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Gaussian mixture models



Potential issue with k-means ...

Data points are assigned deterministically to one (and only one) cluster

In reality, clusters may overlap, and it may be better to identify the
probability that a point belongs to each cluster

0.5

0 05 1 0 05 1 0 05 1



Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to

their cluster centers?

e Points seem to form 3 clusters
e We cannot model p(x) with

simple and known distributions

e E.g., the data is not a Gaussian
b/c we have 3 distinct
concentrated regions




Gaussian mixture models: intuition

e Key idea: Model each region
with a distinct distribution
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Gaussian mixture models: intuition

Key idea: Model each region
with a distinct distribution

Can use Gaussians — Gaussian
mixture models (GMMs)

*However*, we don't know
cluster assignments (label),
parameters of Gaussians, or
mixture components!

Must learn from unlabeled data
D= {xn}nNzl



Recall: Gaussian (normal) distributions

x~ N(p, X)

0
"= (u) '
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Gaussian mixture models: formal definition

GMM has the following density function for x

K

p(x) = > wieN(x|py, Zx)

e K: number of Gaussians — they are called mixture components
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Gaussian mixture models: formal definition

GMM has the following density function for x

K

p(x) = > wieN(x|py, Zx)

e K: number of Gaussians — they are called mixture components
e 1, and X;: mean and covariance matrix of k-th component

e wy: mixture weights (or priors) represent how much each component
contributes to final distribution. They satisfy 2 properties:

Vk we>0, and Y we=1
k

These properties ensure p(x) is in fact a probability density function



GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x,2) = p(2)p(x]2)

where z is a discrete random variable taking values between 1 and K.
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GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x,z) = p(z)p(x|z)
where z is a discrete random variable taking values between 1 and K.
Denote
wk = p(z = k)

Now, assume the conditional distributions are Gaussian distributions
p(x|z = k) = N(x|p, Z)

Then, the marginal distribution of x is

K

p(x) = > wieN(x|py, Zx)

Namely, the Gaussian mixture model



Gaussian mixtures in 1D

Mixture of 1D Gaussians

—— Component 1
\

Component 2
== Mixture
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Gaussian mixture model for clustering

pdf(obj,[x.y])
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GMMs: example

The conditional distribution between x and z

(representing color) are

p(x|z = red) = N(x|s;. 1)
p(x|z = blue) = N(x|u, E)
o s 1 p(x|z = green) = N(x|p5,23)

10



GMMs: example

The conditional distribution between x and z

(representing color) are

p(x|z = red) = N(x|s;. 1)
p(x|z = blue) = N(x|u, E)
o s 1 p(x|z = green) = N(x|p5,23)

The marginal distribution is thus

p(x) = p(red)N(x|py1, 1) + p(blue)N(x|p, X2)
+ p(green)N(x|p3, X3)

0 05 1
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Parameter estimation for Gaussian mixture models

The parameters in GMMs are:
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The parameters in GMMs are:
6 = {wi, i, it een

Let's first consider the simple/unrealistic case where we have labels z

Define D' = {x,, z,}N

n=1"

D= {XH}L\IZI

e D' is the complete data

e D the incomplete data

How can we learn our parameters?
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Parameter estimation for Gaussian mixture models

The parameters in GMMs are:
6 = {wi, i, it een

Let's first consider the simple/unrealistic case where we have labels z

Define D' = {x,, z,}N

n=1r

D= {XH}L\IZI

e D' is the complete data

e D the incomplete data
How can we learn our parameters?

Given D', the maximum likelihood estimation of the 6 is given by

0 = argmaxlogD’ = Z log p(xn, z,)
n

11



Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

Zlogp(xmzn Zlogp zn)p(xnlzn) *Z Z log p(z,)p(xn|zn)
n

k niz,=

where we have grouped data by cluster labels z,.
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

Z log p(xmzn) = Z log P(Zn xnlzn Z Z Ing Z,, Xn|zn)
n n

k niz,=

where we have grouped data by cluster labels z,.

Let vok € {0,1} be a binary variable that indicates whether z, = k:

Z log p(xn, zn) = Z Z%k log p(z = k)p(x,|z = k)
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

Zlogp(xmzn Zlogp zn)p(xnlzn) *Z Z log p(z,)p(xn|zn)
n

k niz,=

where we have grouped data by cluster labels z,.

Let vok € {0,1} be a binary variable that indicates whether z, = k:

Z log p(xn,z,) = Z Z%k log p(z = k)p(xnp|z = k)
= Z Z Yok [log wi + log N(xp gy, )]

k n

Note: in the complete setting the vy, just add to the notation, but later
we will ‘relax’ these variables and allow them to take on fractional values
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Parameter estimation for GMMs: complete data

From our previous discussion, we have

D logp(xn,z0) = > > ek [log wi + log N(xn|py, Zi)]
n k n
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Parameter estimation for GMMs: complete data

From our previous discussion, we have
E log p(xn, zn) = Z Z’Ynk [log wi + log N(xn|pty, )]
n k n

Regrouping, we have

D logp(xnza) =D Y ywlogwi+ ) {Z%k log N (x| s Zk)}
n k n k n
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Parameter estimation for GMMs: complete data

From our previous discussion, we have

D logp(xn,z0) = > > ek [log wi + log N(xn|py, Zi)]
n k n

Regrouping, we have

D logp(xnza) =D Y ywlogwi+ ) {Z%k log N (x| s Zk)}
n k n k n

The term inside the braces depends on k-th component’s parameters. It is now
easy to show that (left as an exercise) the MLE is:

D Yok 1
wp = =0, = Yk Xn
Dk Dn Yok KT ek ;

1 T
S ok Z’Ynk(xn — ) (X0 — )

T =

What’s the intuition?
13



Since v,k is binary, the previous solution is nothing but:

e wy: fraction of total data points whose cluster label z, is k
e notethat >, > vy =N
e 1,: mean of all data points whose z, is k

e X ,: covariance of all data points whose z, is k

14



Since v,k is binary, the previous solution is nothing but:

e wy: fraction of total data points whose cluster label z, is k
e notethat >, > vy =N
e 1,: mean of all data points whose z, is k

e X ,: covariance of all data points whose z, is k

Recall that this depends on us knowing the true cluster labels z,

This intuition will help us develop an algorithm for estimating @ when we
*do not* know z, (incomplete data)

14



GMMs and Incomplete Data




Parameter estimation for GMMs: Incomplete data

GMM Parameters
6 = {Wk::ukvzk}szl

Incomplete Data

Our data contains observed and unobserved data, and hence is
incomplete

e Observed: D = {x,}
e Unobserved (hidden): {z,}
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GMM Parameters
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Incomplete Data

Our data contains observed and unobserved data, and hence is
incomplete

e Observed: D = {x,}
e Unobserved (hidden): {z,}

Goal Obtain the maximum likelihood estimate of 6:

0 = argmax /((6) = argmaxlog D = arg maxz log p(x,|0)
n
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Parameter estimation for GMMs: Incomplete data

GMM Parameters
6 = {Wk::ukvzk}szl

Incomplete Data

Our data contains observed and unobserved data, and hence is
incomplete

e Observed: D = {x,}
e Unobserved (hidden): {z,}

Goal Obtain the maximum likelihood estimate of 6:

0 = argmax /((6) = argmaxlog D = arg maxz log p(x,|0)
n

=arg maxz log Z p(xn, z,|0)
n z,

The objective function ¢(8) is called the incomplete log-likelihood. .



Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to
take derivative with respect to parameters, set it to zero and solve)
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Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to
take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

e E-step: ‘guess’ values of the z, using existing values of

e M-step: solve for new values of @ given imputed values for z, (i.e.,

maximize complete likelihood!)

16



E-step: Soft cluster assignments

We define v,k as p(z, = k|x,, 0)

e This is the posterior distribution of z, given x,, and 0
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We define v,k as p(z, = k|x,, 0)

e This is the posterior distribution of z, given x,, and 0
e Recall that in complete data setting v,, was binary

e Now it's a “soft” assignment of x, to k-th component, with x,
assigned to each component with some probability

Given an estimate of 8 = {wy, p,, T4}, we can compute v, as
follows:

Ynk = P(Zn = k|X,,)
_ P(xn|zn = k)p(zn = k)
p(xn)
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E-step: Soft cluster assignments

We define v,k as p(z, = k|x,, 0)

e This is the posterior distribution of z, given x,, and 0
e Recall that in complete data setting v,, was binary

e Now it's a “soft” assignment of x, to k-th component, with x,
assigned to each component with some probability

Given an estimate of 8 = {wy, p,, T4}, we can compute v, as
follows:

Yok = P(zn = k|xn)
_ P(Xn|zn = k)p(zn = k)
p(xn)
_ p(xnlzn = k)p(z, = k)
Zkazl p(xn|zn = K')p(zn = K')

17



M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

> logp(xnza) =D > vmklogwi + {Z Yok log N(x |y, Zk)}
n k n k n

Previously v,k was binary, but now we define v,x = p(z, = k|x,) (E-step)
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M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

> logp(xnza) =D > vmklogwi + {Z Yok log N(x |y, Zk)}
n k n k n

Previously v,k was binary, but now we define v,x = p(z, = k|x,) (E-step)

We get the same simple expression for the MLE as before!

Zn Ynk 1
Wk = — - v M= VnkXn
Zk Zn rynk Zn ’}/nk ;
1
zk = Zn Yk zﬂ:’Ynk(xn - .u’k)(xn - .U’k)T
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M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

> logp(xnza) =D > vmklogwi + {Z Yok log N(x |y, Zk)}
n k n k n

Previously v,k was binary, but now we define v,x = p(z, = k|x,) (E-step)

We get the same simple expression for the MLE as before!

Zn’}/nk 1
Wk = ==, M= —=—— ) VnkX
Zk Zn Ynk Zn Ynk ; meen

1
zk = Zn Yk zﬂ:’Ynk(xn - .u’k)(xn - .U’k)T

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by v,

18



EM procedure for GMM

Alternate between estimating v, and estimating 6

e Initialize @ with some values (random or otherwise)
e Repeat

e E-Step: Compute ~yn using the current 6
e M-Step: Update 0 using the 7.« we just computed

e Until Convergence

19



EM procedure for GMM

Alternate between estimating v, and estimating 6

e Initialize @ with some values (random or otherwise)

e Repeat
e E-Step: Compute ~yn using the current 6
e M-Step: Update 0 using the 7.« we just computed

e Until Convergence

Questions to be answered next

e How does GMM relate to K-means?

e |s this procedure reasonable, i.e., are we optimizing a sensible

criterion?

e Will this procedure converge?

19



GMMs and K-means

GMM s provide probabilistic interpretation for K-means
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GMMs and K-means

GMM s provide probabilistic interpretation for K-means

GMMs reduce to K-means under the following assumptions (in which
case EM for GMM parameter estimation simplifies to K-means):

e Assume all Gaussians have o2/ covariance matrices

e Further assume o — 0, so we only need to estimate p, i.e., means

K-means is often called “hard” GMM or GMMs is called “soft” K-means

The posterior ., provides a probabilistic assignment for x,, to cluster k

20



GMMs vs. k-means

Pros/Cons

e k-means is a simpler, more straightforward method, but might not
be as accurate because of deterministic clustering
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GMMs vs. k-means

Pros/Cons

e k-means is a simpler, more straightforward method, but might not
be as accurate because of deterministic clustering

e GMMs can be more accurate, as they model more information (soft
clustering, variance), but can be more expensive to compute

e Both methods have a similar set of practical issues (having to select
k, the distance, and the initialization)

21



EM Algorithm




EM algorithm: motivation and setup

e EM is a general procedure to estimate parameters for probabilistic
models with hidden/latent variables

e Suppose the model is given by a joint distribution

p(x]0) = Zp x,z|0)
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EM algorithm: motivation and setup

e EM is a general procedure to estimate parameters for probabilistic
models with hidden/latent variables

e Suppose the model is given by a joint distribution

p(x]0) = Zp x,z|0)

e Given incomplete data D = {x,} our goal is to compute MLE of 6:

6 = argmax/{(0) = argmaxlogD = arg maxz log p(x,|0)
= arg max Z log Z p(xn, z,|0)

The objective function ¢(0) is called incomplete log-likelihood

22



A lower bound

e log-sum form of incomplete log-likelihood is difficult to work with

e EM: construct lower bound on ¢(0) (E-step) and optimize it
(M-step)
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A lower bound

e log-sum form of incomplete log-likelihood is difficult to work with

e EM: construct lower bound on ¢(0) (E-step) and optimize it
(M-step)

e If we define g(z) as a distribution over z, then

:Z|ngp(xmzn|0)
= Stor L aulen) 2

An zn)
p(xn, 2,0
> ZZQn(Zn) |°gqn(zn)|)

e Last step follows from Jensen's inequality, i.e., f(EX) > Ef(X) for
concave function f

23



GMM Example

0 0.5 1

e Consider the previous model where x could be from 3 regions

We can choose g(z) as any valid distribution

e.g., q(z = k) =1/3 for any of 3 colors

e.g., g(z = k) = 1/2 for red and blue, 0 for green

Which q(z) should we choose?

24



Which ¢(z) to choose?

Recall:

=D log 3 plxe, 2110) = 3 leg 3 q<>%

> 32wz s ::’(zn")"”

e The lower bound we derived for £(6) holds for all choices of g(+)
e We want a tight lower bound

25



Which ¢(z) to choose?

Recall:
U0) =7 log) p(xn z:0) =) logy "”(z")%

p(X,,, Z,,|0)
> o(22) log XX Zn)
> zﬂ:;q (2n)log ="
e The lower bound we derived for £(6) holds for all choices of g(+)
e We want a tight lower bound, and given some current estimate o,
we will pick g,(-) such that our lower bound holds with equality at 8°

o f(EX) = Ef(X)?
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Which ¢(z) to choose?

Recall:
U0) =7 log) p(xn z:0) =) logy "”(z")%

p(X,,, Z,,|0)
> n(Zn)l -\
> zﬂ:;q (2n)log ="
e The lower bound we derived for £(6) holds for all choices of g(+)
e We want a tight lower bound, and given some current estimate o,
we will pick g,(-) such that our lower bound holds with equality at 8°
e f(EX) =Ef(X)? It is sufficient for X to be a constant random

variable!
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Which ¢(z) to choose?

Recall:

U8) = logy_ p(xn,2a|0) = > log y _ qn(2s) p(::,(;n)|9)

> Ezq"(z”) log p(xn, 2,|0)

pal qn(zn)
e The lower bound we derived for £(6) holds for all choices of g(+)
e We want a tight lower bound, and given some current estimate o,
we will pick g,(-) such that our lower bound holds with equality at 8°
e f(EX) =Ef(X)? It is sufficient for X to be a constant random
variable!
e Choose gn(z,) o p(xn, z,|0")!
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Which ¢(z) to choose?

Recall:

U8) = logy_ p(xn,2a|0) = > log y _ qn(2s) p(::,(;n)|9)

> Ezq"(z”) log p(xn, 2,|0)

pal qn(zn)
e The lower bound we derived for £(6) holds for all choices of g(+)
e We want a tight lower bound, and given some current estimate o,
we will pick g,(-) such that our lower bound holds with equality at 8°
e f(EX) =Ef(X)? It is sufficient for X to be a constant random
variable!
e Choose q,(z,) o p(xn, z,|0")! Since g,(-) is a distribution, we have

P(szn|0t) p(XmZn‘Ot) t
n\4n) — - - n n;a
9n(2n) >k P(Xny 2y = k|9t) p(xn|0t) plzsx )
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Which ¢(z) to choose?

Recall:

U8) = logy_ p(xn,2a|0) = > log y _ qn(2s) p(::,(;n)|9)

> Ezq"(z”) log p(xn, 2,|0)

pal an(2n)
e The lower bound we derived for £(6) holds for all choices of g(+)
e We want a tight lower bound, and given some current estimate o,
we will pick g,(-) such that our lower bound holds with equality at 8°
e f(EX) =Ef(X)? It is sufficient for X to be a constant random
variable!
e Choose q,(z,) o p(xn, z,|0")! Since g,(-) is a distribution, we have
p(xnvzn|0t) p(xlhzn‘et)

) =S Pz = K8 plr) P

e This is the posterior distribution of z, given x, and 6*
25



E and M Steps

Our simplified expression

o s 0 o P02 20107
4(0)*22/3( lxn: 671 gp(zn|Xn;‘9t)

n  zp
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E and M Steps

Our simplified expression

o s 0 o P02 20107
4(0)*22/3( lxn: 671 gp(zn|Xn;‘9t)

n  zp

E-Step: For all n, compute g,(z,) = p(z,|xn; 0")

Why is this called the E-Step?
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E and M Steps

Our simplified expression

3 0°)
Vi at — . n.et | p(Xn,z,,\
( ) ~ p(Z |X 1 ) og p(zn|Xn;0t)

n

E-Step: For all n, compute q,(z,) = p(za|xn; 0°)

Why is this called the E-Step? Because we can view it as computing the
expected (complete) log-likelihood:

Q(0)6%) ZZ (zn|xn; 0") log p(x,, 2,]0) = EqZIogp Xn,Z0|0)
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E and M Steps

Our simplified expression

3 0°)
Vi at — . n.et | p(Xn,z,,\
( ) ~ p(Z |X 1 ) og p(zn|Xn;0t)

n

E-Step: For all n, compute q,(z,) = p(za|xn; 0°)

Why is this called the E-Step? Because we can view it as computing the
expected (complete) log-likelihood:

Q(0)6%) ZZ (zn|xn; 0") log p(x,, 2,]0) = EqZIogp Xn,Z0|0)

M-Step: Maximize Q(8]0"), i.e., 0™ = argmax, Q(8|0")

26



L(6)
1(6]6x)

L(9n+1)

U(On41]6n)

L(an) = l(‘gnlan)

L(6)

1(616x)

en 9n+1

(Figure from tutorial by Sean Borman)
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Example: applying EM to GMMs

What is the E-step in GMM?

Yok = p(z = K[x,; 81))
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Example: applying EM to GMMs
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What is the M-step in GMM? The Q-function is

Q8,00 = ZZp z = k|xn; 09) log p(xn, z = k|8)
= sznk log p(x,, z = k|0)
n  k
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Example: applying EM to GMMs

What is the E-step in GMM?
Yok = p(z = k|xn; e(t))

What is the M-step in GMM? The Q-function is
6,6)) = ZZp z = k|xn; 09) log p(xn, z = k|8)
= ZZ’M log p(x,,z = k|6)
n  k
=3 Anklog p(z = k)p(xa|z = k)
k n

= ZZ%k [log wi + log N(x | ey, X))
k n

We have recovered the parameter estimation algorithm for GMMs that
we previously discussed

28



Iterative and monotonic improvement

o We can show that £(8"™) > ¢(6")
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Iterative and monotonic improvement

o We can show that £(8"™) > ¢(6")
e Recall that we chose g(+) in the E-step such that:

t P(Xn, 2n|60")
0e) = ZH:; q(zn)log W
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Iterative and monotonic improvement

o We can show that £(8"™) > ¢(6")

e Recall that we chose g(+) in the E-step such that:

Xn,Zn|0F
(6 = 33" alzr) log Pir:221%)
Pl q(zs)
e However, in the M-step, "™ is chosen to maximize the right hand
side of the equation, thus proving our desired result
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Iterative and monotonic improvement

We can show that £(8"™) > ¢(")
Recall that we chose g(-) in the E-step such that:

(0) = 23 alzs) log P2 221%)

q(zn)

e However, in the M-step, "™ is chosen to maximize the right hand
side of the equation, thus proving our desired result

Note: the EM procedure converges but only to a local optimum

29



You should know ...

e EM is a general procedure for maximizing a likelihood with latent
(unobserved) variables
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You should know ...

EM is a general procedure for maximizing a likelihood with latent

(unobserved) variables
e The two steps of EM:
e (1) Estimating unobserved data from observed data and current
parameters
e (2) Using this “complete” data to find the maximum likelihood
parameter estimates
e Pros: Guaranteed to converge, no parameters to tune (e.g.,
compared to gradient methods)

Cons: Can get stuck in local optima, can be expensive

e Why is EM useful for unsupervised learning?
e EM is a general method to deal with hidden data; we have studied it
in the context of hidden /abels (unsupervised learning)
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