Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

April 1, 2019

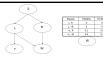
Today:

- Inference in graphical models
- · Learning graphical models

Readings:

Bishop chapter 8

Bayesian Networks **Definition**



- A Bayes network represents the joint probability distribution over a collection of random variables
- A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)
- · Each node denotes a random variable
- · Edges denote dependencies
- For each node X_i its CPD defines $P(X_i \mid Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

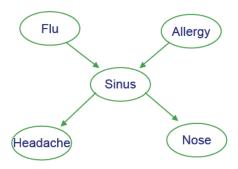
Pa(X) = immediate parents of X in the graph

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable

Example

- Flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose



Prob. of joint assignment: easy

Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Marginal probabilities P(X_i): not so easy

• How do we calculate P(N=n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a random sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

To generate a random sample for roots of network (F or A):

- 1. let $\theta = P(F=1)$ # look up from CPD
- 2. r = random number drawn uniformly between 0 and 1
- 3. if $r < \theta$ then output 1, else 0

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

To generate a random sample for roots of network (F or A):

- 1. let $\theta = P(F=1)$ # look up from CPD
- 2. r = random number drawn uniformly between 0 and 1
- 3. if $r < \theta$ then output 1, else 0

To generate a random sample for S, given F,A:

- 1. let $\theta = P(S=1|F=f,A=a)$ # look up from CPD
- 2. r = random number drawn uniformly between 0 and 1
- 3. if $r < \theta$ then output 1, else 0

Generating a sample from joint distribution: easy

Flu Allergy

Sinus

Headache

Nose

Note we can estimate marginals

like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples for which N=n

Similarly, for anything else we care about, calculate its maximum likelihood estimate from the sample P(F=1|H=1, N=0)

→ weak but general method for estimating <u>any</u> probability term...

Generating a sample from joint distribution: easy

We can easily sample P(F,A,S,H,N)

Can we use this to get P(F,A,S,H | N)?

Directly sample P(F,A,S,H | N)?

Gibbs Sampling:

Goal: Directly sample conditional distributions $P(X_1,...,X_n \mid X_{n+1},...,X_m)$

Approach:

- start with the fixed observed $X_{n+1}, ..., X_m$ plus arbitrary initial values for unobserved $X_1^{(0)}, ..., X_n^{(0)}$
- iterate for s=0 to a big number:

$$X_{1}^{s+1} \sim P(X_{1}|X_{2}^{s}, X_{3}^{s} \dots X_{n}^{s}, X_{n+1}, \dots X_{m})$$

$$X_{2}^{s+1} \sim P(X_{2}|X_{1}^{s+1}, X_{3}^{s} \dots X_{n}^{s}, X_{n+1}, \dots X_{m})$$

$$\dots$$

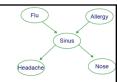
$$X_{n}^{s+1} \sim P(X_{n}|X_{1}^{s+1}, X_{2}^{s+1}, \dots X_{n-1}^{s+1}, X_{n+1}, \dots X_{m})$$

Eventually (after burn-in), the collection of samples will constitute a sample of the true $P(X_1,...,X_n \mid X_{n+1},...,X_m)$

* but often use every 100th sample, since iters not independent

Gibbs Sampling:

Approach:



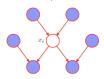
- start with arbitrary initial values for $X_1^{(0)},\dots,X_n^{(0)}$ (and observed $X_{n+1},\,\dots,\,X_m$)
- iterate for s=0 to a big number:

$$X_1^{s+1} \sim P(X_1|X_2^s, X_3^s \dots X_n^s, X_{n+1}, \dots X_m)$$

 $X_2^{s+1} \sim P(X_2|X_1^{s+1}, X_3^s \dots X_n^s, X_{n+1}, \dots X_m)$

$$X_n^{s+1} \sim P(X_n | X_1^{s+1}, X_2^{s+1}, \dots | X_{n-1}^{s+1}, X_{n+1}, \dots | X_m)$$

Only need Markov Blanket at each step!

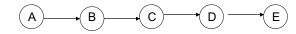


Gibbs is special case of Markov Chain Monte Carlo method

Prob. of marginals: not so easy

But sometimes the structure of the network allows us to be clever → avoid exponential work

eg., chain



what is P(C=1|B=b, D=d)?

what is P(C=1)?

Variable Elimination example

But sometimes the structure of the network allows us to be clever → avoid exponential work

eg., chain $A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$ what is P(C=1)?

Inference in Bayes Nets

- In general, intractable (NP-complete)
- · For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - · Variable elimination
- Can often use Monte Carlo methods
 - Generate many samples, then count up the results
 - Gibbs sampling (example of Markov Chain Monte Carlo)
- Many other approaches
 - Variational methods for tractable approximate solutions
 - Junction tree, Belief propagation, ...

see Graphical Models course 10-708

Learning Bayes Nets from Data

Learning of Bayes Nets

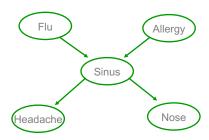
- Four categories of learning problems
 - Graph structure may be known/unknown
 - Variable values may be fully observed / partly unobserved
- Easy case: learn parameters when graph structure is *known*, and training data is *fully observed*
- Interesting case: graph known, data partly observed
- Gruesome case: graph structure *unknown*, data *partly unobserved*

Learning CPTs from Fully Observed Data

 Example: Consider learning the parameter

$$\theta_{s|ij} \equiv P(S=1|F=i, A=j)$$

 MLE (Max Likelihood Estimate) is



$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

kth training example

 $\delta(X) = 1 \text{ if } X \text{ is true}$ 0 otherwise

· Remember why?

let's use a_k to represent value of A on the kth example

MLE estimate of $heta_{s|ij}$ from fully observed data

• Maximum likelihood estimate $\theta \leftarrow \arg\max_{\theta} \log P(data|\theta)$

· Our case:

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k)P(a_k)P(s_k|f_ka_k)P(h_k|s_k)P(n_k|s_k)$$

$$\log P(data|\theta) = \sum_{k=1}^K \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

$$\frac{\partial \log P(data|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$

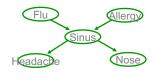
$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

let's use a_k to represent value of A on the kth example

MLE for $\theta_{s|ij} = P(S = 1|F = i, A = j)$ from <u>fully</u> observed data

• Maximum likelihood estimate $\theta \leftarrow \arg\max_{\alpha} \log P(data|\theta)$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$



like flipping coin $\; \sum_{k=1}^K \delta(f_k=i,a_k=j)$ times to see how often $\; s_k=1$

MAP for $\theta_{s|ij} = P(S = 1|F = i, A = j)$ from <u>fully</u> observed data

· Maximum likelihood estimate

$$heta \leftarrow rg \max_{ heta} \log P(data| heta) \ heta_{s|ij} = rac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

MAP estimate

$$\theta \leftarrow \arg\max_{\boldsymbol{\theta}} \log P(\boldsymbol{\theta}|data) = \arg\max_{\boldsymbol{\theta}} \log \ [P(data|\boldsymbol{\theta})P(\boldsymbol{\theta})]$$

If assume prior
$$P(\theta_{s|ij}) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta_{s|ij}^{\beta_1 - 1} (1 - \theta_{s|ij})^{\beta_0 - 1}$$

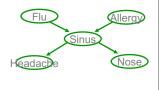
$$\theta_{s|ij} = \frac{(\beta_1 - 1) + \sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{(\beta_1 - 1) + (\beta_0 - 1) + \sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

like coin flipping, including hallucinated examples

Estimate heta from partly observed data

- · What if FAHN observed, but not S?
- Can't calculate MLE

$$\theta \leftarrow \arg\max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$$



- Let X be all *observed* variable values (over all examples)
- · Let Z be all unobserved variable values
- · Can't calculate MLE:

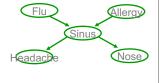
$$\theta \leftarrow \arg\max_{\theta} \log P(X, Z | \theta)$$

• WHAT TO DO?

Estimate heta from partly observed data

- · What if FAHN observed, but not S?
- · Can't calculate MLE

$$\theta \leftarrow \arg\max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$$



- Let X be all *observed* variable values (over all examples)
- · Let Z be all unobserved variable values
- Can't calculate MLE:

$$\theta \leftarrow \arg\max_{\theta} \log P(X, Z | \theta)$$

• EM seeks* the estimate:

$$\theta \leftarrow \arg\max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$$

* EM guaranteed to find local maximum

Expected value

$$E_{P(X)}[f(X)] = \sum_{x} P(X = x)f(x)$$

• EM seeks estimate:

$$\theta \leftarrow \arg\max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$$

• here, observed X={F,A,H,N}, unobserved Z={S}

$$\log P(X, Z|\theta) = \sum_{k=1}^K \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

 $E_{P(Z|X,\theta)} \log P(X,Z|\theta)$

$$= \sum_{k=1}^K \sum_{i=0}^1 P(s_k = i | f_k, a_k, h_k, n_k) \ [log P(f_k) + \log P(a_k) + \log P(s_k | f_k a_k) + \log P(h_k | s_k) + \log P(n_k | s_k)]$$

let's use a_k to represent value of A on the kth example

EM Algorithm - Informally

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters θ

Iterate until convergence:

- \bullet E Step: use X, θ to estimate the unobserved Z values
- M Step: use X values and estimated Z values to derive a better $\boldsymbol{\theta}$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

$$\text{ Define } \ Q(\theta'|\theta) = E_{P(Z|X,\theta)}[\log P(X,Z|\theta')] \\ \text{ In the property } \ \text{ with } \ \text{ for all } \ \text{ on } \$$

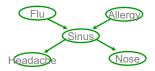
Iterate until convergence:

- E Step: Use X and current θ to calculate P(Z|X, θ)
- M Step: Replace current θ by $\theta \leftarrow \arg\max_{\theta'} Q(\theta'|\theta)$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$

E Step: Use X, θ , to Calculate P(Z|X, θ)

observed X={F,A,H,N}, unobserved Z={S}



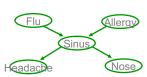
How? Bayes net inference problem.

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) =$$

let's use a_k to represent value of \emph{A} on the kth example

E Step: Use X, θ , to Calculate P(Z|X, θ)

observed $X=\{F,A,H,N\}$, unobserved $Z=\{S\}$



How? Bayes net inference problem.

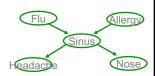
$$P(S_k = 1 | f_k a_k h_k n_k, \theta) =$$

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

let's use a_k to represent value of A on the kth example

EM and estimating $\theta_{s|ij}$

observed $X = \{F,A,H,N\}$, unobserved $Z=\{S\}$



E step: Calculate $P(Z_k|X_k;\theta)$ for each training example, k

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

M step: update all relevant parameters. For example:

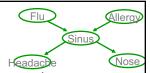
$$\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) \ E[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

$$\text{Recall MLE was: } \theta_{s|ij} = \frac{\sum_{k=1}^K \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^K \delta(f_k = i, a_k = j)}$$

EM and estimating heta

More generally,

Given observed set X, unobserved set Z of boolean values



E step: Calculate for each training example, k

the expected value of each unobserved variable in each training example

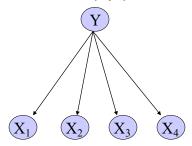
M step:

Calculate θ similar to MLE estimates, but replacing each count by its <u>expected count</u>

$$\delta(Z=1) \to E_{Z|X,\theta}[Z]$$
 $\delta(Z=0) \to (1 - E_{Z|X,\theta}[Z])$

Using Unlabeled Data to Help Train Naïve Bayes Classifier

Learn P(Y|X)



Υ	X1	X2	Х3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

E step: Calculate for each training example, k
the expected value of each unobserved variable

Υ	X1	X2	Х3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

EM and estimating $\, heta$

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

let's use y(k) to indicate value of Y on kth example

EM and estimating $\, heta$

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its <u>expected count</u>

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k) \dots x_N(k)) \ \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k) \dots x_N(k))}$$

MLE would be:
$$\hat{P}(X_i=j|Y=m)=\frac{\sum_k \delta((y(k)=m)\wedge (x_i(k)=j))}{\sum_k \delta(y(k)=m)}$$

- Inputs: Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.
- Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l , only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Loop while classifier parameters improve, as measured by the change in $l_c(\theta|\mathcal{D}; \mathbf{z})$ (the complete log probability of the labeled and unlabeled data
 - **(E-step)** Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, *i.e.*, the probability that each mixture component (and class) generated each document, $P(c_j|d_i;\hat{\theta})$ (see Equation 7).
 - (M-step) Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Output: A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - -4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 90 topics categories

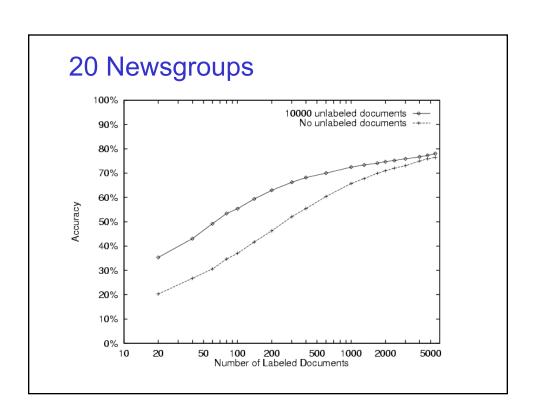


Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0 Iteration 1	Iteration 2
intelligence DD artificial understanding DDw dist identical rus arrange games dartmouth natural cognitive logic proving prolog knowledge human representation field intelligence Word w ranked by P(w Y=course) DD Delecture cc D* DD:DD handout due problem set tay DDam yurttas homework kfoury sec postscript exam solution assaf	D DD lecture cc DD:DD due D* homework assignment handout set hw exam problem DDam postscript solution quiz chapter ascii

What you should know about EM

- · For learning from partly unobserved data
- MLE of $\theta = \arg \max_{\theta} \log P(data|\theta)$
- EM estimate: $\theta = \arg\max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$ Where X is observed part of data, Z is unobserved
- · EM for training Bayes networks
- Recall EM for Gaussian Mixture Models
- Can also derive your own EM algorithm for your own problem
 - write out expression for $E_{Z|X,\theta}[\log P(X,Z|\theta)]$
 - E step: for each training example X^k , calculate $P(Z^k | X^k, \theta)$
 - M step: chose new θ to maximize $E_{Z|X,\theta}[\log P(X,Z|\theta)]$

Learning Bayes Net Structure

How can we learn Bayes Net graph structure?

In general case, open problem

- can require lots of data (else high risk of overfitting)
- can use Bayesian priors, or other kinds of prior assumptions about graph structure to constrain search

One key result:

- Chow-Liu algorithm: finds "best" tree-structured network
- · What's best?
 - suppose $P(\mathbf{X})$ is true distribution, $T(\mathbf{X})$ is our tree-structured network, where $\mathbf{X} = \langle X_1, \dots X_n \rangle$
 - Chow-Liu minimizes Kullback-Leibler divergence:

$$KL(P(\mathbf{X}) \mid\mid T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$

Kullback-Leibler Divergence

 KL(P(X) || T(X)) is a measure of the difference between distribution P(X) and T(X)

$$KL(P(\mathbf{X}) \mid\mid T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$

- It is assymetric, always greater or equal to 0
- It is 0 iff P(X)=T(X)

$$KL(P(X)||T(X)) = \sum_{k} P(X = k) \log P(X = k) - \sum_{k} P(X = k) \log T(X = k)$$
$$= -H(P) + H(P, T)$$

where cross entropy $H(P,T) = \sum_{k} -P(X=k) \log T(X=k)$

Chow-Liu Algorithm

Key result: To minimize KL(P || T) over possible tree networks T representing true P, it suffices to find the tree network T that maximizes the sum of mutual informations over its edges

Mutual information for an edge between variable A and B:

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

This works because for tree networks with nodes $\mathbf{X} \equiv \langle X_1 \dots X_n \rangle$

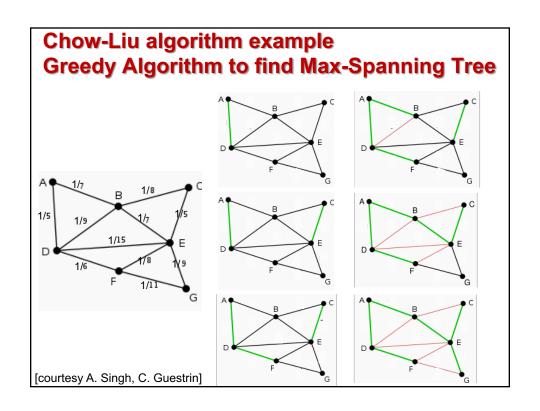
$$KL(P(\mathbf{X}) \mid\mid T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$
$$= -\sum_{i} I(X_{i}, Pa(X_{i})) + \sum_{i} H(X_{i}) - H(X_{1} \dots X_{n})$$

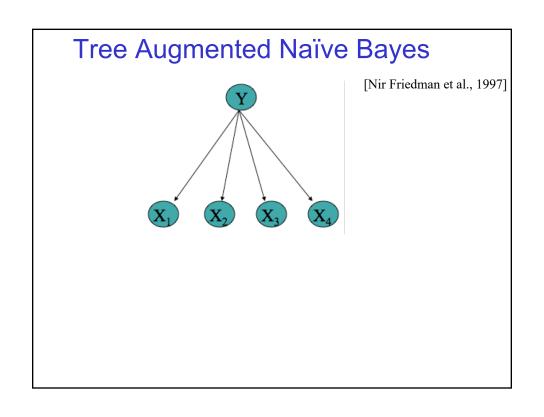
Chow-Liu Algorithm

- 1. for each pair of variables A,B, use data to estimate P(A,B), P(A), and P(B)
- 2. for each pair A, B calculate mutual information

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

- calculate the maximum spanning tree over the set of variables, using edge weights *I(A,B)* (given N vars, this costs only O(N²) time)
- 4. add arrows to edges to form a directed-acyclic graph
- 5. learn the CPD's for this graph





Bayes Nets – What You Should Know

- Representation
 - Bayes nets represent joint distribution as a DAG + Conditional Distributions
- Inference
 - NP-hard in general
 - For some graphs, closed form inference is feasible
 - Approximate methods too, e.g., Monte Carlo methods, ...
- Learning
 - Easy for known graph, fully observed data (MLE's, MAP est.)
 - EM for partly observed data, known graph
 - Learning graph structure: Chow-Liu for tree-structured networks
 - Hardest when graph unknown, data incompletely observed