10-701 Introduction to Machine Learning

The EM Algorithm

Spring 2019
Ameet Talwalkar
(slide credit: Virginia Smith)

Outline

1. Gaussian mixture models
2. GMMs and Incomplete Data
3. EM Algorithm

Gaussian mixture models

Potential issue with k-means ...

Data points are assigned deterministically to one (and only one) cluster

In reality, clusters may overlap, and it may be better to identify the probability that a point belongs to each cluster

Probabilistic interpretation of clustering?

How can we model $p(\boldsymbol{x})$ to reflect our intuition that points stay close to their cluster centers?

- Points seem to form 3 clusters
- We cannot model $p(\boldsymbol{x})$ with simple and known distributions
- E.g., the data is not a Gaussian b/c we have 3 distinct concentrated regions

Gaussian mixture models: intuition

- Key idea: Model each region with a distinct distribution

Gaussian mixture models: intuition

- Key idea: Model each region with a distinct distribution
- Can use Gaussians - Gaussian mixture models (GMMs)

Gaussian mixture models: intuition

- Key idea: Model each region with a distinct distribution
- Can use Gaussians - Gaussian mixture models (GMMs)

Gaussian mixture models: intuition

- Key idea: Model each region with a distinct distribution
- Can use Gaussians - Gaussian mixture models (GMMs)
- *However*, we don't know cluster assignments (label), parameters of Gaussians, or mixture components!

Gaussian mixture models: intuition

- Key idea: Model each region with a distinct distribution
- Can use Gaussians - Gaussian mixture models (GMMs)
- *However*, we don't know cluster assignments (label), parameters of Gaussians, or mixture components!
- Must learn from unlabeled data

$$
\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}
$$

Recall: Gaussian (normal) distributions

$$
\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

$$
\mu=\binom{0}{0}, \Sigma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \boldsymbol{\mu}=\binom{0}{0}, \Sigma=\left(\begin{array}{cc}
1 & 0.8 \\
0.8 & 1
\end{array}\right)
$$

Gaussian mixture models: formal definition

GMM has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K: number of Gaussians - they are called mixture components

Gaussian mixture models: formal definition

GMM has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K: number of Gaussians - they are called mixture components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of k-th component

Gaussian mixture models: formal definition

GMM has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K: number of Gaussians - they are called mixture components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of k-th component
- ω_{k} : mixture weights (or priors) represent how much each component contributes to final distribution. They satisfy 2 properties:

$$
\forall k, \omega_{k}>0, \quad \text { and } \quad \sum_{k} \omega_{k}=1
$$

These properties ensure $p(\boldsymbol{x})$ is in fact a probability density function

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(x, z)=p(z) p(x \mid z)
$$

where z is a discrete random variable taking values between 1 and K.

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K.
Denote

$$
\omega_{k}=p(z=k)
$$

Now, assume the conditional distributions are Gaussian distributions

$$
p(\boldsymbol{x} \mid z=k)=N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K.
Denote

$$
\omega_{k}=p(z=k)
$$

Now, assume the conditional distributions are Gaussian distributions

$$
p(\boldsymbol{x} \mid z=k)=N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Then, the marginal distribution of \boldsymbol{x} is

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Namely, the Gaussian mixture model

Gaussian mixtures in 1D

Mixture of 1D Gaussians

Gaussian mixture model for clustering

GMMs: example

The conditional distribution between x and z (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(\boldsymbol{x} \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

GMMs: example

The conditional distribution between \boldsymbol{x} and \boldsymbol{z} (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(\boldsymbol{x} \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

The marginal distribution is thus

$$
\begin{aligned}
p(\boldsymbol{x}) & =p(\text { red }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)+p(\text { b/ue }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
& +p(\text { green }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Let's first consider the simple/unrealistic case where we have labels z

Define $\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}, \mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$

- \mathcal{D}^{\prime} is the complete data
- \mathcal{D} the incomplete data

How can we learn our parameters?

Parameter estimation for Gaussian mixture models

The parameters in GMMs are:

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Let's first consider the simple/unrealistic case where we have labels z

Define $\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}, \mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$

- \mathcal{D}^{\prime} is the complete data
- \mathcal{D} the incomplete data

How can we learn our parameters?
Given \mathcal{D}^{\prime}, the maximum likelihood estimation of the $\boldsymbol{\theta}$ is given by

$$
\boldsymbol{\theta}=\arg \max \log \mathcal{D}^{\prime}=\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)
$$

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by cluster labels z_{n}.

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by cluster labels z_{n}.

Let $\gamma_{n k} \in\{0,1\}$ be a binary variable that indicates whether $z_{n}=k$:

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by cluster labels z_{n}.

Let $\gamma_{n k} \in\{0,1\}$ be a binary variable that indicates whether $z_{n}=k$:

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right)
$$

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(x_{n} \mid z_{n}\right)
$$

where we have grouped data by cluster labels z_{n}.

Let $\gamma_{n k} \in\{0,1\}$ be a binary variable that indicates whether $z_{n}=k$:

$$
\begin{aligned}
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right) & =\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
\end{aligned}
$$

Note: in the complete setting the $\gamma_{n k}$ just add to the notation, but later we will 'relax' these variables and allow them to take on fractional values

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(x_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(x_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(x_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(x_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Regrouping, we have

$$
\sum_{n} \log p\left(x_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(x_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(x_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(x_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Regrouping, we have

$$
\sum_{n} \log p\left(x_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(x_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

The term inside the braces depends on k-th component's parameters. It is now easy to show that (left as an exercise) the MLE is:

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}
\end{aligned}
$$

What's the intuition?

Intuition

Since $\gamma_{n k}$ is binary, the previous solution is nothing but:

- ω_{k} : fraction of total data points whose cluster label z_{n} is k
- note that $\sum_{k} \sum_{n} \gamma_{n k}=N$
- μ_{k} : mean of all data points whose z_{n} is k
- $\boldsymbol{\Sigma}_{k}$: covariance of all data points whose z_{n} is k

Intuition

Since $\gamma_{n k}$ is binary, the previous solution is nothing but:

- ω_{k} : fraction of total data points whose cluster label z_{n} is k
- note that $\sum_{k} \sum_{n} \gamma_{n k}=N$
- μ_{k} : mean of all data points whose z_{n} is k
- $\boldsymbol{\Sigma}_{k}$: covariance of all data points whose z_{n} is k

Recall that this depends on us knowing the true cluster labels z_{n}

This intuition will help us develop an algorithm for estimating θ when we *do not* know z_{n} (incomplete data)

GMMs and Incomplete Data

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$
- Unobserved (hidden): $\left\{\boldsymbol{z}_{n}\right\}$

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$
- Unobserved (hidden): $\left\{\boldsymbol{z}_{n}\right\}$

Goal Obtain the maximum likelihood estimate of $\boldsymbol{\theta}$:

$$
\boldsymbol{\theta}=\arg \max \ell(\boldsymbol{\theta})=\arg \max \log \mathcal{D}=\arg \max \sum_{n} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)
$$

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$
- Unobserved (hidden): $\left\{\boldsymbol{z}_{n}\right\}$

Goal Obtain the maximum likelihood estimate of $\boldsymbol{\theta}$:

$$
\begin{aligned}
\boldsymbol{\theta} & =\arg \max \ell(\boldsymbol{\theta})=\arg \max \log \mathcal{D}=\arg \max \sum_{n} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right) \\
& =\arg \max \sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

The objective function $\ell(\boldsymbol{\theta})$ is called the incomplete log-likelihood.

Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

- E-step: 'guess' values of the z_{n} using existing values of $\boldsymbol{\theta}$
- M-step: solve for new values of $\boldsymbol{\theta}$ given imputed values for z_{n} (i.e., maximize complete likelihood!)

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

Given an estimate of $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$, we can compute $\gamma_{n k}$ as follows:

$$
\begin{aligned}
\gamma_{n k} & =p\left(z_{n}=k \mid x_{n}\right) \\
& =\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)}
\end{aligned}
$$

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

Given an estimate of $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$, we can compute $\gamma_{n k}$ as follows:

$$
\begin{aligned}
\gamma_{n k} & =p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \\
& =\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)} \\
& =\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{k^{\prime}=1}^{K} p\left(\boldsymbol{x}_{n} \mid z_{n}=k^{\prime}\right) p\left(z_{n}=k^{\prime}\right)}
\end{aligned}
$$

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:
$\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$

Previously $\gamma_{n k}$ was binary, but now we define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$ (E-step)

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:
$\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$

Previously $\gamma_{n k}$ was binary, but now we define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$ (E-step)

We get the same simple expression for the MLE as before!

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}
\end{aligned}
$$

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:
$\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$

Previously $\gamma_{n k}$ was binary, but now we define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$ (E-step)

We get the same simple expression for the MLE as before!

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}
\end{aligned}
$$

Intuition: Each point now contributes some fractional component to each of the parameters, with weights determined by $\gamma_{n k}$

EM procedure for GMM

Alternate between estimating $\gamma_{n k}$ and estimating θ

- Initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Repeat
- E-Step: Compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- M-Step: Update $\boldsymbol{\theta}$ using the $\gamma_{n k}$ we just computed
- Until Convergence

EM procedure for GMM

Alternate between estimating $\gamma_{n k}$ and estimating θ

- Initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Repeat
- E-Step: Compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- M-Step: Update $\boldsymbol{\theta}$ using the $\gamma_{n k}$ we just computed
- Until Convergence

Questions to be answered next

- How does GMM relate to K-means?
- Is this procedure reasonable, i.e., are we optimizing a sensible criterion?
- Will this procedure converge?

GMMs and K-means

GMMs provide probabilistic interpretation for K-means

GMMs and K-means

GMMs provide probabilistic interpretation for K-means
GMMs reduce to K-means under the following assumptions (in which case EM for GMM parameter estimation simplifies to K-means):

- Assume all Gaussians have σ^{2} I covariance matrices
- Further assume $\sigma \rightarrow 0$, so we only need to estimate $\boldsymbol{\mu}_{k}$, i.e., means

K-means is often called "hard" GMM or GMMs is called "soft" K-means
The posterior $\gamma_{n k}$ provides a probabilistic assignment for \boldsymbol{x}_{n} to cluster k

GMMs vs. k-means

Pros/Cons

- k-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering

GMMs vs. k-means

Pros/Cons

- k-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering
- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute

GMMs vs. k-means

Pros/Cons

- k-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering
- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute
- Both methods have a similar set of practical issues (having to select k, the distance, and the initialization)

EM Algorithm

EM algorithm: motivation and setup

- EM is a general procedure to estimate parameters for probabilistic models with hidden/latent variables
- Suppose the model is given by a joint distribution

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{\theta})
$$

EM algorithm: motivation and setup

- EM is a general procedure to estimate parameters for probabilistic models with hidden/latent variables
- Suppose the model is given by a joint distribution

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{\theta})
$$

- Given incomplete data $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$ our goal is to compute MLE of $\boldsymbol{\theta}$:

$$
\begin{aligned}
\boldsymbol{\theta}=\arg \max \ell(\theta) & =\arg \max \log \mathcal{D}=\arg \max \sum_{n} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right) \\
& =\arg \max \sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

The objective function $\ell(\boldsymbol{\theta})$ is called incomplete log-likelihood

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)
- If we define $q(z)$ as a distribution over \boldsymbol{z}, then

$$
\ell(\boldsymbol{\theta})=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)
$$

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)
- If we define $q(z)$ as a distribution over \boldsymbol{z}, then

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{z_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q_{n}\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)
- If we define $q(\boldsymbol{z})$ as a distribution over \boldsymbol{z}, then

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- Last step follows from Jensen's inequality, i.e., $f(\mathbb{E} X) \geq \mathbb{E} f(X)$ for concave function f

GMM Example

- Consider the previous model where \boldsymbol{x} could be from 3 regions
- We can choose $q(z)$ as any valid distribution
- e.g., $q(z=k)=1 / 3$ for any of 3 colors
- e.g., $q(z=k)=1 / 2$ for red and blue, 0 for green

Which $q(z)$ should we choose?

Which $q(z)$ to choose?

Recall:

$$
\begin{aligned}
\ell(\theta) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \theta\right)=\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \theta\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound

Which $q(z)$ to choose?

Recall:

$$
\begin{aligned}
\ell(\theta) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \theta\right)=\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \theta\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q_{n}(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$?

Which $q(z)$ to choose?

Recall:

$$
\begin{aligned}
\ell(\theta) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \theta\right)=\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \theta\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q_{n}(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!

Which $q(z)$ to choose?

Recall:

$$
\begin{aligned}
\ell(\theta) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \theta\right)=\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \theta\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q_{n}(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!
- Choose $q_{n}\left(\boldsymbol{z}_{n}\right) \propto p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)$!

Which $q(z)$ to choose?

Recall:

$$
\begin{aligned}
\ell(\theta) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \theta\right)=\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \theta\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q_{n}(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!
- Choose $q_{n}\left(\boldsymbol{z}_{n}\right) \propto p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)!$ Since $q_{n}(\cdot)$ is a distribution, we have

$$
q_{n}\left(\boldsymbol{z}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\sum_{k} p\left(\boldsymbol{x}_{n}, z_{n}=k \mid \boldsymbol{\theta}^{t}\right)}=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{t}\right)}=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)
$$

Which $q(z)$ to choose?

Recall:

$$
\begin{aligned}
\ell(\theta) & =\sum_{n} \log \sum_{z_{n}} p\left(x_{n}, z_{n} \mid \theta\right)=\sum_{n} \log \sum_{z_{n}} q_{n}\left(z_{n}\right) \frac{p\left(x_{n}, z_{n} \mid \theta\right)}{q_{n}\left(z_{n}\right)} \\
& \geq \sum_{n} \sum_{z_{n}} q_{n}\left(z_{n}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}\right)}{q_{n}\left(z_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q_{n}(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!
- Choose $q_{n}\left(\boldsymbol{z}_{n}\right) \propto p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)$! Since $q_{n}(\cdot)$ is a distribution, we have

$$
q_{n}\left(\boldsymbol{z}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\sum_{k} p\left(\boldsymbol{x}_{n}, z_{n}=k \mid \boldsymbol{\theta}^{t}\right)}=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{t}\right)}=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)
$$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{t}$

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{z_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)}
$$

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{z_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)}
$$

E-Step: For all n, compute $q_{n}\left(\boldsymbol{z}_{n}\right)=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)$
Why is this called the E-Step?

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{z_{n}} p\left(z_{n} \mid x_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(z_{n} \mid x_{n} ; \boldsymbol{\theta}^{t}\right)}
$$

E-Step: For all n, compute $q_{n}\left(\boldsymbol{z}_{n}\right)=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)$
Why is this called the E-Step? Because we can view it as computing the expected (complete) log-likelihood:
$Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\mathbb{E}_{q} \sum_{n} \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)$

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{z_{n}} p\left(z_{n} \mid x_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(x_{n}, z_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{z}_{n} \mid x_{n} ; \boldsymbol{\theta}^{t}\right)}
$$

E-Step: For all n, compute $q_{n}\left(\boldsymbol{z}_{n}\right)=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)$
Why is this called the E-Step? Because we can view it as computing the expected (complete) log-likelihood:
$Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\mathbb{E}_{q} \sum_{n} \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)$

M-Step: Maximize $Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)$, i.e., $\boldsymbol{\theta}^{t+1}=\arg \max _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)$

EM in Pictures

(Figure from tutorial by Sean Borman)

Example: applying EM to GMMs

What is the E-step in GMM?

$$
\gamma_{n k}=p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

Example: applying EM to GMMs

What is the E-step in GMM?

$$
\gamma_{n k}=p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

What is the M -step in GMM? The Q-function is

$$
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)=\sum_{n} \sum_{k} p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right)
$$

Example: applying EM to GMMs

What is the E-step in GMM?

$$
\gamma_{n k}=p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

What is the M -step in GMM? The Q-function is

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\sum_{n} \sum_{k} p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \sum_{k} \gamma_{n k} \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

Example: applying EM to GMMs

What is the E-step in GMM?

$$
\gamma_{n k}=p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

What is the M -step in GMM? The Q-function is

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\sum_{n} \sum_{k} p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \sum_{k} \gamma_{n k} \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right)
\end{aligned}
$$

Example: applying EM to GMMs

What is the E-step in GMM?

$$
\gamma_{n k}=p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

What is the M -step in GMM? The Q-function is

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\sum_{n} \sum_{k} p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \sum_{k} \gamma_{n k} \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
\end{aligned}
$$

We have recovered the parameter estimation algorithm for GMMs that we previously discussed

Iterative and monotonic improvement

- We can show that $\ell\left(\boldsymbol{\theta}^{t+1}\right) \geq \ell\left(\boldsymbol{\theta}^{t}\right)$

Iterative and monotonic improvement

- We can show that $\ell\left(\boldsymbol{\theta}^{t+1}\right) \geq \ell\left(\boldsymbol{\theta}^{t}\right)$
- Recall that we chose $q(\cdot)$ in the E-step such that:

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{z_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{q\left(\boldsymbol{z}_{n}\right)}
$$

Iterative and monotonic improvement

- We can show that $\ell\left(\boldsymbol{\theta}^{t+1}\right) \geq \ell\left(\boldsymbol{\theta}^{t}\right)$
- Recall that we chose $q(\cdot)$ in the E-step such that:

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{z_{n}} q\left(z_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{q\left(\boldsymbol{z}_{n}\right)}
$$

- However, in the M-step, $\boldsymbol{\theta}^{t+1}$ is chosen to maximize the right hand side of the equation, thus proving our desired result

Iterative and monotonic improvement

- We can show that $\ell\left(\boldsymbol{\theta}^{t+1}\right) \geq \ell\left(\boldsymbol{\theta}^{t}\right)$
- Recall that we chose $q(\cdot)$ in the E-step such that:

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{q\left(\boldsymbol{z}_{n}\right)}
$$

- However, in the M-step, $\boldsymbol{\theta}^{t+1}$ is chosen to maximize the right hand side of the equation, thus proving our desired result
- Note: the EM procedure converges but only to a local optimum

You should know ...

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables

You should know ...

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:

You should know ...

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
- (1) Estimating unobserved data from observed data and current parameters

You should know .. .

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
- (1) Estimating unobserved data from observed data and current parameters
- (2) Using this "complete" data to find the maximum likelihood parameter estimates

You should know

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
- (1) Estimating unobserved data from observed data and current parameters
- (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)

You should know

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
- (1) Estimating unobserved data from observed data and current parameters
- (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)
- Cons: Can get stuck in local optima, can be expensive

You should know

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
- (1) Estimating unobserved data from observed data and current parameters
- (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)
- Cons: Can get stuck in local optima, can be expensive
- Why is EM useful for unsupervised learning?

You should know . . .

- EM is a general procedure for maximizing a likelihood with latent (unobserved) variables
- The two steps of EM:
- (1) Estimating unobserved data from observed data and current parameters
- (2) Using this "complete" data to find the maximum likelihood parameter estimates
- Pros: Guaranteed to converge, no parameters to tune (e.g., compared to gradient methods)
- Cons: Can get stuck in local optima, can be expensive
- Why is EM useful for unsupervised learning?
- EM is a general method to deal with hidden data; we have studied it in the context of hidden labels (unsupervised learning)

