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Gaussian mixture models



Potential issue with k-means . . .

Data points are assigned deterministically to one (and only one) cluster

In reality, clusters may overlap, and it may be better to identify the

probability that a point belongs to each cluster
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Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to

their cluster centers?

(b)
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• Points seem to form 3 clusters

• We cannot model p(x) with

simple and known distributions

• E.g., the data is not a Gaussian

b/c we have 3 distinct

concentrated regions
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Gaussian mixture models: intuition

(a)
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• Key idea: Model each region

with a distinct distribution

• Can use Gaussians — Gaussian

mixture models (GMMs)

• *However*, we don’t know

cluster assignments (label),

parameters of Gaussians, or

mixture components!

• Must learn from unlabeled data

D = {xn}Nn=1
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Recall: Gaussian (normal) distributions

x ∼ N(µ,Σ)
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Gaussian mixture models: formal definition

GMM has the following density function for x

p(x) =
K∑

k=1

ωkN(x |µk ,Σk)

• K : number of Gaussians — they are called mixture components

• µk and Σk : mean and covariance matrix of k-th component

• ωk : mixture weights (or priors) represent how much each component

contributes to final distribution. They satisfy 2 properties:

∀ k, ωk > 0, and
∑
k

ωk = 1

These properties ensure p(x) is in fact a probability density function

6



Gaussian mixture models: formal definition

GMM has the following density function for x

p(x) =
K∑

k=1

ωkN(x |µk ,Σk)

• K : number of Gaussians — they are called mixture components

• µk and Σk : mean and covariance matrix of k-th component

• ωk : mixture weights (or priors) represent how much each component

contributes to final distribution. They satisfy 2 properties:

∀ k, ωk > 0, and
∑
k

ωk = 1

These properties ensure p(x) is in fact a probability density function

6



Gaussian mixture models: formal definition

GMM has the following density function for x

p(x) =
K∑

k=1

ωkN(x |µk ,Σk)

• K : number of Gaussians — they are called mixture components

• µk and Σk : mean and covariance matrix of k-th component

• ωk : mixture weights (or priors) represent how much each component

contributes to final distribution. They satisfy 2 properties:

∀ k , ωk > 0, and
∑
k

ωk = 1

These properties ensure p(x) is in fact a probability density function

6



GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x , z) = p(z)p(x |z)

where z is a discrete random variable taking values between 1 and K .

Denote

ωk = p(z = k)

Now, assume the conditional distributions are Gaussian distributions

p(x |z = k) = N(x |µk ,Σk)

Then, the marginal distribution of x is

p(x) =
K∑

k=1

ωkN(x |µk ,Σk)

Namely, the Gaussian mixture model
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Gaussian mixtures in 1D
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Gaussian mixture model for clustering
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GMMs: example

(a)

0 0.5 1
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The conditional distribution between x and z

(representing color) are

p(x |z = red) = N(x |µ1,Σ1)

p(x |z = blue) = N(x |µ2,Σ2)

p(x |z = green) = N(x |µ3,Σ3)

(b)
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1 The marginal distribution is thus

p(x) = p(red)N(x |µ1,Σ1) + p(blue)N(x |µ2,Σ2)

+ p(green)N(x |µ3,Σ3)
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Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

θ = {ωk ,µk ,Σk}Kk=1

Let’s first consider the simple/unrealistic case where we have labels z

Define D′ = {xn, zn}Nn=1, D = {xn}Nn=1

• D′ is the complete data

• D the incomplete data

How can we learn our parameters?

Given D′, the maximum likelihood estimation of the θ is given by

θ = arg max logD′ =
∑
n

log p(xn, zn)
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable∑
n

log p(xn, zn) =
∑
n

log p(zn)p(xn|zn) =
∑
k

∑
n:zn=k

log p(zn)p(xn|zn)

where we have grouped data by cluster labels zn.

Let γnk ∈ {0, 1} be a binary variable that indicates whether zn = k:∑
n

log p(xn, zn) =
∑
k

∑
n

γnk log p(z = k)p(xn|z = k)

=
∑
k

∑
n

γnk [logωk + logN(xn|µk ,Σk)]

Note: in the complete setting the γnk just add to the notation, but later

we will ‘relax’ these variables and allow them to take on fractional values
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Parameter estimation for GMMs: complete data

From our previous discussion, we have∑
n

log p(xn, zn) =
∑
k

∑
n

γnk [logωk + logN(xn|µk ,Σk)]

Regrouping, we have

∑
n

log p(xn, zn) =
∑
k

∑
n

γnk logωk +
∑
k

{∑
n

γnk logN(xn|µk ,Σk)

}

The term inside the braces depends on k-th component’s parameters. It is now

easy to show that (left as an exercise) the MLE is:

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)>

What’s the intuition?
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Intuition

Since γnk is binary, the previous solution is nothing but:

• ωk : fraction of total data points whose cluster label zn is k

• note that
∑

k

∑
n γnk = N

• µk : mean of all data points whose zn is k

• Σk : covariance of all data points whose zn is k

Recall that this depends on us knowing the true cluster labels zn

This intuition will help us develop an algorithm for estimating θ when we

*do not* know zn (incomplete data)
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GMMs and Incomplete Data



Parameter estimation for GMMs: Incomplete data

GMM Parameters

θ = {ωk ,µk ,Σk}Kk=1

Incomplete Data

Our data contains observed and unobserved data, and hence is

incomplete

• Observed: D = {xn}
• Unobserved (hidden): {zn}

Goal Obtain the maximum likelihood estimate of θ:

θ = arg max `(θ) = arg max logD = arg max
∑
n

log p(xn|θ)

= arg max
∑
n

log
∑
zn

p(xn, zn|θ)

The objective function `(θ) is called the incomplete log-likelihood.
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Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to

take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

• E-step: ‘guess’ values of the zn using existing values of θ

• M-step: solve for new values of θ given imputed values for zn (i.e.,

maximize complete likelihood!)
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E-step: Soft cluster assignments

We define γnk as p(zn = k |xn,θ)

• This is the posterior distribution of zn given xn and θ

• Recall that in complete data setting γnk was binary

• Now it’s a “soft” assignment of xn to k-th component, with xn

assigned to each component with some probability

Given an estimate of θ = {ωk ,µk ,Σk}Kk=1, we can compute γnk as

follows:
γnk = p(zn = k|xn)

=
p(xn|zn = k)p(zn = k)

p(xn)

=
p(xn|zn = k)p(zn = k)∑K

k′=1 p(xn|zn = k ′)p(zn = k ′)
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M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

∑
n

log p(xn, zn) =
∑
k

∑
n

γnk logωk +
∑
k

{∑
n

γnk logN(xn|µk ,Σk)

}

Previously γnk was binary, but now we define γnk = p(zn = k|xn) (E-step)

We get the same simple expression for the MLE as before!

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)>

Intuition: Each point now contributes some fractional component to each

of the parameters, with weights determined by γnk
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EM procedure for GMM

Alternate between estimating γnk and estimating θ

• Initialize θ with some values (random or otherwise)

• Repeat

• E-Step: Compute γnk using the current θ

• M-Step: Update θ using the γnk we just computed

• Until Convergence

Questions to be answered next

• How does GMM relate to K -means?

• Is this procedure reasonable, i.e., are we optimizing a sensible

criterion?

• Will this procedure converge?

19
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GMMs and K-means

GMMs provide probabilistic interpretation for K-means

GMMs reduce to K-means under the following assumptions (in which

case EM for GMM parameter estimation simplifies to K-means):

• Assume all Gaussians have σ2I covariance matrices

• Further assume σ → 0, so we only need to estimate µk , i.e., means

K-means is often called “hard” GMM or GMMs is called “soft” K-means

The posterior γnk provides a probabilistic assignment for xn to cluster k

20
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GMMs vs. k-means

Pros/Cons

• k-means is a simpler, more straightforward method, but might not

be as accurate because of deterministic clustering

• GMMs can be more accurate, as they model more information (soft

clustering, variance), but can be more expensive to compute

• Both methods have a similar set of practical issues (having to select

k, the distance, and the initialization)
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EM Algorithm



EM algorithm: motivation and setup

• EM is a general procedure to estimate parameters for probabilistic

models with hidden/latent variables

• Suppose the model is given by a joint distribution

p(x |θ) =
∑
z

p(x , z |θ)

• Given incomplete data D = {xn} our goal is to compute MLE of θ:

θ = arg max `(θ) = arg max logD = arg max
∑
n

log p(xn|θ)

= arg max
∑
n

log
∑
zn

p(xn, zn|θ)

The objective function `(θ) is called incomplete log-likelihood
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A lower bound

• log-sum form of incomplete log-likelihood is difficult to work with

• EM: construct lower bound on `(θ) (E-step) and optimize it

(M-step)

• If we define q(z) as a distribution over z , then

`(θ) =
∑
n

log
∑
zn

p(xn, zn|θ)

=
∑
n

log
∑
zn

qn(zn)
p(xn, zn|θ)

qn(zn)

≥
∑
n

∑
zn

qn(zn) log
p(xn, zn|θ)

qn(zn)

• Last step follows from Jensen’s inequality, i.e., f (EX ) ≥ Ef (X ) for

concave function f
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GMM Example

(a)

0 0.5 1

0

0.5

1

• Consider the previous model where x could be from 3 regions

• We can choose q(z) as any valid distribution

• e.g., q(z = k) = 1/3 for any of 3 colors

• e.g., q(z = k) = 1/2 for red and blue, 0 for green

Which q(z) should we choose?
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Which q(z) to choose?

Recall:

`(θ) =
∑
n

log
∑
zn

p(xn, zn|θ) =
∑
n

log
∑
zn

qn(zn)
p(xn, zn|θ)

qn(zn)

≥
∑
n

∑
zn

qn(zn) log
p(xn, zn|θ)

qn(zn)

• The lower bound we derived for `(θ) holds for all choices of q(·)
• We want a tight lower bound

, and given some current estimate θt ,

we will pick qn(·) such that our lower bound holds with equality at θt

• f (EX ) = Ef (X )? It is sufficient for X to be a constant random

variable!

• Choose qn(zn) ∝ p(xn, zn|θt)! Since qn(·) is a distribution, we have

qn(zn) =
p(xn, zn|θt)∑

k p(xn, zn = k|θt)
=

p(xn, zn|θt)

p(xn|θt)
= p(zn|xn;θt)

• This is the posterior distribution of zn given xn and θt
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E and M Steps

Our simplified expression

`(θt) =
∑
n

∑
zn

p(zn|xn;θt) log
p(xn, zn|θt)

p(zn|xn;θt)

E-Step: For all n, compute qn(zn) = p(zn|xn;θt)

Why is this called the E-Step? Because we can view it as computing the

expected (complete) log-likelihood:

Q(θ|θt) =
∑
n

∑
zn

p(zn|xn;θt) log p(xn, zn|θ) = Eq

∑
n

log p(xn, zn|θ)

M-Step: Maximize Q(θ|θt), i.e., θt+1 = arg maxθ Q(θ|θt)
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EM in Pictures
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Example: applying EM to GMMs

What is the E-step in GMM?

γnk = p(z = k |xn;θ(t))

What is the M-step in GMM? The Q-function is

Q(θ,θ(t)) =
∑
n

∑
k

p(z = k|xn;θ(t)) log p(xn, z = k|θ)

=
∑
n

∑
k

γnk log p(xn, z = k|θ)

=
∑
k

∑
n

γnk log p(z = k)p(xn|z = k)

=
∑
k

∑
n

γnk [logωk + logN(xn|µk ,Σk)]

We have recovered the parameter estimation algorithm for GMMs that

we previously discussed
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Iterative and monotonic improvement

• We can show that `(θt+1) ≥ `(θt)

• Recall that we chose q(·) in the E-step such that:

`(θt) =
∑
n

∑
zn

q(zn) log
p(xn, zn|θt)

q(zn)

• However, in the M-step, θt+1 is chosen to maximize the right hand

side of the equation, thus proving our desired result

• Note: the EM procedure converges but only to a local optimum
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You should know . . .

• EM is a general procedure for maximizing a likelihood with latent

(unobserved) variables

• The two steps of EM:

• (1) Estimating unobserved data from observed data and current

parameters

• (2) Using this “complete” data to find the maximum likelihood

parameter estimates

• Pros: Guaranteed to converge, no parameters to tune (e.g.,

compared to gradient methods)

• Cons: Can get stuck in local optima, can be expensive

• Why is EM useful for unsupervised learning?

• EM is a general method to deal with hidden data; we have studied it

in the context of hidden labels (unsupervised learning)
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