Last time: Naive Bayes in a Nutshell

Bayes rule:
. . . P(Y = P(Xq...XplY =
10-701 Introduction to Machine Learning (PhD) PY =yl X1, Xn) = Zj;(y :yky)j)](g(;l : ..X‘n|Y j’;)j)

Lecture 6: Logistic Regression

Assuming conditional independence among X;’s:

Leila Wehbe
Carnegie Mellon University P(Y = X1 ... Xp) = PY = yp) I; P(XG|Y =)  (estimate
Machine Learning Department Ykl An Y P(Y =y IL P(X|Y =y;) I

training)
So, to pick most probable Y for xwev=(X,, ..., X,)
Y"e% — arg r‘r;j%x P(Y = y;) HP(Xlnew|Y = Y1)
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Naive Bayes Algorithm — discrete X; MAP estimates for bag of words

» Train Naive Bayes (examples)
for each” value y, Map estimate for multinomial

estimate 7 = P(Y = y;) # hallucinated “aardvark”

for each” value x; of each attribute X;
# hallucinated words

# seen “aardvark”

estimate fijk = P(Xi = Y = yi)
* Classify (Xnew)

# seen words

Y —argmax P(Y = yi) [ POXTNY = ye) What B's should we choose?
7

ynew arg mygx Tk ];[ eijk

* probabilities must sum to 1, so need estimate only v-1 of these, where v
is the number of values, which is 2 in the binary case




What if we have continuous X, ?

Gaussian Naive Bayes (GNB): assume

1 _ L1 ITH
p(Xi=alY =y) = —— ¢ o)

\/ 27mi2k

Sometimes assume variance

- is independent of Y (i.e., o)),
- or independent of X, (i.e., o,)
« or both (i.e., o)

Gaussian Naive Bayes — Big Picture

ynrew P(Y = P(XlY = P(Y=1)=0.5
«— arg erI}%Df} Yy H | y) assume P(Y=1)=

X2,

Gaussian Naive Bayes — Big Picture

ynew PY = P(XlY = assume P(Y=1)=0.5
— arg max P(Y =y H Y =) (Y=1) =

X2 |

P(X2|Y=0)

P(X2]Y=1)

P(X1]Y=0)  P(x1|Y=0)

Gaussian Naive Bayes — Big Picture

ynew PY = P(X]lY = assume P(Y=1)=0.5
— arg max P(Y =y H Y =) (Y=1)=

X2 |

P(X2|Y=0)

P(X2]Y=1)

> X1
P(X1Y=0)  P(X1|Y=0)




Logistic Regression

Idea:
* Naive Bayes allows computing P(Y|X) by
learning P(Y) and P(X]|Y)

* Why not learn P(Y|X) directly?

» Consider learning f: X > Y, where
« X is a vector of real-valued features, ( X, ... X))

* Y is boolean
- assume all X; are conditionally independent given Y

- model P(X; | Y =y,) as Gaussian N(uw,o;)
» model P(Y) as Bernoulli ()

» What does that imply about the form of P(Y|X)?

1
1+ exp(wo + >, wiXy)

P(Y =1X = (X1,... X))

Derive form for P(YIX) for Gaussian P(X]Y=y,) assuming o, = o,

P(Y =1)P(X|Y =1)
P(Y = 1)P(X|Y =1) + P(Y = 0)P(X|Y =0)

P(Y =1|X) =

Derive form for P(YIX) for Gaussian P(X]Y=y,) assuming o, = o,

P(Y =1)P(X|Y =1)

P =11 =552 DP(X|Y =1) + P(Y = 0)P(X|Y =0)

1
= P(Y=0)P(X|Y=0)
1+ —P(Y=1)P(XIY=1)




Derive form for P(YIX) for Gaussian P(X/Y=y,) assuming o, = o,

P(Y =1)P(X|Y = 1)
P(Y =1)P(X|Y =1)+ P(Y = 0)P(X|Y =0)

P(Y =1|X) =

1
P(Y=0)P(X|Y=0)
1+ W(x}hl)
1
P(Y=0)P(X[Y=0)
1+ exp(n B =N PG =2))

Derive form for P(YIX) for Gaussian P(X/Y=y,) assuming o, = o,

P(Y = 1)P(X|Y = 1)

1
P(Y=0)P(X[Y=0)
1+ —P(Y=1)P(XiY=1)
1
P(Y=0)P(X]Y=0)
1+ exp(in P(Y:l)P(XIY=1))

1

1 exp( (In12%) 415 n pEIER)

Derive form for P(YIX) for Gaussian P(X]Y=y,) assuming o, = o,

P(Y = 1)P(X|Y = 1)

PY =1|X) =
( XD P(Y=1)PX|Y =1)+ P(Y =0)P(X|Y =0)
. 1
T + P(Y=0)P(X|Y=0)
P(Y=1)P(X|Y=1)
_ 1
- P(Y=0)P(X|Y=0)
L+ exp(In py=1yp(xjy=1))
_ 1
- _ P(X;[Y=0
14 exp( (In127) 45 In piiE=0)
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Derive form for P(YIX) for Gaussian P(X]Y=y,) assuming o, = o,

P(Y =1)P(X|Y =1)

P(Y = 1|X) = P(Y = 1)P(X|Y =1)+P(Y = O)P(X‘Y =0)
B 1
= P(Y=0)P(X[Y=0
L+ Br=nptxv=0
1
= P(Y=0)P(X[Y=0
1+ exp(In S =R e =)
_ 1
1+ exp( (In3T) +[3;1In ,’igg (3)
: , i — pi1 M3 — o)
Linear function! Z( B )
\ 1
P(Y =1|X) =

1+ exp(wp + X g w; X;)




Very convenient!

1

PY =1X = (X1,... X)) =

P(Y =0|X = (X1,.., X)) =

implies
P(Y =0[X) _
P =11X)

implies
In PY =0[X) _

PO =1X)

Very convenient!

1
1+ exp(wo + X wiX;)

exp(wo + Z ’LUle)
P(Y =0/X = (X1,... X)) = i
( | (X1, )) 1+ exp(wo + >, wiXy)

P(Y =1|X =< X1,..Xn >) =

implies
P(Y =0|X) _ .
PY =1|X) exp(wo + ;wlxz)

implies /

P(Y =0[X)
Ny — 100 — X; <or>
"P(Y =1|X) w°+§i:wz i <or>0

Logistic function
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1
1 4 exp(wo + X" w; X;)

PY =1|X) =

X2 4




Logistic regression more generally

* Logistic regression when Y not boolean (but
still discrete-valued).

o Now y E{y, ... yp} : learn R-1 sets of weights

exp(wro + Xie 1 wiiX)

<R P(Y =y X) =

1

for k=R Py =yg|x)=
( VAl X) 14 Zf;ll exp(wjo + X7 q wj; X;)

Training Logistic Regression: MLE, MCLE
- we have L training examples: {(X ", Y"), ... (X*, Y ")}
+ maximum likelihood estimate for parameters W
WMLE = argmwz;,XP((Xl,Yl), s (XL7YL)|W)
= P(XLYY W
arg mvgxn (XL Y W)
* maximum conditional likelihood estimate

_ iyl
Waro)Le = argmmz}xHP(Y X5 W)

Training Logistic Regression: MCLE

« Choose parameters W=<w,, ... w> to

maximize conditional likelihood of training data

1
1+ exp(wg + >; w; X;)

exp(wg + >; wiX;)
1+ exp(wo + 35 wiX;)

« Training data D ={(X",Y"),..., (X", Y")}
. Data likelihood = [1 P(X", Y [w)

" A
« Data conditional likelihood =11 p(v!|x!, w)
l
— l l
WayorLe = arg mv%xljl P(YY|W, X")

where P(Y =0|X,W) =

P(Y =1|X,W) =

Expressing Conditional Log Likelihood

(W) =In[[PIXLw) =Y InP(Ylxiw)
l l
1

P =01X, W) = 1+ exp(wg + X w; X;)

exp(wo + X wiX;)
1+ exp(wo + >; w; X;)

PY =1|X,W) =

(w) = Y viinpP!=1x,w)+ @ -vHinpP!=o/x,,w)
1




Expressing Conditional Log Likelihood
(W) =In[[PYIXxLw) =Y InPy!xiw)
l l

1

PO = 0L W) = o + 3 wiXy)

exp(wo + 35 wiX;)

PO =X W) = T (w0 + 5 wiX)

(w) = Y vinpP!=1x,w)+ @@ -vH)inpP!=o0/x,w)
l

1 P(Yt=1|1xL W)
= > Y'In
; P(Yl=0|X,, W)

+InP!=o0/x, W)

Expressing Conditional Log Likelihood
(W) =In[[PIXLw) =Y InP(y!xiw)
l l

1

PO = 0L W) = o + 2 wiXy)

exp(wg + 35 wiX;)

PO= X W) = T (w0 + 5 X))

(w) = Y vinrP!'=1x,w)+ @ -vHinpP!=o0x,,w)
l

P(Yt=1|x, W)

= S YlIn InP(Y'=o|x,w
Zl: P(Yl=0|x, W) +inB( | )

= > Vi(wo + Y wiX}) — In(1 + ewp(wo + > w;X}))
I i i

Maximizing Conditional Log Likelihood

1

PO = 0 W) = o + 3 wiX)

exp(wg + 35 wiX;)

PO =1X,W) = 1+ exp(wo + > w; X;)

(W) =W PY|X, W) =S P(Y!|X, W)
l l
— S Vl(wo+ Y wiX]) — In(L + eap(uo + 3 wixh)
l 7 %

Good news: I[(W) is concave function of W
Bad news: no closed-form solution to maximize (W)

Gradient Descent
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Gradient
0FE OFE OFE
EW = |7— 57—

VB[] owy’ Ow;’ Ow,

Training rule:
AW = —nVE[W]
ie. Update the vector of parameters
Aw, = oF w < w—nVEy(w)




Gradient Descent

(w)
Start at a random point f

Gradient Descent

Jow)

Start at a random point

Determine a descent direction

W%VW"T'W

w wo w w
Choosing Descent Direction (1D) Gradient Descent
f(W) positive = go left! f(W) negative = go right!
Start at a random point fw)
zero = donel Determine a descent direction
: _ Choose a step size
W w Update
Step S\ize P
WqF v‘t’/ wo w

We can only move in two directions
y Wiy — wy — NV Eq(wy)

Negative slope is direction of descent!
Update rule
Negative Slepe




Gradient Descent

Jow)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

w* Wi wo w

Gradient Descent

Jow)

Start at a random point
Repeat
Determine a descent direction
| Choose a step size
Update
Until stopping criterion is satisfied

“wr wo

w
Gradient Descent Gradient Descent
w w
Start at a random point Jw) Start at a random point Jow)
Repeat Repeat
Determine a descent direction Determine a descent direction
Choose a step size Choose a step size
| Update Update
Until stopping criterion is satisfied R Until stopping criterion is satisfied I
W' w2 wr wo w W w2 wr owo w




Where Will We Converge?

fiw) Convex g(w) Non-convex

W w w e w
Any local minimum is a global minimum ~ Multiple local minima may exist

Gradient Descent:

Batch gradient: use error Ep(w)over entire training set D
Do until satisfied: OEp(w) OEp(w)

1. Compute the gradient VEp(w) = owy, " ow,

2. Update the vector of parameters: W <— W — nV Ep(w)

Stochastic gradient: use error E,(w)over single examples 4 ¢ D
Do until satisfied:
1. Choose (with replacement) a random training example 4 ¢ D
2. Compute the gradient just for d: 0E;(w)  OE4(w)
- owy  Ow,
w < w—nVE4w)

VEd(W)
3. Update the vector of parameters:

Stochastic approximates Batch arbitrarily closely as
Stochastic can be much faster when D is very large 7] — 0
Intermediate approach: use error over subsets of D

Maximize Conditional Log Likelihood: Gradient Ascent
(W)= PY X, W)= P(Y'|X, W)
l 1
= > Y'(wo + Y wiX]) — In(1 + exp(wo + Y- wiX}))
l % A

AL(W)
8wi

=Y xl(v! - (vt = 11X}, W)
l

Maximize Conditional Log Likelihood: Gradient Ascent
W) =W IIPY X, W)=Y P(Y'| X, W)
l 1
= > Vi(wo + Y wiX}) — In(1 + exp(wo + > w;X}))
l % A

aUW) _ S Xl - Byl =1xLw))
] l

ow;

Gradient ascent algorithm: iterate until change < ¢
For all i, repeat
wi —w; + 1> XY - P(Y! = 1]x!, w))
l




Need to regularize the weights

+ w — oo to maximize the probability of
the data, if data linearly separable

That’s all for M(C)LE. How about MAP?

» For MAP, need to define prior on W
—given W = (wy, ... W,)
let's assume prior P(w;) = N(O, o)
— i.e., assume zero mean, Gaussian prior for each w;

» Akind of Occam’s razor (simplest is best) prior

» Helps avoid very large weights and overfitting

MAP Estimates for Logistic Regression

P(Y|W, X)P(W, X)
MAP ’ ’
4% = argmwa/LXP(W Y, X) PV, X)

MAP Estimates for Logistic Regression
PY|W, X)P(W, X)

MAP _ _
w —arng%xP(WD/, X) = PV, X)
= argmax P(Y|W, X)P(W, X)
w let’s assume
P(W,X)=P(W)
— g P(Y W, X)POW)P(X) [0
= argmax P(Y|W, X)P(W)
W zero mean
MAP Gaussian
WA = arg mmz}x[ln PY|W,X)+InP(W)] P(W)

1
wMAP _ argmwz}x[lnP(Ym/, X) - (—wa)]




MLE vs MAP

« Maximum conditional likelihood estimate
W «— arg max In HP(YZ|XZ, W)
1

w; —wi+ 1Y X[V - P(YT=1]x" W)
L

« Maximum a posteriori estimate with prior
W arg max In[P(W) [[PYxtw))
!

w; — w;—nhw;+1 ) X[V =Py = 11X, W)
l

MAP estimates and Regularization

* Maximum a posteriori estimate with prior
W —argmax In[P(W) [Py xEw))
l

w; — w; —nw;+n> XY - P(Y! = 1|x\, W)
i l

called a “regularization” term

* helps reduce overfitting

« if P(W) is Gaussian, then encourages W to be near the
mean of P(W) : zero here, but can easily use any mean

* used very frequently in Logistic Regression

The Bottom Line

» Consider learning f: X > Y, where
« X is a vector of real-valued features, ( X, ... X,)
* Y is boolean
- assume all X; are conditionally independent given Y
« model P(X; | Y =y,) as Gaussian N(u;,0,)
* model P(Y) as Bernoulli ()

* Then P(Y|X) is of this form, and we can directly estimate W
1

T 1+ exp(wo + >, wiXw)

P(Y = 1|X = (X1, ..., X))

« Furthermore, same holds if the X; are boolean
* trying proving that to yourself

Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X > Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

*  Assume some functional form for P(X|Y), P(X)

» Estimate parameters of P(X|Y), P(X) directly from training data
* Use Bayes rule to calculate P(Y|X= x;)

Discriminative classifiers (e.g., Logistic regression)

*  Assume some functional form for P(Y|X)
+ Estimate parameters of P(Y|X) directly from training data




Use Naive Bayes or Logistic Regression?

Consider

* Restrictiveness of modeling
assumptions

» Rate of convergence (in amount of
training data) toward asymptotic
hypothesis

Naive Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=(X, ... X,)

Number of parameters to estimate:
* NB:

—(e—pp)?
27},

1
P(x = e

PY=o0X, W)= 1
T T 1t eap(wo + X wiXy)
exp(wo + 3 w; X;)

POY=1%W) = + exp(wo + 5 wiXy)

Naive Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=(X| ... X))

Number of parameters:
* NB: 4n +1
* LR: n+1

Estimation method:
* NB parameter estimates are uncoupled
* LR parameter estimates are coupled

G.Naive Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y

2. P(X Y=y = N(wy,0), € not N(uw,0y)
X “ oK [Ng & Jordan, 2002]

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained without

assumption 1.

How do these methods perform if we have plenty of data and:

*Both (1) and (2) are satisfied:




Assumptions 1 and 2 are satisfied

GNB 2

Input data GNB Logistic Regression

L

X_i’s conditionally independent and variance is shared
Input data GNB GNB 2 Logistic Regression

In these cases, LR, GNB2 and GNB perform similarly

Assumptions 1 and 2 satisfied

The decision boundary of GNB and GNB2 is sensitive to the
locations of the means (since the variances are the same)

Input data Logistic Regression

‘% o

Assumptions 1 and 2 satisfied

If the variances of the Xi are the same (across classes and
across i), the decision boundary of GNB2 and GNB is
determined by the distance to the mean (perpendicular
bisector)
If one of the coordinates of the two means are the same, then
the decision boundary becomes perpendicular to that axis

G.Naive Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y

2. P(X Y= = N(wo;), € not N(w,o;
X Yi) (Wi 07) (T ) [Ng & Jordan, 2002]

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained without

assumption 1.

How do these methods perform if we have plenty of data and:
*Both (1) and (2) are satisfied

*(2) is satisfied, but not (1)




Assumption 2 satisfied and not 1 Assumption 2 satisfied and not 1

Input data Logistic Regression Input data GNB 2 Logistic Regression

GNB2 and GNB can also work well

GNB2 can break (also GNB)

Assumption 2 satisfied and not 1 G.Naive Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y

Input data Logistic Regression 2. P(X|Y ) N ) < EN( )
. X =y = Wi, Oi), no Wi, O
| ' X e e [Ng & Jordan, 2002]
o? o8% Consider three learning methods:
2 . *GNB (assumption 1 only) -- decision surface can be non-linear
o *GNB2 (assumption 1 and 2) — decision surface linear
KA LR -- decision surface linear, trained without
’ assumption 1.
The decision boundary of GNB2 and GNB is also dependent How do these methods perform if we have plenty of data and:
on the means of the two classes. If one of the coordinates of
the two means is the same, again, we have a decision *Both (1) and (2) are satisfied

boundary parallel to that axis
*(2) is satisfied, but not (1)

*Neither (1) nor (2) is satisfied




Assumptions 1 and 2 are not satisfied G.Naive Bayes vs. Logistic Regression
Input data GNB GNB 2 Logistic Regression

What if we have only finite training data?
They converge at different rates to their asymptotic (« data) error

Let €4,m refer to expected error of learning algorithm A after m training
examples

Let n be the number of features: (X, ... X)) [Ng & Jordan, 2002]

n
€LRm < €LRoo + O o

log(n
€GNB,m < €GNB,co + O %

Depending on the dataset, GNB and LR have different performances.

Even though LR and GNB2 can be expressed in the same way, LR has more ) _ ) _
flexibly to learn parameters that fit the data, and they are don’t have to be tied So, GNB requires m = O(log n) to converge, but LR requires m = O(n)

to the marginal means and variance

. .
Some experiments from UCI data sets Some experiments from UCI data sets
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Naive Bayes vs. Logistic Regression

The bottom line:

GNB?2 and LR both use linear decision surfaces, GNB need not
Given infinite data, LR is better or equal to GNB2 because
training procedure does not make assumptions 1 or 2 (though

our derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate
asymptotic error. (more bias than LR)

And GNB is both more biased (assumptionl) and less (no
assumption 2) than LR, so either might outperform the other.

What you should know:

» Logistic regression
— Functional form follows from Naive Bayes assumptions
- For Gaussian Naive Bayes assuming variance o;, = o,
» For discrete-valued Naive Bayes too

— But training procedure picks parameters without making
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP ftraining: pick W to maximize P(W | X,Y)
* ‘regularization’
* helps reduce overfitting

» Gradient ascent/descent
— General approach when closed-form solutions unavailable

» Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff

Questions to think about:

» Can you use Naive Bayes for a combination of
discrete and real-valued X;?

* How can we easily model the assumption that just
2 of the n attributes as dependent?

» What does the decision surface of a Naive Bayes
classifier look like?

« How would you select a subset of X;'s?




