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Abstract

This thesis examines nonlinear axis scaling and its impact on the modeling
of interattribute relationships. Through automated methods, the described
system identifies possible scaling methods; decides which attributes serve
as inputs or outputs; and builds regression trees that quantify these rela-
tionships. While the experiments focus on the accuracy and complexity of
these models, both of which one can attempt to quantitatively examine, the
results also consider applicability towards the inherently more qualitative
task of rule-based outlier or anomaly detection. The results demonstrate
that the use of nonlinear axis scaling, even in an automated system, can
provide significantly more accurate models compared to the unscaled case
without proportionally higher complexity costs; and also can help reveal
unusual tuples in which what is unusual is not any individual value, but the
combination thereof.

1 Introduction

This work considers data mining from the perspective of model building
in an unsupervised domain, where the term 'model’ specifically refers to
any equation that approximates individual values of individual attributes
as functions of the associated values of other attributes; and 'unsupervised’
means that the system operates without requiring input-output labels or
being able to request additional data. The system is also not permitted to
assume that the original scales of the attributes are optimal for its purposes;
for instance, it may be the case that an accurate model of acceptable com-
plexity would be easier to build if a logarithmic transformation were applied
to an attribute. To deal with this possibility, we must consider a space of
possible nonlinear axis scalings and attempt to determine which will help
the model-building process.

The current system may be divided into three major components: non-
linear scaling, input attribute selection, and modeling. Each stage produces
output that may be of interest by itself; for instance, the choices of scal-
ings or the division between inputs and outputs may be of separate interest.
However, the modeling stage is the most amenable to quantitative analysis
as we can assess the accuracy of the models more easily than we can the
benefits of knowing that a particular attribute seems best scaled in a cer-
tain fashion, and is the most direct means of justifying the previous stages;
therefore, the experiments and analysis thereof focus on this aspect rather
than making more direct assessments of the selected axis scalings or choice



of inputs and outputs.

2 Design Questions

Ideally, axis scalings, the determination of inputs and outputs, and the re-
sulting models should be built automatically with a minimum of per-set
tuning, so as to supplement the useful but less-scalable expertise and atten-
tion of any human domain expert. We want an fully-automated system for
identifying the relationships between inputs and outputs, and for evaluating
how well data fits these relationships so we can find interesting exceptions,
when given a complete data set consisting primarily of numerical attributes.

2.1 Four fundamental questions

In light of the above, for any given set we might consider the following
questions.

1. What scaling is appropriate for the data?
2. Which attributes should we model?
3. Which attributes should be the inputs for those models?

4. How should these models be chosen?

Of these, first examine the second and third questions. These closely-
related queries stem from the fact that to model a process requires both
inputs and outputs. For simplicity, let us restrict the solution space by
requiring that each attribute be either an input or an output, but not both.
In addition, let us suppose that our model builder can determine which
attributes are most relevant among possible inputs. This reduces the second
and third questions to the problem of dividing the set of attributes between
inputs and outputs.

The fourth question also directly relates to the modeling problem. Even
if one has been given a fixed partition between inputs and outputs, one still
needs to decide how to model. The exact choice of the model class and the
method for searching that specific class matters.

Lastly, consider the first of the four questions — what to do about scal-
ing. In theory, if all one cared about were attaining precise and accurate
models, many model classes possess sufficient flexibility that scaling would



not matter. In practice finding optimal or even good models within suffi-
ciently flexible model classes happens to be quite difficult; thus, scaling can
affect the end result even if the model class itself contains accurate models
for the unscaled data. In addition, scaling might affect the efficiency of the
models. Furthermore, scaling might also have an impact on the efficacy of
input selection depending on the methods used. This possibility therefore
seems worth investigating.

3 Related work

Between attempts to handle the curse of dimensionality and the desire to
find patterns and models, a substantial body of work proves relevant to the
problems at hand. This summary will merely mention SPARTAN [2] as the
single most related work to the system described herein.

4 System Design

With that in mind, consider the system as designed and implemented. The
system consists of three stages — scaling, selection and modeling. Each of
these stages processes the data with the intent of eventually returning effi-
cient, accurate models demonstrating the relationships between attributes,
and may return additional information regarding the nature of the data.

4.1 Axis scaling

For axis scaling, the system searches the space defined by the cross-product
between two function classes: Box-Cox transformations, and the cumula-
tive distribution functions for a variety of scalings. The system uses the
former, then estimates parameters for various distributions to identify the
latter; only fits surviving certain goodness-of-fit parameters are accepted.
In addition, an untransformed version always survives this phase.

4.2 Input selection

The axis scaling phase results in one or more versions of each original at-
tribute, where each version corresponds to either an identity transformation
or a pairing between a particular Box-Cox transformation and a probability-
based scaling. The input selection phase decides which versions of which
attributes serve as inputs, discards other versions of the input attributes,
and labels the remainder as possible outputs. A multi-state hill-climbing



approach uses the Dy fractal dimension to search the space of possible com-
binations of input attributes, while constrained by a restriction that the
same original attribute never be used as an input in two different scalings.
Every version of every attribute will be labeled as either an input, a possible
output, or redundant due to merely being an alternate scaling of an input.

4.3 Modeling

The final stage performs modeling. The current system uses a regression
tree based on SECRET [4] but with a much more aggressive pruning system,
within a form of four-fold cross-validation is performed.

The question of how to fairly evaluate errors when even the scaling is
in question led to the design of scaling-robust quantile-based error metric.
This quantile error metric essentially involves the transformation of observa-
tions and estimated values into a percentile space; for instance, the extrema
correspond to 0 and 1, the median becomes 0.5, and so forth with appro-
priate allowances for duplicated values. Errors computed in this space are
robust to even nonlinear monotonic axis scalings, thus largely eliminating
the problem of a metric giving different assessments before and after scaling
for the same model.

4.4 Scalability

As with any complex system, it would be of interest to know just how long
execution might take, and whether the system would scale to large data sets
either as-is or with moderate modification. One might want to know what
a worst-case scenario is. The described system is sufficiently complex and
data-dependent to defy theoretical analysis, so this can only be estimated
via experiments.

5 Experiments

The system exists primarily in Perl 5 scripts and modules as well as some
C++ code. Testing proceeded on a single machine with two Intel Xeon 2.8
GHz processors and 1 GB of memory running Linux. With the relatively
small sets used, processing power was far more important than memory. No
attempt was made to exploit parallel computing.



5.1 The impact of nonlinear scaling

Experiments considered the following potential areas of observation.

1. What is the impact of nonlinear scaling on the attribute selection
process?

2. How good are the resulting models?

3. What else can we find out?

Space constraints force the exclusion of most examples. Here follows a
partial analysis of the results for one data set.

5.1.1 DJ30

The DJ30 set is the DJ1985-2003 submitted by Danilo Careggio to StatLib
[3]. This set contains stock data for each stock that was a component of
the Dow Jones 30 Industrials in October 2003, split-adjusted, over a period
consisting of 2,529 trading days from January 2, 1985 to October 30, 2003.
While one attribute was labeled CO, I refer to it as KO on the suspicion that
— CO0 not having been a DJIA component while KO was — this was a labeling
error. The truth of the matter has few ramifications other than the fact
that CO and KO operated in different markets and presumably have different
dependencies. The data set description indicates that the data was originally
collected from Yahoo!.

From this set, I used the split-adjusted closing prices. While the se-
quential nature of the data would have allowed it, no experimentation was
performed with exploiting temporal correlations. For instance, a model for
the closing price of American Express (AXP) did not use any historical prices
for American Express, and could use only the closing prices of the other
Dow Jones 30 components for that same day. One could obviously perform
considerable experimentation attempting to predict thirty concurrent and
non-independent time series.

Without nonlinear scaling, only a single stock was chosen as an input —
IP, or International Paper. Most of the quantile errors are on the order of 100
to 200, with a few notable exceptions. The least occured with DuPont (DD);
there, a 5-node tree had a maximum quantile error of 0.48280, and a median
quantile error of 7.3211 x 10~2. The model for Caterpillar (CAT) is almost as
accurate, with median and maximum quantile errors of 9.2970 x 10~2 and
0.49715 respectively.



With nonlinear scaling enabled, the system selects two attributes — Inter-
national Paper, with a third-root Box-Cox and a truncated normal; and JP
Morgan, with a mixture of normals. In all 28 models common to both the
scaled and unscaled cases, the sum-of-squared quantile error has dropped.
The median of the median quantile errors for all the models is down from
0.14890 to 7.4698 x 10~2; the maximum median quantile error dropped from
0.20833 to 0.14980, with these maximum medians belonging to WMT in both
the scaled and unscaled cases.

Outliers The nature of the data set and the accuracy of the models in the
case of nonlinear scaling allows one to not only identify apparent outliers —
prices for which the models have predicted unusually badly — but to search
for reasons why. For one model, CAT, 8 of the 13 worst errors occur on
the eight trading days from April 9, 2003 to April 22, 2003. All of these
errors exceed 0.3700 in quantile space; the median was 7.3458 x 1072, It
may be noted that in early April S&P downgraded CAT to 2 stars (avoid)
from 3 stars (hold), labeling its rise in share price an overreaction [1]. The
two worst quantile errors for SBC, of magnitudes 0.5077 and 0.5362, fall on
the 20th and 21st of September, 2001, and vastly exceed the third worst
error of magnitude 0.3551. On the 21st, it had announced plans to purchase
outstanding shares of Prodigy Communications; this may have relevance.

SBC Communications SBC Communications (SBC) offers an interesting
example of the improvements made possible by nonlinear scaling. With
nonlineare scaling, the median quantile error has dropped from 0.16600 to
5.2031 x 1072. On the other hand, the scaled model shown in Figure 1
requires two inputs and eleven nodes instead of one input and one node.

Figure 2 shows the closing prices of IP and SBC, unscaled. A cursory
examination shows that SBC’s closing price must depend on something other
than IP; since the unscaled case resulted in selecting only IP as an input,
SBC could not have been modeled well. It therefore becomes natural to
ask whether or not the inclusion of JPM would suffice. Figure 3 shows the
outcome, should one force this selection and build a regression tree with
these inputs and output; the resulting 5-node tree has a median quantile
error of 7.1377 x 10~2 and a sum-of-squared quantile error of 30.619; smaller
but less accurate than the model derived with nonlinear scaling.



IP vs. JPM vs. SBC, scaled, actual vs. predicted
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Figure 1: IP and JPM versus SBC, scaled. The observations, marked by
crosses, are well-tracked by the model.

5.2 How long did it take?

This is really two questions: how long did it take for each set in total,
and how well does the system scale with the cardinality of a data set. For
brevity’s sake, only the latter question is considered here.

For each sample fraction from 10% to 80% at 10% intervals, five inde-
pendent samples were drawn. These samples were then processed with and
without nonlinear axis scaling. Figures 4 and 5 shows the results for each
individual selection, scaling or modeling phase as well as total times with
and without nonlinear scaling. In both cases, CPU time required scales
linearly with sample size and is dominated by the modeling phase.

6 Discussion
Recall that the major concerns of the experiments were the following.

1. What is the impact of nonlinear scaling on the attribute selection
process?

2. How good are the resulting models?



IP vs. SBC (unscaled)
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Figure 2: IP versus SBC, unscaled. Clearly one needs more than IP to model
SBC.

3. What else can we find out?

The first two points encompass the major point of this project, which
was to quantitatively evaluate the impact of a particular automated nonlin-
ear scaling system and its heuristics on the overall behavior of a modeling
system. Attribute selection came into play in order to enable dealing with
cases in which attributes have not already been labeled as inputs or outputs.
The third point deals with the possibility of other information noted either
from or about the system.

Results described in the previous selection lead this investigator to a
few basic conclusions. First, nonlinear scaling generally led the attribute
selector to select slightly more attributes — although not necessarily an exact
superset, nor that many more. Two, model performance as measured by the
quantile error often improved significantly, while model complexity remained
fairly stable in most cases. Third, there were some interesting trends such as
the dominance of the mixture-of-normals distribution and the odd anomaly.



IP vs. JPM vs. SBC (unscaled)
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Figure 3: IP and JPM versus SBC, unscaled. This model is fairly accurate,
but not as accurate as that of the scaled case shown by Figure 1.

6.1 Impact on attribute selection

In the experiments conducted, with nonlinear scaling enabled the selector
module always chose at least as many attributes as without nonlinear scaling.
It did not, however, necessarily choose a superset, nor did it ever choose
many more attributes than in the unscaled case. Furthermore, should any
improvements in model accuracy be credited to the selection of more inputs,
that latter selection can itself be ascribed to the use of nonlinear scaling.

6.2 Impact on the resulting models

While the scaling and selection may itself provide some useful information,
the construction and evaluation of regression trees allows the prospective
user to evaluate the overall system through the error metric of his choice.
In addition, the models themselves may be useful in their own right or the
exceptions to them could be of interest; however, the utility of a model or
its exceptions does not readily lend itself towards quantitative assessment.
Instead, material such as the discovery of explainable anomalies consists
primarily of anecdotal evidence and is relegated to the next section of this
chapter.



Scalability: Data size versus CPU time (Unscaled)
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Figure 4: Timing runs at different sampling frequences over the
page-blocks set, without nonlinear axis scaling. Error bars indicate mini-
mum and maximum timings. For each sampling size, the bars reflect selec-
tion time — basically nothing compared to modeling time — modeling time,
and total time. The total time appears to scale linearly with sample size.

That noted, regarding the performance of the modeling system I have
presented three basic types of statistics where applicable. These concern the
size of the regression trees, the errors produced by the trees when evaluated
against the data sets, and classification accuracy where appropriate. Table
1 aggregates high-level results for the first two areas, counting attributes
modeled in both the unscaled and scaled cases according to whether the
models were more accurate according to the sum-of-squared quantile error,
and whether they were more efficient in terms of the number of nodes in
the regression trees. The 41 models which either have superior accuracy
with the same or fewer nodes, or which have fewer nodes at the same or
better accuracy are improvements, modulo the computational complexity
of the scaling itself; the five models which are either of inferior accuracy or
worse efficiency and without improvements in the other aspect are clearly
worse. For four models, neither efficiency nor accuracy has changed much.
The 25 remaining models with either better accuracy and worse efficiency
or vice-versa would need to be considered more carefully in order to fairly
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Scalability: Data size versus CPU time (Scaled)
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Figure 5: Timing runs at different sampling frequences over the
page-blocks set, with nonlinear axis scaling. Error bars indicate minimum
and maximum timings. Again, individual bars reflect scaling, selection,
modeling and total time. The total time shows a linear correlation with
sampling size.

assess their merit.

6.2.1 Model size

The first class consists of the number of nodes in the selected binary regres-
sion tree, from which one may deduce the number of test nodes and leaf
nodes. The storage cost of a regression tree as implemented is currently
dominated by the leaf node cost. Each test node stores a single attribute
index indicating the test attribute and either a single value (for a numerical
test; almost all tests were thus) or a set of symbolic values (for a member-
ship test). Every leaf node stores a linear equation containing an additive
constant and one coefficient per input attribute. The cost of the tree is condi-
tionally independent of the use of nonlinear scaling given the tree structure,
the number of attributes selected, and the number of attributes available for
selection.

In practice, the majority of trees selected had 11 nodes or fewer, which
means 6 or fewer linear equations and 5 or fewer test nodes. Storage costs
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Better > Q° Same > Q? | Worse }_ Q°
Fewer nodes | total 11 | total 0 | total 2
abalone 1 abalone 1
DJ30 6 building 1
housing 1
page-blocks 3
Same # nodes | total 30 | total 4 | total 4
baseball 11 | 1iver 2 | abalone 1
CIA-WF 1| wind 2 | baseball 2
DJ30 7 building 1
housing 6
liver 1
wind 4
More nodes | total 23 | total 1 | total 0
building 2 | abalone 1
DJ30 15
housing 1
page-blocks 3
wind 2

Table 1: Tallies for all attributes modeled in both the unscaled and scaled
cases. The columns indicate whether or not the version with nonlinear
scaling has better, approximately the same (5% difference), or worse results;
the rows, whether the model after scaling has fewer, the same, or more nodes
than in the unscaled case. The results are shown in both totals and per data
set.

would therefore be quite small as befits small data sets, on which a larger
tree would risk overfitting. Also of note is that scaling as applied rarely had
much of an effect on the number of nodes. Any benefit or penalty in modeling
accuracy, therefore, could not broadly be attributed to a substantial change
in the model complexity other than any additional metadata defining the
actual scaling. There were exceptions, such as the area attribute in the
page-blocks set. That attribute received an inaccurate 3-node tree without
nonlinear scaling, and a very precise 23-node tree with.

More directly related to tree size than the hypothetical use of nonlinear
scaling would be the regression tree building algorithm; in particular, the
splitting and pruning criteria. The system as implemented uses a particu-
lar set of rules intended to have fairly compact trees; other users may have
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different opinions on an appropriate balancing point. These decisions, how-
ever, were held constant regardless of the use of scaling or the choice of data
set and while they introduce the possibility of differing results with other
systems, within the scope of these tests the use of nonlinear scaling or the
lack thereof is the single major experimental variable.

6.2.2 EFErrors

Without explicitly presenting the trees, data, source code and per-tuple er-
rors, I have endeavoured to present an acceptable description and analysis of
how well the models performed in their most fundamental task of regression.

Where attributes have contained only integer values, a cost model has
been applied that considers the cost of both the model — using rather basic
accounting such as assuming IEEE 64-bit double-precision floating-point
numbers for some fields and ordinary prefix-free codes for others — and
any additional storage necessary for identifying both the tuple index and
the magnitude of any errors. This methodology comes from the seman-
tic compression point of view, and allows one to balance storage cost and
model accuracy in accordance with a well-known practice. Few sets used
had many integer attributes, however; the two exceptions are baseball and
page-blocks. As the full document notes, bit costs appear to have been
reduced somewhat for those sets.

With continuous attributes, the task of fairly measuring model perfor-
mance becomes considerably more complicated. I have presented a quantile-
based metric designed to look solely at model accuracy from the point of
view of a disambiguation task, and which therefore varies expected accuracy
with the local data density. Greater precision is necessary in ranges in which
more tuples fall, and less for sparser regions.

Results on the real data have also included median and maximum mag-
nitudes of quantile errors, and the occasional note as to the possible cause of
apparent anomalies. In general, the reported quantile errors are better with
nonlinear scaling than without, and any increase in the tree size has usually
been fairly limited. The occasional exception such as the length attribute
in the page-blocks set shows itself.

6.3 Other findings

Results on data sets not described in this version of the document include
a number of cases in which nonlinear axis scaling has helped produce more
accurate models for which the most inaccurate tuples may be termed excep-
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tional outliers. In some cases, the nature of the data set permits speculation
as to the cause of model inaccuracy; for instance, the models for individual
stock prices based solely on the prices of others in the same index could
not be expected to predict acquisitions and rumors thereof that could have
a significant impact on the perceived value of individual companies. The
abbreviated results for the stock data notes a few instances.

A separate issue from correctness is performance. Timing tests suggest
that in the current implementation, the modeling phase requires by far the
most CPU time of any segment in the system, and that nonlinear scaling
greatly increased the time spent there. Any effort spent on improving speed
would be best directed at this phase. The timing results also suggest that
merely knowing the dimensions of the original data set would not suffice
to accurately estimate the required time; note, for instance, the drastic
difference in required time for the similarly sized abalone, page-blocks and
wind sets. In addition, the CPU time required appears to scale linearly with
the number of tuples in the data set, at least on samples of page-blocks,
in both the scaled and unscaled cases.

7 Conclusions

This thesis involved the design, implementation, and examination of a sys-
tem for the nonlinear scaling of axes; the labeling of attributes as either
inputs or outputs; and the modeling of the mathematical relationships be-
tween inputs and outputs, all in an automated fashion with no per-set tun-
ing. Section 5 describes the experiments used to analyze the performance of
this system in terms of both the accuracy and complexity of the resulting
models, as well as the scalability of the system, and Section 6 summarizes
the results.

As Table 1 makes clear, the application of nonlinear axis scaling has
indeed helped. The use of scaling enabled more accurate models with the
same or less number of nodes in the regression tree 41 out of 75 times;
another 23 times, the use of scaling resulted in a more accurate but larger
regression tree. In two cases, scaling resulted in the opposite trade-off of a
less accurate but smaller model. Four attributes resulted in ties, with trees
of the same size and essentially unchanged accuracy. Only in five cases did
the system do worse in either accuracy or complexity with no improvement
in the other.

The generation of more accurate models also revealed outliers. For in-
stance, axis scaling certainly helped the models in DJ30, which in turn re-
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vealed a variety of periods of anomalous behavior in individual equities;
anomalous behavior that, armed with dates and a search engine, could fre-
quently be linked to events that might plausibly influence the prices in ques-
tion and cause an individual stock to break away from the usual patterns.
With inaccurate models, too many tuples look poor to justify searching for
exceptions; but nonlinear axis scaling, even when automated without do-
main knowledge or data-specific tuning, can improve those models to the
point that interesting exceptions can emerge.

In short, nonlinear axis scaling can help — a lot. It’s not guaranteed to do
so, and it adds significantly to computational cost, but it’s a powerful tool
and one worth serious consideration in addition to simpler methods such as
affine transformations solely for normalization.
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