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1 Announcements

• HW1 is due Thursday. Remember it takes about 10 minutes to submit it so don’t wait till the deadline.

• You have to do both a GradeScope and an Autolab submission.

• Waitlisted students should have received an email with instructions from Diane Stidle.

2 Regression

We have been interested so far in predicting y where y is discrete. We now move to predicting y where y is
continuous. We assume that y is a function of x plus noise:

y = f(x) + ε

We want to learn f : x→ y given {(x1, y1), (x2, y2)...(xn, yn)}.
In this section of the course we will focus on parametric methods, and therefore consider parametric

regression. But one can use other methods such as kernel regression or KNN regression which are not
parametric. We thus specify a form for the function f with parameters θ and then we estimate θ using the
data and some assumption on the distribution of the noise ε. For example if we assume that ε ∼ N (0, σ2),
then y ∼ N (f(x), σ2), and we estimate the parameters of f from data.

3 Linear Regression

This is a parametric method in which we consider that the function f is linear:

y = x>β + ε

Where β = (β1, β2...βp). One way to learn estimate the parameters β is the minimize the Minimum
Squared Error (MSE), leading to the ordinary least squares solution (OLS):

β̂ = arg min
β

∑
i

(yi − x>i β)2 = arg min
β

||y −Xβ||22 = arg min
β

(y −Xβ)>(y −Xβ)

where y = (y1, y2..., yn) and X = (x>1 ,x
>
2 ...x

>
n ), and ||.||2 is the L2 norm.

One way to check if MSE(β) = (y− βX)>(y− βX) is a strictly convex function of β is to compute the
second derivative:

MSE′(β) =
∂(y −Xβ)>(y −Xβ)

∂β

= −2XT (y −Xβ) (from homework 1)

MSE′′(β) = 2X>X
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X>X is positive definite or positive semi-definite depending on our input X. We might have less samples
than dimensions for X, or the samples are more or less copies or linear combinations of each other. If X>X
is positive definite, MSE(β) is strictly convex and has one minimum. We minimize with respect to β to
obtain βOLS :

MSE′(βOLS) = 0

−2X>y + 2βOLSX
>X = 0

βOLSX
>X = X>y

βOLS = (X>X)−1X>y

Inverting X>X

If X>X if not positive definite, it would not be invertible. One solution is to add a diagonal element:
βMSE = (X>X + γIp)−1X>y. This is related to the Ridge Regression solution below.

Multiple output regression

Now imagine that each output is actually multi-dimensional: given xi, we want to predict yi where yi =
(y1i , y

2
i ...y

m
i )>. Now the problem becomes:

yi = x>i β + εi

where β = (β1>, β2>, ...βm>)> and εi = (ε1i , ε
2
i ...ε

m
i )> and εi ∼ N (0, σ2Im).

The MSE becomes:

∑
i

(yi − x>i β)2 = ||Y −Xβ||22 = (Y −Xβ)>(Y −Xβ)

where Y = (y1,y2, ...,yn). You can go through the derivation and find that βOLS = (X>X)−1X>Y.
Are the values of the kth output yk used in the computation of βjOLS for a given output j 6= k? Think

about how matrix multiplication works.

4 Bias Variance Decomposition

In regression, the decision step consists in picking a specific estimate f̂(x) of the value of y for each input x.

This has a loss L(y, f̂(x)). A common loss function is the squared loss, and the average loss is given by:

E[L] =

∫
(f̂(x)− y)2p(y, x)dydx,

We have:

y = f(x) + ε

such that ε ∼ N (0, σ2). If we have infinite data, our model assumptions were correct, and we were able

to learn f̂(x) = f(x), but we would still have some error in predicting y due to the noise ε:
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E[L] =

∫
(f̂(x)− y)2p(y, x)dydx

=

∫
ε2p(y, x)dydx = σ2.

In real applications we have finite data of size n.
You can see in [CB] 1.5.5 how to write the average loss as :

E[L] =

∫
(f̂(x)− E[y|x])2p(x)dx+

∫
(E[y|x]− y)2p(x, y)dydx (1)

=

∫
(f̂(x)− f(x))2p(y, x)dydx+

∫
ε2p(x)dx (2)

=

∫
(f̂(x)− f(x))2p(x)dx+ σ2, (3)

(in [CB] the variables are named differently).

Let’s rewrite (f̂(x) − f(x))2, the loss for a given x in another way, by adding and removing ED[f̂(x)]
where D is a variable denoting a training dataset of size n paired xi and yi samples:

(f̂D(x)− f(x))2 = (f̂D(x)− ED[f̂D(x)] + ED[f̂D(x)]− f(x))2

= (f̂D(x)− ED[f̂D(x)])2 + (ED[f̂D(x)]− f(x))2 + 2(f̂D(x)− ED[f̂D(x)])(ED[f̂D(x)]− f(x)).

The above formulation is for a single dataset D, however, we want the mean over all datasets D:

ED

[
(f̂D(x)− f(x))2

]
= ED

[
(f̂D(x)− ED[f̂D(x)])2

]
+ ED

[
(ED[f̂D(x)]− f(x))2

]
+ ED [cross-term]

= ED

[
(f̂D(x)− ED[f̂D(x)])2

]
+ (ED[f̂D(x)]− f(x))2 (cross-term’s expected value is 0)

= Var(f̂(x)) + Bias(f̂(x))2

Where:

Bias
[
f̂(x)

]
= ED

[
f̂D(x)

]
− f(x),

and

Var
[
f̂(x)

]
= ED

[
(f̂D(x)− ED[f̂D(x)])2

]
.

this is for a single x. Going back to 3, when considering all x, the expected loss is:

E(L) =

∫
Bias[f̂(x)]2p(x)dx+

∫
Var[f̂(x)]2p(x)dx+ σ2

= Bias2 + Variance + noise.

You can read more about this in [CB] 3.2 and [HTF] 2.5.
The average loss can therefore be decomposed in terms of bias, variance and unavoidable loss (error).

We will see that picking a type of estimator and fitting its hyperparameters to data is akin to performing a
bias-variance tradeoff. Some methods (such as adding L1 or L2 regularization) can achieve a useful reduction
in variance but incur bias, which might be acceptable for our use.
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5 Regularized Linear Regression

To reduce variance and improve generalization, one can penalize the regression weights. Various regulariza-
tion penalties can be used.

5.1 Ridge regularization

The objective includes an L2 penalty on the weights:

βridge = arg min
β

= arg min
β

||y −Xβ||22 + λr||β||22

with λr > 0.
Ridge regression has a closed form solution:

βridge = (X>X + λrIp)
−1X>y. (4)

Take the SVD decomposition of X:

X = UΣV>

where U and V are orthogonal matrices and Σ is a diagonal matrix where the diagonal entries correspond
to the singular values of X σ1, σ2...σp.

Then

βridge = (X>X + λrIp)
−1X>y (5)

= (VΣΣV + λrIp)
−1VΣU>y (6)

= VΣ2U
>y (7)

where Σ2 is a diagonal matrix where each entry i is:

σi
σ2
i + λ2

The ridge penalty has the effect of shrinking the regression coefficients towards zero. This effect is more
pronounced for small singular values as we see in the next section. Larger values of λr lead to more shrinkage.

Cross-validation and performance In order to obtain a good value for the parameter λr one can perform
cross-validation on the training set. In each fold, different values of λr are used to estimate β on the training
portion of that fold, then this estimate is used to predict the validation portion. The average performance
for each λr is obtained and then the best value of λr over all the folds is used to retrain β using all the
training data.

At a given CV fold, if p, the dimension of xi, is very big, it might be too expensive to use 4 at every λr
because of the matrix inversion. It is usually faster to use 7 instead and recompute Σ2 for every λr, then
perform the required multiplications.

Tikhonov Regularization

βtikhonov = arg min
β

= arg min
β

||y −Xβ||22 + ||Γβ||22

of which Ridge Regression is a special case. The solution is:

βtikhonov = (X>X + Γ>Γ)−1X>y.
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5.2 Lasso

(least absolute shrinkage and selection operator)

βλ = arg min
β

= arg min
β

||y −Xβ||22 + λL||β||1

Figure 1: from [CB] page 146

The lasso penalty encourages sparsity. The level is determined by λL.
βλ has no closed form solution. Furthermore the objective function is not differentiable. There exist

several optimization approaches to approximate it, such as using the proximal gradient method.
The lasso problem can be formulated as:

βr = arg min
β

= arg min
β

||y −Xβ||22

subject to ||β||1 ≤ r

The sets {βλ}λ∈(0,∞) and {βr}r∈(0,∞) have a one to one mapping (the specific mapping depends on X
and y). Figure 1 shows the unregularized MSE contours, as well as one constraint region with a level r for
both Ridge and Lasso. The optimization will try to find the point within the constraint region that has the
smallest MSE. For Ridge, this is not encouraged to be a sparse point (i.e. have zero coordinates). For Lasso,
the optimum is more likely to be sparse, especially as we move to higher dimensions and there are many
corners and edges that can satisfy the smallest MSE in the constrain region.

Lasso Path as λL is decreased more and more elements of βlasso become non-zero. The elements that
became non-zero at higher λL can also change value as well, but remain non-zero. The coefficients do not
change monotonically, they can increase or decrease.

6 Note on assumptions

We have started here from the assumption that y = xβ+ ε. However, this assumption being correct is not a
requirement for using OLS, Ridge or Lasso. One can always use these methods to perform predictions: how
good the predictions are will vary. For example if you use OLS and the true model is not linear, you will
just get the best linear fit. The concepts of Bias and Variance tradeoff still apply in those cases.
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Figure 2: from https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.

html the effect of different settings of the regularization parameter on the coefficients of different vari-
ables (different colors). 1 on the x-axis corresponds to the OLS solution. Decreasing values of x correspond
to additional regularization.

Figure 3: Another common way to plot the Lasso Path, from https://stats.stackexchange.com/

questions/177788/generating-lasso-path-for-feature-selection. The coefficients for different vari-
ables are shown with different colors as λL varies. As λL gets reduced (right to left), more variables have a
non-zero coefficient.
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