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Machine Learning 10-701
Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

March 27, 2019

Today:

• Graphical models
• Bayes Nets:

• Representing 
distributions

• Conditional 
independencies

• Simple inference

Readings:

• Bishop chapter 8, through 8.2

https://www.microsoft.com/en-
us/research/wp-
content/uploads/2016/05/Bishop-
PRML-sample.pdf

Graphical Models
• Key Idea: 

– Conditional independence assumptions useful  
– but Naïve Bayes is extreme!
– Graphical models express sets of conditional 

independence assumptions via graph structure
– Graph structure plus associated parameters define 

joint probability distribution over set of variables

• Two types of graphical models:
– Directed graphs (aka Bayesian Networks)
– Undirected graphs (aka Markov Random Fields)

our focus

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/Bishop-PRML-sample.pdf
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Graphical Models – Why Care?
• Unify statistics, probability, machine learning

• Graphical models allow combining:
– Prior knowledge in form of dependencies/independencies
– Prior knowledge in form of priors over parameters

– Observed training data

• Principled and ~general methods for
– Probabilistic inference, Learning

• Useful in practice
– Diagnosis, help systems, text analysis, time series models, ...

• Increasingly, deep networks are probabilistic models

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the 
probability distribution governing X is independent of the value 
of Y, given the value of Z

Which we often write

E.g., 
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Marginal Independence
Definition: X is marginally independent of Y if

Equivalently, if

Equivalently, if

Represent Joint Probability Distribution over Variables
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Describe network of dependencies

Bayes Nets define Joint Probability Distribution 
in terms of this graph, plus parameters

Benefits of Bayes Nets:
• Represent the full joint distribution in fewer 

parameters, using prior knowledge about 
dependencies

• Algorithms for inference and learning
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Bayesian Networks Definition

A Bayes network represents the joint probability distribution 
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of 
conditional probability distributions (CPD’s)

• Each node denotes a random variable
• Edges denote dependencies
• For each node Xi its CPD defines P(Xi | Pa(Xi))
• The joint distribution over all variables is defined to be

Pa(X) = immediate parents of X in the graph

Bayesian Network

StormClouds

Lightning Rain

Thunder WindSurf

Nodes = random variables

A conditional probability distribution (CPD) 
is associated with each node N, defining   
P(N | Parents(N))

The joint distribution over all variables:

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf
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Bayesian Network

StormClouds

Lightning Rain

Thunder WindSurf

What can we say about conditional 
independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of 
its non-descendents, given only its 
immediate parents.

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

Some helpful terminology
Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...
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Bayesian Networks
• CPD for each node Xi

describes P(Xi | Pa(Xi))

Chain rule of probability says that in general:

But in a Bayes net:

StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

How Many Parameters?

To define joint distribution in general?

To define joint distribution for this Bayes Net?
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StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

Inference in Bayes Nets

P(S=1, L=0, R=1, T=0, W=1)  =

StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

Learning a Bayes Net

Consider learning when graph structure is given, and data = { <s,l,r,t,w> }

What is the MLE solution?  MAP?
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Algorithm for Constructing Bayes Network
• Choose an ordering over variables, e.g., X1, X2, ... Xn 

• For i=1 to n
– Add Xi to the network
– Select parents Pa(Xi) as minimal subset of X1 ... Xi-1 such that 

Notice this choice of parents assures
(by chain rule)

(by 
construction)

Example
• Bird flu and Allegies both cause Nasal problems
• Nasal problems cause Sneezes and Headaches
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What is the Bayes Network for X1,…X4 with NO 
assumed conditional independencies?

What is the Bayes Network for Naïve Bayes?
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What do we do if variables are mix of discrete 
and real valued?

What You Should Know
• Bayes nets are convenient representation for encoding 

dependencies / conditional independence
• BN = Graph plus parameters of CPD’s

– Defines joint distribution over variables
– Can calculate everything else from that
– Though inference may be intractable

• Reading conditional independence relations from the 
graph
– Each node is cond indep of non-descendents, given only its 

parents
– ‘Explaining away’


