## 10-701 Introduction to Machine Learning

The EM Algorithm

Spring 2019

Ameet Talwalkar (slide credit: Virginia Smith)

### Outline

1. Gaussian mixture models

2. GMMs and Incomplete Data

3. EM Algorithm

# Gaussian mixture models

#### Potential issue with k-means ...

Data points are assigned deterministically to one (and only one) cluster

In reality, clusters may overlap, and it may be better to identify the *probability* that a point belongs to each cluster



### Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to their cluster centers?



- Points seem to form 3 clusters
- We cannot model p(x) with simple and known distributions
- E.g., the data is not a Gaussian b/c we have 3 distinct concentrated regions



• **Key idea:** Model *each* region with a distinct distribution



- **Key idea:** Model *each* region with a distinct distribution
- Can use Gaussians Gaussian mixture models (GMMs)



- **Key idea:** Model *each* region with a distinct distribution
- Can use Gaussians Gaussian mixture models (GMMs)



- **Key idea:** Model *each* region with a distinct distribution
- Can use Gaussians Gaussian mixture models (GMMs)
- \*However\*, we don't know cluster assignments (label), parameters of Gaussians, or mixture components!



- **Key idea:** Model *each* region with a distinct distribution
- Can use Gaussians Gaussian mixture models (GMMs)
- \*However\*, we don't know cluster assignments (label), parameters of Gaussians, or mixture components!
- Must learn from *unlabeled* data  $\mathcal{D} = \{x_n\}_{n=1}^N$

### Recall: Gaussian (normal) distributions

$$\mathbf{x} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$



#### Gaussian mixture models: formal definition

GMM has the following density function for x

$$p(\mathbf{x}) = \sum_{k=1}^{K} \omega_k N(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• K: number of Gaussians — they are called mixture components

#### Gaussian mixture models: formal definition

GMM has the following density function for x

$$p(\mathbf{x}) = \sum_{k=1}^{K} \omega_k N(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- K: number of Gaussians they are called mixture components
- $\mu_k$  and  $\Sigma_k$ : mean and covariance matrix of k-th component

#### Gaussian mixture models: formal definition

GMM has the following density function for x

$$p(\mathbf{x}) = \sum_{k=1}^{K} \omega_k N(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- K: number of Gaussians they are called mixture components
- $\mu_k$  and  $\Sigma_k$ : mean and covariance matrix of k-th component
- $\omega_k$ : mixture weights (or priors) represent how much each component contributes to final distribution. They satisfy 2 properties:

$$\forall k, \ \omega_k > 0, \quad \text{and} \quad \sum_k \omega_k = 1$$

These properties ensure p(x) is in fact a probability density function

### GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$p(\mathbf{x},z) = p(z)p(\mathbf{x}|z)$$

where z is a discrete random variable taking values between 1 and K.

### GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$p(\mathbf{x},z) = p(z)p(\mathbf{x}|z)$$

where z is a discrete random variable taking values between 1 and K.

Denote

$$\omega_k = p(z = k)$$

Now, assume the conditional distributions are Gaussian distributions

$$p(\mathbf{x}|z=k) = N(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

### GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$p(\mathbf{x},z) = p(z)p(\mathbf{x}|z)$$

where z is a discrete random variable taking values between 1 and K.

Denote

$$\omega_k = p(z = k)$$

Now, assume the conditional distributions are Gaussian distributions

$$p(\mathbf{x}|z=k) = N(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Then, the marginal distribution of x is

$$p(\mathbf{x}) = \sum_{k=1}^{K} \omega_k N(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Namely, the Gaussian mixture model

### Gaussian mixtures in 1D



### Gaussian mixture model for clustering



### **GMMs:** example



The conditional distribution between x and z (representing color) are

$$\begin{aligned} p(\mathbf{x}|z = red) &= N(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ p(\mathbf{x}|z = blue) &= N(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ p(\mathbf{x}|z = green) &= N(\mathbf{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{aligned}$$

### **GMMs:** example





The conditional distribution between x and z (representing color) are

$$p(\mathbf{x}|z = red) = N(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$
  
 $p(\mathbf{x}|z = blue) = N(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$   
 $p(\mathbf{x}|z = green) = N(\mathbf{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$ 

The marginal distribution is thus

$$\begin{split} \textit{p}(\textit{\textbf{x}}) &= \textit{p}(\textit{red})\textit{N}(\textit{\textbf{x}}|\mu_1, \pmb{\Sigma}_1) + \textit{p}(\textit{blue})\textit{N}(\textit{\textbf{x}}|\mu_2, \pmb{\Sigma}_2) \\ &+ \textit{p}(\textit{green})\textit{N}(\textit{\textbf{x}}|\mu_3, \pmb{\Sigma}_3) \end{split}$$

### Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

#### Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

Let's first consider the simple/unrealistic case where we have labels z

Define 
$$\mathcal{D}' = \{ \boldsymbol{x}_n, z_n \}_{n=1}^N$$
,  $\mathcal{D} = \{ \boldsymbol{x}_n \}_{n=1}^N$ 

- $\mathcal{D}'$  is the **complete** data
- D the incomplete data

How can we learn our parameters?

#### Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

Let's first consider the simple/unrealistic case where we have labels z

Define 
$$\mathcal{D}' = \{ \boldsymbol{x}_n, z_n \}_{n=1}^N$$
,  $\mathcal{D} = \{ \boldsymbol{x}_n \}_{n=1}^N$ 

- $\mathcal{D}'$  is the **complete** data
- D the incomplete data

How can we learn our parameters?

Given  $\mathcal{D}'$ , the maximum likelihood estimation of the heta is given by

$$\theta = \arg \max \log \mathcal{D}' = \sum_{n} \log p(\mathbf{x}_n, z_n)$$

#### The complete likelihood is decomposable

$$\sum_{n} \log p(\mathbf{x}_n, z_n) = \sum_{n} \log p(z_n) p(\mathbf{x}_n | z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n) p(\mathbf{x}_n | z_n)$$

where we have grouped data by cluster labels  $z_n$ .

#### The complete likelihood is decomposable

$$\sum_{n} \log p(\mathbf{x}_n, z_n) = \sum_{n} \log p(z_n) p(\mathbf{x}_n | z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n) p(\mathbf{x}_n | z_n)$$

where we have grouped data by cluster labels  $z_n$ .

Let  $\gamma_{nk} \in \{0,1\}$  be a binary variable that indicates whether  $z_n = k$ :

#### The complete likelihood is decomposable

$$\sum_{n} \log p(\mathbf{x}_n, z_n) = \sum_{n} \log p(z_n) p(\mathbf{x}_n | z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n) p(\mathbf{x}_n | z_n)$$

where we have grouped data by cluster labels  $z_n$ .

Let  $\gamma_{nk} \in \{0,1\}$  be a binary variable that indicates whether  $z_n = k$ :

$$\sum_{n} \log p(\mathbf{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log p(z = k) p(\mathbf{x}_{n} | z = k)$$

#### The complete likelihood is decomposable

$$\sum_{n} \log p(\mathbf{x}_n, z_n) = \sum_{n} \log p(z_n) p(\mathbf{x}_n | z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n) p(\mathbf{x}_n | z_n)$$

where we have grouped data by cluster labels  $z_n$ .

Let  $\gamma_{nk} \in \{0,1\}$  be a binary variable that indicates whether  $z_n = k$ :

$$\sum_{n} \log p(\mathbf{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log p(z = k) p(\mathbf{x}_{n} | z = k)$$

$$= \sum_{k} \sum_{n} \gamma_{nk} [\log \omega_{k} + \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})]$$

Note: in the complete setting the  $\gamma_{nk}$  just add to the notation, but later we will 'relax' these variables and allow them to take on fractional values

From our previous discussion, we have

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \left[ \log \omega_{k} + \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

From our previous discussion, we have

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \left[ \log \omega_{k} + \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

Regrouping, we have

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

From our previous discussion, we have

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \left[ \log \omega_{k} + \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

Regrouping, we have

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

The term inside the braces depends on k-th component's parameters. It is now easy to show that (left as an exercise) the MLE is:

$$\begin{aligned} \omega_k &= \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \boldsymbol{\mu}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n \\ \boldsymbol{\Sigma}_k &= \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top \end{aligned}$$

#### What's the intuition?

#### Intuition

Since  $\gamma_{nk}$  is binary, the previous solution is nothing but:

- $\omega_k$ : fraction of total data points whose cluster label  $z_n$  is k
  - note that  $\sum_{k} \sum_{n} \gamma_{nk} = N$
- $\mu_k$ : mean of all data points whose  $z_n$  is k
- $\Sigma_k$ : covariance of all data points whose  $z_n$  is k

#### Intuition

Since  $\gamma_{nk}$  is binary, the previous solution is nothing but:

- $\omega_k$ : fraction of total data points whose cluster label  $z_n$  is k
  - note that  $\sum_{k} \sum_{n} \gamma_{nk} = N$
- $\mu_k$ : mean of all data points whose  $z_n$  is k
- $\Sigma_k$ : covariance of all data points whose  $z_n$  is k

#### Recall that this depends on us knowing the true cluster labels $z_n$

This intuition will help us develop an algorithm for estimating  $\theta$  when we \*do not\* know  $z_n$  (incomplete data)

**GMMs and Incomplete Data** 

#### **GMM Parameters**

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

#### **Incomplete Data**

Our data contains observed and unobserved data, and hence is incomplete

- Observed:  $\mathcal{D} = \{x_n\}$
- Unobserved (hidden):  $\{z_n\}$

#### **GMM Parameters**

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

#### Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed:  $\mathcal{D} = \{ \boldsymbol{x}_n \}$
- Unobserved (hidden):  $\{z_n\}$

**Goal** Obtain the maximum likelihood estimate of  $\theta$ :

$$m{ heta} = rg \max \ell(m{ heta}) = rg \max \log \mathcal{D} = rg \max \sum_n \log p(m{x}_n | m{ heta})$$

### Parameter estimation for GMMs: Incomplete data

#### **GMM Parameters**

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

#### Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed:  $\mathcal{D} = \{ \boldsymbol{x}_n \}$
- Unobserved (hidden):  $\{z_n\}$

**Goal** Obtain the maximum likelihood estimate of  $\theta$ :

$$egin{aligned} eta &= rg \max \ell(m{ heta}) = rg \max \log \mathcal{D} = rg \max \sum_n \log p(m{x}_n | m{ heta}) \ &= rg \max \sum_n \log \sum_{m{z}_n} p(m{x}_n, m{z}_n | m{ heta}) \end{aligned}$$

The objective function  $\ell(\theta)$  is called the *incomplete* log-likelihood.

### Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

### Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

### Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

- E-step: 'guess' values of the  $z_n$  using existing values of  $\theta$
- M-step: solve for new values of  $\theta$  given imputed values for  $z_n$  (i.e., maximize complete likelihood!)

We define  $\gamma_{nk}$  as  $p(z_n = k | \boldsymbol{x}_n, \boldsymbol{\theta})$ 

ullet This is the posterior distribution of  $z_n$  given  ${m x}_n$  and  ${m heta}$ 

We define  $\gamma_{nk}$  as  $p(z_n = k | \mathbf{x}_n, \boldsymbol{\theta})$ 

- ullet This is the posterior distribution of  $z_n$  given  $x_n$  and heta
- $\bullet$  Recall that in complete data setting  $\gamma_{\mathit{nk}}$  was binary

We define  $\gamma_{nk}$  as  $p(z_n = k | \mathbf{x}_n, \boldsymbol{\theta})$ 

- This is the posterior distribution of  $z_n$  given  $x_n$  and  $\theta$
- Recall that in complete data setting  $\gamma_{nk}$  was binary
- Now it's a "soft" assignment of x<sub>n</sub> to k-th component, with x<sub>n</sub> assigned to each component with some probability

We define  $\gamma_{nk}$  as  $p(z_n = k | \mathbf{x}_n, \boldsymbol{\theta})$ 

- This is the posterior distribution of  $z_n$  given  $x_n$  and  $\theta$
- Recall that in complete data setting  $\gamma_{nk}$  was binary
- Now it's a "soft" assignment of x<sub>n</sub> to k-th component, with x<sub>n</sub> assigned to each component with some probability

We define  $\gamma_{nk}$  as  $p(z_n = k | \mathbf{x}_n, \boldsymbol{\theta})$ 

- ullet This is the posterior distribution of  $z_n$  given  $x_n$  and heta
- Recall that in complete data setting  $\gamma_{nk}$  was binary
- Now it's a "soft" assignment of x<sub>n</sub> to k-th component, with x<sub>n</sub> assigned to each component with some probability

Given an estimate of  $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$ , we can compute  $\gamma_{nk}$  as follows:

$$\gamma_{nk} = p(z_n = k | \mathbf{x}_n)$$

$$= \frac{p(\mathbf{x}_n | z_n = k) p(z_n = k)}{p(\mathbf{x}_n)}$$

We define  $\gamma_{nk}$  as  $p(z_n = k | \mathbf{x}_n, \boldsymbol{\theta})$ 

- This is the posterior distribution of  $z_n$  given  $x_n$  and  $\theta$
- Recall that in complete data setting  $\gamma_{nk}$  was binary
- Now it's a "soft" assignment of x<sub>n</sub> to k-th component, with x<sub>n</sub> assigned to each component with some probability

Given an estimate of  $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$ , we can compute  $\gamma_{nk}$  as follows:

$$\gamma_{nk} = p(z_n = k | x_n) 
= \frac{p(x_n | z_n = k) p(z_n = k)}{p(x_n)} 
= \frac{p(x_n | z_n = k) p(z_n = k)}{\sum_{k'=1}^{K} p(x_n | z_n = k') p(z_n = k')}$$

# M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

$$\sum_{n} \log p(\mathbf{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Previously  $\gamma_{nk}$  was binary, but now we define  $\gamma_{nk}=p(z_n=k|x_n)$  (E-step)

# M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Previously  $\gamma_{nk}$  was binary, but now we define  $\gamma_{nk} = p(z_n = k|\mathbf{x}_n)$  (E-step)

We get the same simple expression for the MLE as before!

$$\omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \boldsymbol{\mu}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n$$
$$\boldsymbol{\Sigma}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top$$

# M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

$$\sum_{n} \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Previously  $\gamma_{nk}$  was binary, but now we define  $\gamma_{nk} = p(z_n = k | x_n)$  (E-step)

We get the same simple expression for the MLE as before!

$$\omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \boldsymbol{\mu}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n$$
$$\boldsymbol{\Sigma}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top$$

Intuition: Each point now contributes some fractional component to each of the parameters, with weights determined by  $\gamma_{nk}$ 

### **EM** procedure for **GMM**

#### Alternate between estimating $\gamma_{nk}$ and estimating $\theta$

- Initialize  $\theta$  with some values (random or otherwise)
- Repeat
  - E-Step: Compute  $\gamma_{nk}$  using the current  $\theta$
  - M-Step: Update  $\theta$  using the  $\gamma_{nk}$  we just computed
- Until Convergence

### **EM** procedure for **GMM**

#### Alternate between estimating $\gamma_{nk}$ and estimating $\theta$

- Initialize  $\theta$  with some values (random or otherwise)
- Repeat
  - E-Step: Compute  $\gamma_{nk}$  using the current  $\theta$
  - M-Step: Update  $\theta$  using the  $\gamma_{nk}$  we just computed
- Until Convergence

#### Questions to be answered next

- How does GMM relate to K-means?
- Is this procedure reasonable, i.e., are we optimizing a sensible criterion?
- Will this procedure converge?

### **GMMs** and K-means

GMMs provide probabilistic interpretation for K-means

#### **GMMs** and K-means

GMMs provide probabilistic interpretation for K-means

GMMs reduce to K-means under the following assumptions (in which case EM for GMM parameter estimation simplifies to K-means):

- Assume all Gaussians have  $\sigma^2 I$  covariance matrices
- ullet Further assume  $\sigma o 0$ , so we only need to estimate  $oldsymbol{\mu}_k$ , i.e., means

K-means is often called "hard" GMM or GMMs is called "soft" K-means

The posterior  $\gamma_{nk}$  provides a probabilistic assignment for  $\mathbf{x}_n$  to cluster k

#### GMMs vs. k-means

#### Pros/Cons

• *k*-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering

#### GMMs vs. k-means

#### Pros/Cons

- *k*-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering
- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute

#### GMMs vs. k-means

#### Pros/Cons

- *k*-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering
- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute
- Both methods have a similar set of practical issues (having to select k, the distance, and the initialization)

# EM Algorithm

### EM algorithm: motivation and setup

- EM is a general procedure to estimate parameters for probabilistic models with hidden/latent variables
- Suppose the model is given by a joint distribution

$$p(x|\theta) = \sum_{z} p(x, z|\theta)$$

### EM algorithm: motivation and setup

- EM is a general procedure to estimate parameters for probabilistic models with hidden/latent variables
- Suppose the model is given by a joint distribution

$$p(\mathbf{x}|\theta) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$$

• Given incomplete data  $\mathcal{D} = \{x_n\}$  our goal is to compute MLE of  $\theta$ :

$$\begin{split} \theta &= \arg\max\ell(\theta) = \arg\max\log\mathcal{D} = \arg\max\sum_n \log p(\mathbfit{x}_n|\boldsymbol{\theta}) \\ &= \arg\max\sum_n \log\sum_{\mathbfit{z}_n} p(\mathbfit{x}_n,\mathbfit{z}_n|\boldsymbol{\theta}) \end{split}$$

The objective function  $\ell(m{ heta})$  is called *incomplete* log-likelihood

- $\bullet$  log-sum form of incomplete log-likelihood is difficult to work with
- ullet EM: construct lower bound on  $\ell( heta)$  (E-step) and optimize it (M-step)

- log-sum form of incomplete log-likelihood is difficult to work with
- ullet EM: construct lower bound on  $\ell( heta)$  (E-step) and optimize it (M-step)
- If we define q(z) as a distribution over z, then

$$\ell(\boldsymbol{\theta}) = \sum_{n} \log \sum_{\boldsymbol{z}_{n}} p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} | \boldsymbol{\theta})$$

- log-sum form of incomplete log-likelihood is difficult to work with
- ullet EM: construct lower bound on  $\ell( heta)$  (E-step) and optimize it (M-step)
- If we define q(z) as a distribution over z, then

$$\ell(\theta) = \sum_{n} \log \sum_{\mathbf{z}_{n}} p(\mathbf{x}_{n}, \mathbf{z}_{n} | \theta)$$

$$= \sum_{n} \log \sum_{\mathbf{z}_{n}} q_{n}(\mathbf{z}_{n}) \frac{p(\mathbf{x}_{n}, \mathbf{z}_{n} | \theta)}{q_{n}(\mathbf{z}_{n})}$$

- log-sum form of incomplete log-likelihood is difficult to work with
- ullet EM: construct lower bound on  $\ell(m{ heta})$  (E-step) and optimize it (M-step)
- If we define q(z) as a distribution over z, then

$$\ell(\theta) = \sum_{n} \log \sum_{\mathbf{z}_{n}} p(\mathbf{x}_{n}, \mathbf{z}_{n} | \theta)$$

$$= \sum_{n} \log \sum_{\mathbf{z}_{n}} q_{n}(\mathbf{z}_{n}) \frac{p(\mathbf{x}_{n}, \mathbf{z}_{n} | \theta)}{q_{n}(\mathbf{z}_{n})}$$

$$\geq \sum_{n} \sum_{\mathbf{z}_{n}} q_{n}(\mathbf{z}_{n}) \log \frac{p(\mathbf{x}_{n}, \mathbf{z}_{n} | \theta)}{q_{n}(\mathbf{z}_{n})}$$

• Last step follows from Jensen's inequality, i.e.,  $f(\mathbb{E}X) \geq \mathbb{E}f(X)$  for concave function f

# **GMM Example**



- Consider the previous model where x could be from 3 regions
- We can choose q(z) as any valid distribution
- e.g., q(z = k) = 1/3 for any of 3 colors
- e.g., q(z = k) = 1/2 for red and blue, 0 for green

Which q(z) should we choose?

$$\ell(\theta) = \sum_{n} \log \sum_{z_{n}} p(x_{n}, z_{n} | \theta) = \sum_{n} \log \sum_{z_{n}} q_{n}(z_{n}) \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

$$\geq \sum_{n} \sum_{z_{n}} q_{n}(z_{n}) \log \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

- ullet The lower bound we derived for  $\ell( heta)$  holds for all choices of  $q(\cdot)$
- We want a tight lower bound

$$\ell(\theta) = \sum_{n} \log \sum_{z_{n}} p(x_{n}, z_{n} | \theta) = \sum_{n} \log \sum_{z_{n}} q_{n}(z_{n}) \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

$$\geq \sum_{n} \sum_{z_{n}} q_{n}(z_{n}) \log \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

- The lower bound we derived for  $\ell(\theta)$  holds for all choices of  $q(\cdot)$
- We want a *tight* lower bound, and given some current estimate  $\theta^t$ , we will pick  $q_n(\cdot)$  such that our lower bound holds with equality at  $\theta^t$
- $f(\mathbb{E}X) = \mathbb{E}f(X)$ ?

$$\ell(\theta) = \sum_{n} \log \sum_{z_{n}} p(x_{n}, z_{n} | \theta) = \sum_{n} \log \sum_{z_{n}} q_{n}(z_{n}) \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$
$$\geq \sum_{n} \sum_{z_{n}} q_{n}(z_{n}) \log \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

- ullet The lower bound we derived for  $\ell( heta)$  holds for all choices of  $q(\cdot)$
- We want a *tight* lower bound, and given some current estimate  $\theta^t$ , we will pick  $q_n(\cdot)$  such that our lower bound holds with equality at  $\theta^t$
- $f(\mathbb{E}X) = \mathbb{E}f(X)$ ? It is sufficient for X to be a constant random variable!

$$\ell(\theta) = \sum_{n} \log \sum_{z_{n}} p(x_{n}, z_{n} | \theta) = \sum_{n} \log \sum_{z_{n}} q_{n}(z_{n}) \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

$$\geq \sum_{n} \sum_{z_{n}} q_{n}(z_{n}) \log \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

- ullet The lower bound we derived for  $\ell( heta)$  holds for all choices of  $q(\cdot)$
- We want a *tight* lower bound, and given some current estimate  $\theta^t$ , we will pick  $q_n(\cdot)$  such that our lower bound holds with equality at  $\theta^t$
- $f(\mathbb{E}X) = \mathbb{E}f(X)$ ? It is sufficient for X to be a constant random variable!
- Choose  $q_n(z_n) \propto p(x_n, z_n | \theta^t)!$

$$\ell(\theta) = \sum_{n} \log \sum_{z_{n}} p(x_{n}, z_{n} | \theta) = \sum_{n} \log \sum_{z_{n}} q_{n}(z_{n}) \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$
$$\geq \sum_{n} \sum_{z_{n}} q_{n}(z_{n}) \log \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

- ullet The lower bound we derived for  $\ell( heta)$  holds for all choices of  $q(\cdot)$
- We want a *tight* lower bound, and given some current estimate  $\theta^t$ , we will pick  $q_n(\cdot)$  such that our lower bound holds with equality at  $\theta^t$
- $f(\mathbb{E}X) = \mathbb{E}f(X)$ ? It is sufficient for X to be a constant random variable!
- Choose  $q_n(\mathbf{z}_n) \propto p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\theta}^t)!$  Since  $q_n(\cdot)$  is a distribution, we have

$$q_n(\mathbf{z}_n) = \frac{p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\theta}^t)}{\sum_k p(\mathbf{x}_n, \mathbf{z}_n = k | \boldsymbol{\theta}^t)} = \frac{p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\theta}^t)}{p(\mathbf{x}_n | \boldsymbol{\theta}^t)} = p(\mathbf{z}_n | \mathbf{x}_n; \boldsymbol{\theta}^t)$$

Recall:

$$\ell(\theta) = \sum_{n} \log \sum_{z_{n}} p(x_{n}, z_{n} | \theta) = \sum_{n} \log \sum_{z_{n}} q_{n}(z_{n}) \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

$$\geq \sum_{n} \sum_{z_{n}} q_{n}(z_{n}) \log \frac{p(x_{n}, z_{n} | \theta)}{q_{n}(z_{n})}$$

- The lower bound we derived for  $\ell(\theta)$  holds for all choices of  $q(\cdot)$
- We want a *tight* lower bound, and given some current estimate  $\theta^t$ , we will pick  $q_n(\cdot)$  such that our lower bound holds with equality at  $\theta^t$
- $f(\mathbb{E}X) = \mathbb{E}f(X)$ ? It is sufficient for X to be a constant random variable!
- Choose  $q_n(z_n) \propto p(x_n, z_n | \theta^t)!$  Since  $q_n(\cdot)$  is a distribution, we have

$$q_n(\mathbf{z}_n) = \frac{p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\theta}^t)}{\sum_k p(\mathbf{x}_n, \mathbf{z}_n = k | \boldsymbol{\theta}^t)} = \frac{p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\theta}^t)}{p(\mathbf{x}_n | \boldsymbol{\theta}^t)} = p(\mathbf{z}_n | \mathbf{x}_n; \boldsymbol{\theta}^t)$$

• This is the **posterior distribution** of  $z_n$  given  $x_n$  and  $\theta^t$ 

### E and M Steps

#### Our simplified expression

$$\ell(\theta^t) = \sum_{n} \sum_{z_n} p(z_n | x_n; \theta^t) \log \frac{p(x_n, z_n | \theta^t)}{p(z_n | x_n; \theta^t)}$$

### E and M Steps

#### Our simplified expression

$$\ell(\theta^t) = \sum_{n} \sum_{z_n} p(z_n|x_n; \theta^t) \log \frac{p(x_n, z_n|\theta^t)}{p(z_n|x_n; \theta^t)}$$

**E-Step**: For all n, compute  $q_n(z_n) = p(z_n|x_n; \theta^t)$ 

Why is this called the E-Step?

# E and M Steps

#### Our simplified expression

$$\ell(\theta^t) = \sum_{n} \sum_{z_n} p(z_n | x_n; \theta^t) \log \frac{p(x_n, z_n | \theta^t)}{p(z_n | x_n; \theta^t)}$$

**E-Step**: For all n, compute  $q_n(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_n; \boldsymbol{\theta}^t)$ 

Why is this called the E-Step? Because we can view it as computing the expected (complete) log-likelihood:

$$Q(\theta|\theta^t) = \sum_{n} \sum_{z_n} p(z_n|x_n; \theta^t) \log p(x_n, z_n|\theta) = \mathbb{E}_q \sum_{n} \log p(x_n, z_n|\theta)$$

# E and M Steps

#### Our simplified expression

$$\ell(\theta^t) = \sum_{n} \sum_{z_n} p(z_n | x_n; \theta^t) \log \frac{p(x_n, z_n | \theta^t)}{p(z_n | x_n; \theta^t)}$$

**E-Step**: For all n, compute  $q_n(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_n; \boldsymbol{\theta}^t)$ 

Why is this called the E-Step? Because we can view it as computing the expected (complete) log-likelihood:

$$Q(\theta|\theta^t) = \sum_{n} \sum_{z_n} p(z_n|x_n; \theta^t) \log p(x_n, z_n|\theta) = \mathbb{E}_q \sum_{n} \log p(x_n, z_n|\theta)$$

**M-Step**: Maximize  $Q(\theta|\theta^t)$ , i.e.,  $\theta^{t+1} = \arg\max_{\theta} Q(\theta|\theta^t)$ 

### **EM** in Pictures



(Figure from tutorial by Sean Borman)

#### What is the E-step in GMM?

$$\gamma_{nk} = p(z = k | \mathbf{x}_n; \boldsymbol{\theta}^{(t)})$$

What is the E-step in GMM?

$$\gamma_{nk} = p(z = k|\mathbf{x}_n; \boldsymbol{\theta}^{(t)})$$

What is the M-step in GMM? The Q-function is

$$Q(\theta, \theta^{(t)}) = \sum_{n} \sum_{k} p(z = k | \mathbf{x}_n; \theta^{(t)}) \log p(\mathbf{x}_n, z = k | \theta)$$

What is the E-step in GMM?

$$\gamma_{nk} = p(z = k | \mathbf{x}_n; \boldsymbol{\theta}^{(t)})$$

What is the M-step in GMM? The Q-function is

$$Q(\theta, \theta^{(t)}) = \sum_{n} \sum_{k} p(z = k | \mathbf{x}_{n}; \theta^{(t)}) \log p(\mathbf{x}_{n}, z = k | \theta)$$
$$= \sum_{n} \sum_{k} \gamma_{nk} \log p(\mathbf{x}_{n}, z = k | \theta)$$

What is the E-step in GMM?

$$\gamma_{nk} = p(z = k|\mathbf{x}_n; \boldsymbol{\theta}^{(t)})$$

What is the M-step in GMM? The Q-function is

$$Q(\theta, \theta^{(t)}) = \sum_{n} \sum_{k} p(z = k | \mathbf{x}_{n}; \theta^{(t)}) \log p(\mathbf{x}_{n}, z = k | \theta)$$

$$= \sum_{n} \sum_{k} \gamma_{nk} \log p(\mathbf{x}_{n}, z = k | \theta)$$

$$= \sum_{k} \sum_{n} \gamma_{nk} \log p(z = k) p(\mathbf{x}_{n} | z = k)$$

What is the E-step in GMM?

$$\gamma_{nk} = p(z = k|\mathbf{x}_n; \boldsymbol{\theta}^{(t)})$$

What is the M-step in GMM? The Q-function is

$$Q(\theta, \theta^{(t)}) = \sum_{n} \sum_{k} p(z = k | \mathbf{x}_{n}; \theta^{(t)}) \log p(\mathbf{x}_{n}, z = k | \theta)$$

$$= \sum_{n} \sum_{k} \gamma_{nk} \log p(\mathbf{x}_{n}, z = k | \theta)$$

$$= \sum_{k} \sum_{n} \gamma_{nk} \log p(z = k) p(\mathbf{x}_{n} | z = k)$$

$$= \sum_{k} \sum_{n} \gamma_{nk} [\log \omega_{k} + \log N(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})]$$

We have recovered the parameter estimation algorithm for GMMs that we previously discussed

ullet We can show that  $\ell(oldsymbol{ heta}^{t+1}) \geq \ell(oldsymbol{ heta}^t)$ 

- ullet We can show that  $\ell(oldsymbol{ heta}^{t+1}) \geq \ell(oldsymbol{ heta}^t)$
- Recall that we chose  $q(\cdot)$  in the E-step such that:

$$\ell(\theta^t) = \sum_n \sum_{z_n} q(z_n) \log \frac{p(x_n, z_n | \theta^t)}{q(z_n)}$$

- ullet We can show that  $\ell(oldsymbol{ heta}^{t+1}) \geq \ell(oldsymbol{ heta}^t)$
- Recall that we chose  $q(\cdot)$  in the E-step such that:

$$\ell(\theta^t) = \sum_{n} \sum_{z_n} q(z_n) \log \frac{p(x_n, z_n | \theta^t)}{q(z_n)}$$

ullet However, in the M-step,  $m{ heta}^{t+1}$  is chosen to maximize the right hand side of the equation, thus proving our desired result

- ullet We can show that  $\ell(oldsymbol{ heta}^{t+1}) \geq \ell(oldsymbol{ heta}^t)$
- Recall that we chose  $q(\cdot)$  in the E-step such that:

$$\ell(\theta^t) = \sum_{n} \sum_{z_n} q(z_n) \log \frac{p(x_n, z_n | \theta^t)}{q(z_n)}$$

- ullet However, in the M-step,  $m{ heta}^{t+1}$  is chosen to maximize the right hand side of the equation, thus proving our desired result
- Note: the EM procedure converges but only to a local optimum

• EM is a general procedure for maximizing a likelihood with *latent* (unobserved) variables

- EM is a general procedure for maximizing a likelihood with *latent* (unobserved) variables
- The two steps of EM:

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
  - (1) Estimating unobserved data from observed data and current parameters

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
  - (1) Estimating unobserved data from observed data and current parameters
  - (2) Using this "complete" data to find the maximum likelihood parameter estimates

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
  - (1) Estimating unobserved data from observed data and current parameters
  - (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
  - (1) Estimating unobserved data from observed data and current parameters
  - (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)
- Cons: Can get stuck in local optima, can be expensive

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
  - (1) Estimating unobserved data from observed data and current parameters
  - (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)
- Cons: Can get stuck in local optima, can be expensive
- Why is EM useful for unsupervised learning?

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
  - (1) Estimating unobserved data from observed data and current parameters
  - (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)
- Cons: Can get stuck in local optima, can be expensive
- Why is EM useful for unsupervised learning?
  - EM is a general method to deal with hidden data; we have studied it in the context of hidden labels (unsupervised learning)