 This is not differentiable, we need to
learn more about sub-gradient methods

» At each step, we update using only one
datapoint

Neural Networks

Every node is analogous to a neuron

Hidden
Input
Output

Every node is analogous to a neuron

sigmoid unit

Yi

out(t)

Every node is analogous to a neuron

Input NS
L&

How to train

» Calculate each output

function)

dE/db

Calculate output error E
Back-propagate E (weighting it by the
gradient of previous layer and activation
Calculate the gradients dE/dw and

Update the parameters

Every node is analogous to a neuron

Hidden
Input
Output

Backprop with one node per layer

WL-1 C
yL-2

wo(®) = L1

sigmoid unit

YL-1

Backprop with one node per layer

YL-2

sigmoid unit

aL-1 aL

IC YL-1 WL () IC yL
wo(®) = DL-1 wo(®) = DL

