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Today: Readings:
Inference in graphical * Bishop chapter 8
models
Learning graphical models

Bayesian Networks Definition

A Bayes network represents the joint probability distribution
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of
conditional probability distributions (CPD’s)

» Each node denotes a random variable

+ Edges denote dependencies
* For each node X; its CPD defines P(X; | Pa(X;))

» The joint distribution over all variables is defined to be

P(Xq1...Xp) = H P(X;|Pa(X;))
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Pa(X) = immediate parents of X in the graph




Inference in Bayes Nets

* In general, intractable (NP-complete)
* For certain cases, tractable

Example

» Flu and Allegies both cause Sinus problems
» Sinus problems cause Headaches and runny Nose

R,




Prob. of joint assignment: easy F /@

Sinus
Suppose we are interested in joint /Q\

assignment <F=f, A=a,S=s,H=h,N=n> @ @

What is P(f,a,s,h,n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Marginal probabilities P(X;): not so easy

*+ How do we calculate P(N=n) ? @ @

let's use p(a,b) as shorthand for p(A=a, B=b)




Generating a random sample from - |
joint distribution: easy C{ /@

Sinus
How can we generate random samples /C>\

drawn according to P(F,A,S,H,N)? @ (hose )

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from - -

.. . R . Flu ‘/AllergD
joint distribution: easy Vs
Sinus
How can we generate random samples —
drawn according to P(F,A,S,H,N)? floadocns (hose)

To generate a random sample for roots of network ( F or A ):
1. let® = P(F=1) # look up from CPD

2. r=random number drawn uniformly between 0 and 1

3. if r<B then output 1, else 0

let's use p(a,b) as shorthand for p(A=a, B=b)




Generating a sample from

joint distribution: easy Cﬂ{ /Q

Sinus

How can we generate random samples
drawn according to P(F,A,S,H,N)? floadacng (nose)

To generate a random sample for roots of network ( F or A):
1. let® = P(F=1) # look up from CPD

2. r=random number drawn uniformly between 0 and 1

3. if r<B then output 1, else 0

To generate a random sample for S, given FA:

1. let®@ = P(S=1|F=f,A=a) # look up from CPD

2. r=random number drawn uniformly between 0 and 1
3. if r<B then output 1, else 0

Generating a sample from — -
joint distribution: easy q P

Note we can estimate marginals fladacns (hose)
like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples
for which N=n

Similarly, for anything else we care about, calculate its
maximum likelihood estimate from the sample

P(F=1]H=1, N=0)

- weak but general method for estimating any
probability term...




Generating a sample from — —
joint distribution: easy \-1 /\@

Sinus

= G

We can easily sample P(F,A,S,H,N)

Can we use this to get P(F,A,S,H | N)?

Directly sample P(F,A,S,H | N)?

Gibbs Sampling: DI
Goal: Directly sample conditional distributions / s@"“)\/ )
P(X1 PR ,Xn | Xn+1 y ey Xm) Fjeéfiaché (\Nos,e/
Approach:

- start with the fixed observed X, 1, ..., Xn,

plus arbitrary initial values for unobserved X;©),..., X
- iterate for s=0 to a big number:

Xt~ P(X| X5, X5 X5 X1, Xon)

X5t~ POGIX, X5 X0, X, Xo)

n?

X;,-'_l ~ P<X'77|Xf+17X5+17 XS+1 Xn+17 Xm)

n—1

Eventually (after burn-in), the collection of samples will
constitute a sample of the true P(X4,...,Xy | Xn+1,y ey Xin)

* but often use every 100th sample, since iters not independent




Gibbs Sampling:

Approach:

- start with arbitrary initial values for X,©),...,X,© &>
(and observed X +1, ...y Xm)

- iterate for s=0 to a big number:
Xt~ P(XO| X5, X5 X2 X, o Xon)
X5~ PO X XS XS X, X))

n’

X5~ P(X, X X5 X5 X, X))

n—1

Only need Markov Blanket at each step!

Gibbs is special case of Markov Chain Monte Carlo method

Prob. of marginals: not so easy

But sometimes the structure of the network allows us to be
clever - avoid exponential work

eg., chain @ @ @ @ @

what is P(C=1|B=b, D=d)?

what is P(C=1) ?




Variable Elimination example

But sometimes the structure of the network allows us to be
clever - avoid exponential work

what is P(C=1) ?

Inference in Bayes Nets

* In general, intractable (NP-complete)

» For certain cases, tractable
— Assigning probability to fully observed set of variables
— Or if just one variable unobserved

— Or for singly connected graphs (ie., no undirected loops)
» Variable elimination

» Can often use Monte Carlo methods
— Generate many samples, then count up the results
— Gibbs sampling (example of Markov Chain Monte Carlo)

* Many other approaches
— Variational methods for tractable approximate solutions
— Junction tree, Belief propagation, ...

see Graphical Models course 10-708




Learning Bayes Nets from Data

Learning of Bayes Nets
» Four categories of learning problems

— Graph structure may be known/unknown
— Variable values may be fully observed / partly unobserved

» Easy case: learn parameters when graph structure is
known, and training data is fully observed

* Interesting case: graph known, data partly observed

» Gruesome case: graph structure unknown, data
partly unobserved




Learning CPTs from Fully Observed Data

« Example: Consider

learning the parameter @
0,,; = P(S=1|F =i, A =j)
" (ome )
* MLE (Max Likelihood

Estimate) is

o Sk 0k =i ek =g sk = 1)

slig — SR 6(fe =i,a, = j)

* Remember why?

let's use ay to represent value of A on the kth example

MLE estimate of 6,;; from fully observed data

J
* Maximum likelihood estimate @ Qllergy
0 — arg meax log P(datal0)
« Our case: Gadadhe
P(datal0) = ﬁ P(fi ager gos hgos 111)
k;l
P(datal0) = kl;ll P(fr)P(ap) P(sg|frar) P(hylsp) P(nglsk)

K
log P(datal0) = Y log P(f;)+10g P(ay)+10g P(sk|frar)+log P(hg|s;)+log P(ng|sy)
k=1

dlog P(datal0) _ f: dlog P (s frar)
00,5 =1 90,5

o SR 0(fk =i a = j, s, = 1)
slis SR 6(fy =d,a, =)

let's use ax to represent value of A on the kth example

0
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MLE for o,,; = P(S=1|F =i,A=j) from fully observed data

« Maximum likelihood estimate @
0 — arg meax log P(datal6) D
0 YR 0(fr = ap =g, = 1) Headage
ol SI L 6(f =iy ay, = j)

like flipping coin  Sh—; 6(fx, = i,ar = j) times to see
how often s, =1

MAP for 6,,; = P(S=1|F =i,A=j) from fully observed data

« Maximum likelihood estimate @ A,
0 — arg maxlog P(datal|f)
Uk - adabe
0. — > k1 0(fe=t,0k=7,5,=1)
slij 1 8(fre=i,ar=5)

* MAP estimate
6 + arg max log P(6|data) = arg max log [P(datal6)P(6)]

0,31—1

If assume prior P(0,;;) = Beta(p:, By) = m olij (1

- 93|ij)ﬂ0_1

0. — (B1—1)+3 4 3(fr=t,an=4,56=1)
ST (B1—1)+(Bo—1)+ 5, (fr=i,ar=5)

like coin flipping, including hallucinated examples
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Estimate € from partly observed data

What if FAHN observed, but not S? | e

+ Can’t calculate MLE A

Gagae D
0 «— arg meax log H P(fk, Q. Sk, hk7 nk|0)

k

Let X be all observed variable values (over all examples)
Let Z be all unobserved variable values

« Can’t calculate MLE:
0 — arg meax log P(X, Z|0)

WHAT TO DO?

Estimate 6 from partly observed data

What if FAHN observed, but not S? @

» Can’t calculate MLE Aﬂﬂ!

Headache Qosed
0 — arg meax log [[ P(fx, ak, sk, hg, ng|60)
k

Let X be all observed variable values (over all examples)
Let Z be all unobserved variable values

» Can’t calculate MLE:
0 — arg mgx log P(X, Z|0)

* EM seeks* the estimate:
0 — arg mgax EZ|X’9[Iog P(X, Z|0)]

* EM guaranteed to find local maximum

12



Expected value

Epxlf(X)] =) P(X =ux)f(x)

* EM seeks estimate: .‘ -
0 — argmax Ey |y gllog P(X, Z|0)]

* here, observed X={F,A,H,N}, unobserved Z={S}

K
log P(X, Z|0) = > log P(f})+log P(ay)+log P(sg|frax)+1og P(hy|sk)+log P(ng|sk)
k=1

Ep(z1x ) log P(X, Z|0)
K 1
-2

1 =0

let's use ay to represent value of A on the kth example

P(si = i| fi, ax, i, nk) [logP(f3,)+10g P(ay)+log P(sy|frar)+log P(hy|s)41og P(ny|sy)]

13



==

He€dazhe Kos2
EM is a general procedure for learning from partly observed data

Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

EM Algorithm - Informally

Begin with arbitrary choice for parameters 0
Iterate until convergence:

* E Step: use X, O to estimate the unobserved Z values

* M Step: use X values and estimated Z values to
derive a better 0

Guaranteed to find local maximum.
Each iteration increases Ep yy g)[log P(X, Z|0')]

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Define Q(#10) = Ep(z/x)llog P(X, Z|6))

W
RpeteR "

Cuive V\*

Iterate until convergence:
* E Step: Use X and current 6 to calculate P(Z|X,0)

* M Step: Replace current 6 by
6 — arg max Q(0'19)

Guaranteed to find local maximum.
Each iteration increases Ep ; y g)[log P(X, Z|0')]

14



E Step: Use X, 0, to Calculate P(Z|X,0)
observed X={F,A,H,N}, Gy

unobserved Z={S}

Qosed
How? Bayes net inference problem.

P(Sy, = 1|fraphyng, 0) =

let's use ay to represent value of A on the kth example

E Step: Use X, 0, to Calculate P(Z|X,0)
observed X={F,A,H,N}, @

unobserved Z={S}

Qosed
How? Bayes net inference problem.

P(Sy = 1| fraphing, 0) =

P(Sk = 1, fraghyng|0)
P(Sk =1, fraghgng|0) + P(Sk = 0, fraghgng|6)

P(Sy = 1| frarhyny, 0) =

let's use ay to represent value of A on the kth example

15



EM and estimating 6, &
(Sinus)

observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate P(Z,|X,; 8) for each training example, k
P(Sg =1, frarhyng|0)

P(Sy = 1|frarhgng,0) = E[s] =
(S = Ufnarhun, 0 = Blsrl = pog 3o hnel6) + P(Sp = O, Fraxhungl0)

M step: update all relevant parameters. For example:

YK 0(fx = d,a; = ) Els]

0. —
s|ij Zgzl 8(fr, = i,a, = j)

YK L 0(fr =d,a, = j, s, = 1)
Y Jp—
Recall MLE was: i; SE  6(fy = ira, = 1)

EM and estimating @
More generally, Gadache Qose]
Given observed set X, unobserved set Z of boolean values
E step: Calculate for each training example, k
the expected value of each unobserved variable in
each training example

M step:
Calculate @ similar to MLE estimates, but
replacing each count by its expected count

16



Using Unlabeled Data to Help Train
Naive Bayes Classifier
Learn P(Y|X)

X1 | X2 X3 (X4

N|v|lolo|~|<
o|lo|lo|o|o
a|lalo|la|o
o|l-|=2|o|-
~|o|lo|lo|-~

E step: Calculate for each training example, k
the expected value of each unobserved variable

vlv|o|lo|=~
olo|o|o|o
a|lajo|-|o
ol=a|a|o|=~
~|lo|lo|o|=




EM and estimating 6

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y
Py(k) = DI Plei(k)ly(k) = 1)

Epy|x,..xy)[y(k)] = P(y(k) = lz1(k), ... an(k);0) = Z;l':o P(y(k) = ) IL, P(@(k)y(k) = )

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

EM and estimating 6

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y
P(y(k) = 1) [1; P(zi(k)ly(k) = 1)

- - o an(k):60) =
Epyix,..xv)[y(k)] = P(y(k) = 1|z1(k), ... zn(k); 0) STy P(y(k) = ) IL, Plas(E) (k) = )

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

e S Ply(k) = mlm(k)..an(R) (k) = j)
Brjim = PXs = 1Y = m) = S e — s (). o (B))

MLE would be: A(X; = j|Y = m) = 2= 5((‘”(2'“) ;;,Z)A_(fn()k) =J)
5k =

18



Inputs: Collections D* of labeled documents and D% of unlabeled documents.

Build an initial naive Bayes classifier, é, from the labeled documents, D!, only. Use maximum
a posteriori parameter estimation to find # = arg maxg P(D|0)P(8) (see Equations 5 and 6).

Loop while classifier parameters improve, as measured by the change in (8| D;z) (the com-
plete log probability of the labeled and unlabeled data

. (E-step) Use the current classifier, é, to estimate component membership of each unla-
beled document, i.e., the probability that each mixture component (and class) generated

each document, P(c;|di;0) (see Equation 7).

. (M-step) Re-estimate the classifier, , given the estimated component membership

of each document. Use maximum a posteriori parameter estimation to find 6 =
arg maxg P(D|8)P(8) (see Equations 5 and 6).

Output: A classifier, (3, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

* Newsgroup postings
— 20 newsgroups, 1000/group
» Web page classification
— student, faculty, course, project
— 4199 web pages
* Reuters newswire articles
— 12,902 articles
— 90 topics categories

19



20 Newsgroups

100% T —

90% [

80% [

70%

60% [

Accuracy

40%

30% |

20% [ +

10% |

50% |

0% L L

10000 unlabeled documents -o—
No unlabeled documents -+---

50 100 200 500 1000 2000
Number of Labeled Documents

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common

course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0

intelligence
DD
artificial
understanding
DDw
dist
identical
rus
arrange
games
dartmouth
natural
cognitive
logic
proving
prolog
knowledge
human
representation
field

Iteration 1

Iteration 2

DD
D
lecture
cc
Dk
DD:DD
handout
due
problem
set
tay
DDam
yurttas
homework
kfoury
sec
postscript
exam
solution
assaf

D
DD
lecture
cc
DD:DD
due
Dt
homework
assignment
handout
set,
hw
exam
problem
DDam
postscript
solution
quiz
chapter
ascii

20



What you should know about EM

» For learning from partly unobserved data

e MLE of = arg meax log P(datal6)

* EMestimate: 0 = argmax Eyx yllog P(X, Z|0)]
Where X is observed part of data, Z is unobserved

« EM for training Bayes networks
* Recall EM for Gaussian Mixture Models

» Can also derive your own EM algorithm for your own
problem
— write out expression for EZ|X79[Iog P(X, Z|0)]
— E step: for each training example X*, calculate P(Z¥ | XX, 8)
— M step: chose new 6 to maximize EZ|X70[Iog P(X, Z|0)]

Learning Bayes Net
Structure

21



How can we learn Bayes Net graph structure?

In general case, open problem
» can require lots of data (else high risk of overfitting)

* can use Bayesian priors, or other kinds of prior
assumptions about graph structure to constrain
search

One key result:

» Chow-Liu algorithm: finds “best” tree-structured
network

 What's best?

— suppose P(X) is true distribution, T(X) is our tree-structured
network, where X = <Xy, ... X;>

— Chow-Liu minimizes Kullback-Leibler divergence:

P(X =k)
T(X=k)

KL(P(X) || T(X))= Y P(X =k)log
k

Kullback-Leibler Divergence

* KL(P(X) || T(X)) is a measure of the difference
between distribution P(X) and T(X)

KL(P(X) || T(X))= Y P(X =k)log 5g — g

» Itis assymetric, always greater or equal to 0
 ltis 0 iff P(X)=T(X)
KL(P(X)|IT(X)) =) P(X =k)log P(X =k) = > P(X =k)log T(X = k)
k k
=—H(P)+ H(P,T)
where cross entropy H(P,T) =), —P(X = k)logT(X = k)
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Chow-Liu Algorithm

Key result: To minimize KL(P || T) over possible tree
networks T representing true P, it suffices to find the tree
network T that maximizes the sum of mutual informations
over its edges

Mutual information for an edge between variable A and B:

[(A,B) =YY P(a,b)log P]zé;}”()b)
a b

This works because for tree networks with nodes X = (X; ...

P(X =k)
T(X = k)

= = I(X;,Pa(X)))+ > H(X;)— H(X;...

KL(P(X) || T(X)) = > P(X=k)log

Chow-Liu Algorithm

1. for each pair of variables A,B, use data to estimate
P(A,B), P(A), and P(B)

2. for each pair A, B calculate mutual information
_ P(a,b)
I(A,B) = Z zb: P(a,b)log Pla)PD)

3. calculate the maximum spanning tree over the set of
variables, using edge weights /(4,B)
(given N vars, this costs only O(N2) time)

4. add arrows to edges to form a directed-acyclic graph

5. learn the CPD’s for this graph

23



Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]

Tree Augmented Naive Bayes

[Nir Friedman et al., 1997]
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Bayes Nets — What You Should Know

* Representation

— Bayes nets represent joint distribution as a DAG +
Conditional Distributions

* Inference
— NP-hard in general
— For some graphs, closed form inference is feasible
— Approximate methods too, e.g., Monte Carlo methods, ...
* Learning
— Easy for known graph, fully observed data (MLE’s, MAP est.)
— EM for partly observed data, known graph

— Learning graph structure: Chow-Liu for tree-structured
networks

— Hardest when graph unknown, data incompletely observed
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