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Carnegie Mellon University

April 1, 2019

Today:

• Inference in graphical 
models

• Learning graphical models

Readings:

• Bishop chapter 8

Bayesian Networks Definition

A Bayes network represents the joint probability distribution 
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of 
conditional probability distributions (CPD’s)

• Each node denotes a random variable
• Edges denote dependencies
• For each node Xi its CPD defines P(Xi | Pa(Xi))
• The joint distribution over all variables is defined to be

Pa(X) = immediate parents of X in the graph
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Inference in Bayes Nets

• In general, intractable (NP-complete)
• For certain cases, tractable

Example

• Flu and Allegies both cause Sinus problems
• Sinus problems cause Headaches and runny Nose
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Prob. of joint assignment: easy 

Suppose we are interested in joint
assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

let’s use p(a,b) as shorthand for p(A=a, B=b)

Marginal probabilities P(Xi): not so easy 
• How do we calculate P(N=n) ?

let’s use p(a,b) as shorthand for p(A=a, B=b)
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Generating a random sample from 
joint distribution: easy 

How can we generate random samples
drawn according to P(F,A,S,H,N)?

let’s use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from 
joint distribution: easy 

How can we generate random samples
drawn according to P(F,A,S,H,N)?

let’s use p(a,b) as shorthand for p(A=a, B=b)

To generate a random sample for roots of network ( F or A ):
1. let θ =   P(F=1)       # look up from CPD
2. r = random number drawn uniformly between 0 and 1
3. if r<θ then output 1, else 0
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Generating a sample from 
joint distribution: easy 

How can we generate random samples
drawn according to P(F,A,S,H,N)?

To generate a random sample for roots of network ( F or A ):
1. let θ =   P(F=1)       # look up from CPD
2. r = random number drawn uniformly between 0 and 1
3. if r<θ then output 1, else 0

To generate a random sample for S, given F,A:
1. let θ =   P(S=1|F=f,A=a)       # look up from CPD
2. r = random number drawn uniformly between 0 and 1
3. if r<θ then output 1, else 0

Generating a sample from 
joint distribution: easy 

Note we can estimate marginals
like P(N=n) by generating many samples
from joint distribution, then count the fraction of samples 

for which N=n

Similarly, for anything else we care about, calculate its 
maximum likelihood estimate from the sample
P(F=1|H=1, N=0)

à weak but general method for estimating any
probability term…
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Generating a sample from 
joint distribution: easy 

We can easily sample P(F,A,S,H,N)

Can we use this to get P(F,A,S,H | N)?

Directly sample P(F,A,S,H | N)?

Gibbs Sampling: 
Goal: Directly sample conditional distributions 

P(X1,…,Xn | Xn+1, ..., Xm)
Approach:
- start with the fixed observed Xn+1, ..., Xm  

plus arbitrary initial values for unobserved X1
(0),…,Xn

(0)

- iterate for s=0 to a big number:

Eventually (after burn-in), the collection of samples will 
constitute a sample of the true P(X1,…,Xn | Xn+1, ..., Xm)
* but often use every 100th sample, since iters not independent
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Gibbs Sampling: 
Approach:
- start with arbitrary initial values for X1

(0),…,Xn
(0)

(and observed Xn+1, ..., Xm)
- iterate for s=0 to a big number:

Only need Markov Blanket at each step!

Gibbs is special case of Markov Chain Monte Carlo method

Prob. of marginals: not so easy 
But sometimes the structure of the network allows us to be 

clever à avoid exponential work

eg., chain    A DB C E

what is P(C=1|B=b, D=d)?

what is P(C=1) ?
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Variable Elimination example
But sometimes the structure of the network allows us to be 

clever à avoid exponential work

eg., chain    A DB C E

what is P(C=1) ?

Inference in Bayes Nets
• In general, intractable (NP-complete)
• For certain cases, tractable

– Assigning probability to fully observed set of variables
– Or if just one variable unobserved
– Or for singly connected graphs (ie., no undirected loops)

• Variable elimination

• Can often use Monte Carlo methods
– Generate many samples, then count up the results
– Gibbs sampling (example of Markov Chain Monte Carlo)

• Many other approaches
– Variational methods for tractable approximate solutions
– Junction tree, Belief propagation, …

see Graphical Models course 10-708
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Learning Bayes Nets from Data

Learning of Bayes Nets
• Four categories of learning problems

– Graph structure may be known/unknown
– Variable values may be fully observed / partly unobserved

• Easy case: learn parameters when graph structure is 
known, and training data is fully observed

• Interesting case: graph known, data partly observed

• Gruesome case: graph structure unknown, data 
partly unobserved
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Learning CPTs from Fully Observed Data

• Example: Consider 
learning the parameter

• MLE (Max Likelihood 
Estimate) is

• Remember why?

Flu Allergy

Sinus

Headache Nose

kth training 
example

δ(X) = 1 if X is true

0 otherwise

let’s use ak to represent value of A on the kth example

MLE estimate of         from fully observed data

• Maximum likelihood estimate

• Our case:

Flu Allergy

Sinus

Headache Nose

let’s use ak to represent value of A on the kth example
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MLE for                                    from fully observed data

• Maximum likelihood estimate

like flipping coin                                       times to see 
how often 

Flu Allergy

Sinus

Headache Nose

MAP for                                    from fully observed data

• Maximum likelihood estimate

• MAP estimate

Flu Allergy

Sinus

Headache Nose

like coin flipping, including hallucinated examples
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Estimate     from partly observed data

• What if FAHN observed, but not S?
• Can’t calculate MLE

• Let X be all observed variable values (over all examples)
• Let Z be all unobserved variable values  
• Can’t calculate MLE:

Flu Allergy

Sinus

Headache Nose

• WHAT TO DO?

Estimate     from partly observed data

• What if FAHN observed, but not S?
• Can’t calculate MLE

• Let X be all observed variable values (over all examples)
• Let Z be all unobserved variable values  
• Can’t calculate MLE:

Flu Allergy

Sinus

Headache Nose

• EM seeks* the estimate:

* EM guaranteed to find local maximum
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Expected value

Flu Allergy

Sinus

Headache Nose

• EM seeks estimate:

• here, observed X={F,A,H,N}, unobserved Z={S}

let’s use ak to represent value of A on the kth example
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EM Algorithm - Informally

EM is a general procedure for learning from partly observed data

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters q
Iterate until convergence:

• E Step: use X, q to estimate the unobserved Z values

• M Step: use X values and estimated Z values to 
derive a better q

Guaranteed to find local maximum. 
Each iteration increases  

Flu Allergy
Sinus

Headache Nose

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S})

Define

Iterate until convergence:

• E Step: Use X and current q to calculate P(Z|X,q)

• M Step: Replace current q by 

Guaranteed to find local maximum. 
Each iteration increases  



15

E Step: Use X, q, to Calculate P(Z|X,q)

How?  Bayes net inference problem.

Flu Allergy

Sinus

Headache Nose

observed X={F,A,H,N}, 
unobserved Z={S}

let’s use ak to represent value of A on the kth example

E Step: Use X, q, to Calculate P(Z|X,q)

How?  Bayes net inference problem.

Flu Allergy

Sinus

Headache Nose

observed X={F,A,H,N}, 
unobserved Z={S}

let’s use ak to represent value of A on the kth example
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EM and estimating  Flu Allergy

Sinus

Headache Nose
observed X = {F,A,H,N}, unobserved Z={S}

E step:  Calculate P(Zk|Xk; θ) for each training example, k 

M step: update all relevant parameters.  For example:

Recall MLE was:

EM and estimating  
Flu Allergy

Sinus

Headache NoseMore generally, 
Given observed set X, unobserved set Z of boolean values

E step:  Calculate for each training example, k 

the expected value of each unobserved variable in 
each training example

M step:
Calculate     similar to MLE estimates, but 
replacing each count by its expected count
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Using Unlabeled Data to Help Train 
Naïve Bayes Classifier

Y

X1 X4X3X2

Y X1 X2 X3 X4
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0
? 0 1 1 0
? 0 1 0 1

Learn P(Y|X)

E step:  Calculate for each training example, k 

the expected value of each unobserved variable  

Y X1 X2 X3 X4

1 0 0 1 1
0 0 1 0 0
0 0 0 1 0
? 0 1 1 0
? 0 1 0 1
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EM and estimating  

Given observed set X, unobserved set Y of boolean values

E step:  Calculate for each training example, k 

the expected value of each unobserved variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

let’s use y(k) to indicate value of Y on kth example

EM and estimating  

Given observed set X, unobserved set Y of boolean values

E step:  Calculate for each training example, k 

the expected value of each unobserved variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

MLE would be:
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From [Nigam et al., 2000]

Experimental Evaluation
• Newsgroup postings 

– 20 newsgroups, 1000/group
• Web page classification 

– student, faculty, course, project
– 4199 web pages

• Reuters newswire articles 
– 12,902 articles
– 90 topics categories
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20 Newsgroups

Using one labeled 
example per class

word w ranked by 
P(w|Y=course) 
/P(w|Y ≠ course)
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• For learning from partly unobserved data
• MLE of q = 
• EM estimate: q = 

Where X is observed part of data, Z is unobserved

• EM for training Bayes networks
• Recall EM for Gaussian Mixture Models
• Can also derive your own EM algorithm for your own 

problem
– write out expression for
– E step: for each training example Xk, calculate P(Zk | Xk, θ)
– M step: chose new θ to maximize                            

What you should know about EM

Learning Bayes Net 
Structure
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How can we learn Bayes Net graph structure?
In general case, open problem
• can require lots of data (else high risk of overfitting)
• can use Bayesian priors, or other kinds of prior 

assumptions about graph structure to constrain 
search

One key result:
• Chow-Liu algorithm: finds “best” tree-structured 

network  
• What’s best?

– suppose P(X) is true distribution, T(X) is our tree-structured 
network, where X = <X1, … Xn> 

– Chow-Liu minimizes Kullback-Leibler divergence:

Kullback-Leibler Divergence

• KL(P(X) || T(X)) is a measure of the difference 
between distribution P(X) and T(X)

• It is assymetric, always greater or equal to 0
• It is 0 iff P(X)=T(X)
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Chow-Liu Algorithm
Key result:  To minimize KL(P || T) over possible tree 

networks T representing true P, it suffices to find the tree 
network T that maximizes the sum of mutual informations
over its edges

Mutual information for an edge between variable A and B: 

This works because for tree networks with nodes

Chow-Liu Algorithm
1. for each pair of variables A,B, use data to estimate 

P(A,B),  P(A),  and P(B)

2. for each pair A, B calculate mutual information

3. calculate the maximum spanning tree over the set of 
variables, using edge weights I(A,B)
(given N vars, this costs only O(N2) time)

4. add arrows to edges to form a directed-acyclic graph

5. learn the CPD’s for this graph
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Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

1/

1/

1/

1/

1/

1/

1/

1/

1/

1/

1/

[courtesy A. Singh, C. Guestrin]

Tree Augmented Naïve Bayes
[Nir Friedman et al., 1997]
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Bayes Nets – What You Should Know

• Representation
– Bayes nets represent joint distribution as a DAG + 

Conditional Distributions

• Inference
– NP-hard in general
– For some graphs, closed form inference is feasible
– Approximate methods too, e.g., Monte Carlo methods, …

• Learning
– Easy for known graph, fully observed data (MLE’s, MAP est.)
– EM for partly observed data, known graph
– Learning graph structure: Chow-Liu for tree-structured 

networks
– Hardest when graph unknown, data incompletely observed


