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Abstract



In the study of computer science, programming is a fundamental skill, not
just for the production of code, but for the practice of problem decomposition
and algorithmic production. In introductory classes, students are expected to
learn the skills to decompose problems into component parts, select appropriate
algorithmic strategies, and compose those various strategies into a semantically
and syntactically correct program. The challenge for students is understanding
that programming is not simply about constructing individually correct lines
of code, but how those lines work together to produce a coherent algorithm.
Current technological approaches to developing pedagogical tools for supporting
code production focus on either supporting students at the beginning of the
process by prompting for small steps in the code writing process, or scaffolding the
debugging process after the student produces compilable code. These approaches
do not support deeper understanding of the algorithms that will transfer to future
problem solving situations. The early assistance robs them of the opportunity to
navigate the search space to retrieve the strategies appropriate for the particular
problem being solved. Although post-compilation tools allow students to search
for appropriate strategies and evaluate their results, the compilation prerequisite
for their use requires that students spend a large portion of the debugging process
without the help of the tool. The popular approach of applying context to the
problem space could help support students during code production, but has not
been rigourously evaluated.

This thesis takes an interdisciplinary approach which combines the applica-
tion of code analysis tools from computer science and a pedagogical model from
cognitive science. The goal of this approach is to deepen the understanding of al-
gorithms through feedback in the appropriate problem solving stage. This allows
for the development of a pedagogical tool that supports students at a point in
the process that allows them both to gain practice in navigating the search space
of problem solving strategies and provide algorithmic feedback pre-compilation.
This dissertation includes the formulation and assessment of a model of student
problem solving in a specific algorithmic domain, an analysis of the accuracy of
the evaluation of student code within the system, and the evaluation of these
variables on the learning and transfer on high school and college students taking
introductory computer science courses. The learning and transfer will be evalu-
ated through the application of automated feedback during the problem solving
process, and compared against the most advanced of current approaches in com-
puter science education. Additionally, I will experimentally test the common
practice of adding context as a way of scaffolding student problem solving. The
contribution to computer science education lies in the construction of a pedagog-
ical IDE which evaluates code before compilation to produce semantic feedback
for known problems. For the learning sciences, this work will show the impact of
feedback regarding algorithmic abstraction in code production tasks, as well as
inform the debate regarding the addition of context to problem solving situations.
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1 Introduction

Computer science is an important part of literacy in the digital age. Across the United
States the Computing in the Core movement[1] and the institution of a National Assessment
of Educational Progress (NAEP) in technology[2] are bringing computer science into every
child’s expected academic program. In the introductory curriculum programming is the skill,
and particular programming languages the syntactic and semantic structure, we require of
students as they express their computer science knowledge|3].

Over the past 20 years the demand for students to gain early experience in professional
level languages has influenced the introductory language choices. These languages, such
as Java, C++, and C, have extraordinarily rigorous syntactical requirements and students
are limited in the pedagogical tools and environments available during the learning process.
These factors, combined with others, have led to a social consensus that computer science
is hard, and an eventual decline in enrollments which is currently identified as a national
security risk[4].

An important part of implementing an algorithm in a programming language is the
decomposition of the problem into its component parts, selecting the appropriate strate-
gies relevant to the problem, and recombining those strategies into a semantically correct
algorithm[5]. The student must then write code for the algorithm to be compiled, tested,
and run it in order to check their thought processes, and communicate the semantics to the
computer. This process has been shown to be extraordinarily difficult for students, and an
analysis of a student’s solution to a problem can help illustrate why. Table 1 shows a prob-
lem given on the Advanced Placement Computer Science A exam! in 2007 and a response
which received a middle range score. Although the AP exam requires a pencil and paper
submission, you could equate this with a student’s first attempt with a compiler or other
tool.

The solution shown in Figure 1 was published as a part of workshop materials to help
instruct teachers as to how student exams are scored. It shows code produced by a weak
student who makes a series of semantic errors.

After constructing this solution, the next step in the student’s process would be to fix
any compile errors in order to progress to a compilable state where the program’s semantics
could be checked. Unfortunately for the student, the semantic errors such as the line of
code “if(sheets.get(n) > LargestScore)” would be identified as a syntax error about an
inappropriate l-value for a > sign. Depending on the student’s misunderstanding, this syntax
error may or may not clue them in to the fact that they need to access a particular part of the
object retrieved by sheets.get(n). These syntax errors would need to be corrected before any
semantic debugging could occur with the help of the system. By receiving feedback (syntax
errors) designed for professionals with an understanding of the code they have produced,
novices often focus on the low-level, local details surrounding the errors[6] and have extreme
difficulty making productive edits[7]. This leaves the novices without explicit cues to look at
the algorithmic semantics and develop a deeper understanding of the algorithmic components
they are using.

'The AP Computer Science A exam is taken annually by approximately 15,000 students and its curriculum
is designed to match a majority of the undergraduate CS curricula in the US.



Problem Write the TestResults method highestScoringStudent, which returns
Descrip- the name of the student who recieved the highest score on the test
tion represented by the parameter key. If there is more than one student
with the highest score, the name of any one of these highest-scoring
students may be returned. You may assume that the size of each answer
sheet represented in the ArrayList sheets is equal to the size of the
ArrayList key.

Goals  for | In this problem the student needs to loop over the ArrayList named
Student sheets from another part of the problem?, involving determining the
number of elements contained within the ArrayList and correctly ac-
cessing an element within the context of the loop. They need to deter-
mine the highest score through a comparison with a variable used to
store the largest element. Finally they need to access the name of the
highest scoring student and use a return statement to share the result.
Because of the complexity of the data structures used in this problem
that has several syntactical and semantic requirements.

Table 1: Example Problem With a Description of Student Goals

1.1 Current Technological Approaches

Current technological approaches to scaffold student algorithm production in code suffer
from one or more of the following problems. The problem that impacts the most effective
tools is that they are out-moded, the language that they offer tutoring in is no longer
taught in introductory classes.. The lisp tutor[8] and other tutoring systems for prolog[9],
pascal[10] and other languages have all demonstrated learning gains for students in the past,
however they do not deal with modern languages and the syntactic complexities that they
bring. Some recent systems attempt to automate the testing of student code through various
representations to concretize the students’ solution[11, 12, 13]. Unfortunately the automated
testing tools only work on code which compiles. Finally, some tools prompt students for each
individual line of code in a solution[14], which does help during the problem solving process,
but again focuses the student to the individual lines of code, not the way that the code works
together to produce an algorithm. The problem of requiring compilation or providing too
much scaffolding up front does not support students’ acquisition of the deeper knowledge
required to transfer their programming skills to new algorithms or problem solving domains.

1.2 Using Context to Scaffold the Gap

A common pedagogical approach to helping students during the code writing and debugging
process is the application of a context to the problem[15]. In addition to providing motivation
for students to appreciate the problems by framing them in an interesting domain, such as
digital media or robotics, the addition of context to the individual problems is hoped to
provide a framework for reasoning for the student[?]. In an educational climate where solving
real world problems is considered to be of highest value, the addition of problem context in
computer science has the naive potential to both help students during the process and also
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Figure 1: Components of Simple Array Algorithms

give them experience in real world situations[16]. No work has been found that tests this
claim experimentally, and related work from other domains offers mixed results[17].

2 Theoretical Foundation

In order to address the need for balanced support during the student problem solving process,
this thesis proposes a solution that comes from a technological contribution of evaluating
student code pre-compilation using a combination of problem knowledge and static analysis
tools, as well as a cognitive science contribution of feedback regarding algorithmic abstrac-
tion during the problem solving process. Although prompting the students for the next step
in the process does help them during the supported activities, it does not help build a deep
understanding of the decision making process employed in the construction of those steps[9].
In order to make those connections explicit, the Pedagogical Integrated Development Envi-
ronment?(PIDE) proposed in this thesis will test the impact of explicit feedback regarding
the algorithmic semantics of students programs during the problem solving process.

3 A pedagogical IDE is one that provides support for the novice computer scientist in ways that traditional
IDEs do not. For example, the BlueJ IDE simplifies the buttons and menu commands as well as offers a
visualization tool for object structures. The online practice system CodingBat offers specific problems with
built in test cases for students to interact with.



2.1 The Benefit of Abstraction

There is a wealth and range of literature about abstraction in student reasoning and the
correlations it has with other measures of student performance (e.g., code production)[?].
Many models have been proposed and evaluated for scoring the complexity of student re-
sponses to open ended questions[18, 19]. In computer science education, two popular models
of student response complexity, and implied expertise, are the Block Model[20] and the Solo
Taxonomy which was first proposed by Biggs and Collings as a generalizable model[21] and
later adapted specifically to computer science[22, 23, 24]. Overall, these models and the
research surrounding them indicate that as students progress from novice to expert they are
better at identifying the relevant parts of an algorithm, and then connecting those parts
through an understanding of their interactions. This becomes troublesome for the novices
writing code. Ko and Meyers have shown that students not only have trouble understanding
other peoples’ code, but also code that they themselves have written[25].

Models of expertise in other domains also indicate that abstraction is an indicator of ex-
pertise in understanding complex systems. The seminal studies in expertise and abstraction
were done with chess players[26], and recalling board states. Expert chess players were more
accurate at remembering board states of playable games than novices. The experts did not
memorize the locations, instead they chunked the board states in to relevant patterns of
player behavior. Novices did not have smaller working memories than the experts, but were
instead unable to build the complex mental representations of the chess board that allowed
the experts to reproduce the board and have greater flexibility in their working memory
when solving problems.

The correlational studies done in the computer science education literature are the the-
oretical foundation for offering explicit instruction in the form of feedback to students re-
garding algorithmic components and their relationship to each other.

2.2 Choosing the Right Domain

In order to select an appropriate domain for this work several factors were considered: com-
mon curricular practice, problem difficulty, number of subgoals or tasks in the problem and
relevance to future learning/coursework activities. The choice to work with simple array
algorithms is a departure from the loop-based problems explored in most of the prior litera-
ture![27]. Although problems involving arrays also involve loops, many of the early studies
looked at looping algorithms where students would hand-enter the data at runtime, and the
program was not required to maintain a data structure containing all of the entered data. As
the languages changed, so too did the paradigms used in introductory programming. Larger
data sets combined with increased modularity of programs in an object oriented language
mean students rarely hand-enter data in modern classes, and make use of data structures
earlier and for a broader range of problems. I make the distinction here as the problems
chosen for these studies have the data pre-entered into the data structure for the student.
Thee specific problems were chosen to be difficult enough to require students to combine

4Many early studies in algorithm generation by novices made use of the “rainfall problem” requiring
students to read in a list of values of rainfall amounts and calculate the average rainfall for the area.
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several strategies to produce a result, but not so complex that the number of subgoals or
tasks become prohibitive in the ability to construct the Pedagogical IDE to handle all cases.
Finally these algorithms and the strategies they require are foundational for more complex
algorithms often introduced in later lessons or courses. Additionally, because students are
not looping over input data to perform actions, these algorithms are often the first time
students encounter code complex enough that algorithmic abstraction is warranted.

2.3 Designing a model

An initial model of code production was built using a combination of similar models published
by Elliot Soloway[5, 27] and expert knowledge. Starting with the ultimate goal of solving
the problem presented, the student needs to choose which strategies are appropriate for the
task at hand. Although the student does not need to select the strategies in any particular
order, there are dependencies between the strategies as some variables may be necessary for
multiple strategies. An example of this can be seen in an algorithm to compute the sum of
the values stored in an array. The variable used to maintain the sum would be necessary
both in the update of state variables and the return appropriate value strategy.

| Do we only need to access one element? |-— Access array with
|

| For Statement Referencing List/Length

= .". |_L\st [l within loop structure
| | Loop Over Elements |-{
| [————————"I{Bounary Correctness
= | ‘| Reference loop variable in []
| Does the problem involve arrays? |- | B
I ) | Do we need to access many elements? | { e Make a Comparison
[ '[1dentify Relevant Elements | L, il I
. f | Identify Relevant Elements [~ ————
Goal: Solve Problem | Identify Relevant Elements | { Utilize An Element
I\ | Carrectly Identify with an If
|m‘ I Attempt to use State Variable in some way |
pdate State of Variables |-
— |Correcl update for algorithm
| Do we need to calculate and return a value? ‘ i Correct place for Return
| Correct Return Value

Figure 2: Components of Simple Array Algorithms

In the model shown in Figure 2 the student needs to choose from a set of goals for the
code or method that they are writing. What is shown above is only a subset of those goals
as they may apply to simple array algorithms, the domain chosen for these studies. The
leaves of the decision tree (boxes all the way to the right) are the elements of the model
that will be tested by the Pedagogical IDE. Depending upon which model constraints are
satisfied by the student’s program, the feedback will be targeted to either encourage them
to utilize a current strategy, or refine their strategy to be correct. For example, if a student
misses both of the components of the ”Update State Variables” strategy in a program that
requires it, they will receive feedback indicating that they need to utilize that particular
strategy. If the student has attempted to use the state variables, but not correctly, they will
receive feedback to help them with the correct implementation of that strategy as opposed
to encouragement to use the strategy. The exact wording of the feedback will be tested and
refined in the studies.



3 Research Questions

This thesis examines the hypotheses that:

(a)Feedback about semantic errors with regards to algorithmic abstraction
will produce better performance in the writing of code by novices; and

(b)Contextual scaffolding impacts performance in the writing code by novices.

The studies proposed here focus on the problem-solving processes students engage in
while producing code to solve simple array algorithms, and then debugging that code in
order to achieve a correct solution. The variables of exposure to semantic feedback regarding
algorithmic abstraction and the addition of contextual scaffolding, or not, to problems are
evaluated through the three studies proposed in the next section.

4 Proposed Studies

The impact of instruction in abstraction and the addition of problem context on students’
ability to produce code will be investigated and tested using a combination of quantitative
and qualitative methods. The work proposed in this research plan investigates the impact of
feedback regarding abstraction within the code production process. A Pedagogical Integrated
Development Environment (PIDE) will be constructed to facilitate these studies.

This thesis offers contributions both in the learning and computer sciences. With respect
to the role of abstraction in novices studying computer science, the existing literature is
entirely correlational and is more focused on the assessment of student answers than on
student learning. This thesis utilizes an experimental design integrating both qualitative and
quantitative analyses to understand the impact of feedback regarding abstraction on student
learning and performance. Additionally, prior work regarding algorithmic abstraction has
focused on learner characteristics and assessment, while the PIDE proposed here will use
explicit feedback in order to produce learning gains.

The technical contribution of this thesis is a novel approach to generating appropri-
ate pedagogical feedback for novices engaged in a code production task as a part of their
learning. The PIDE constructed for the studies involves code analysis in order to produce
appropriate feedback. While many tutoring systems have been published for computer sci-
ence, few include a methodology for analyzing student code prior to compilation to produce
feedback that is different from the professional level tools available on the market. I take
a novel approach of using a model-based grading system in order to determine the impor-
tant characteristics of a correct solution, and categorize the type of feedback that students
receive.

4.1 Study 1: Pilot Testing the PIDE and Model for Feedback
Generation

The proposed model displayed in Figure 2 was developed using expert knowledge and intu-
ition of the problem solving space. The goals of Study 1 are two-fold. First, we will validate
the model through alignment with student thought processes during think-aloud protocols
where they will solve the type of programming assignments found in Study 3. Secondly, the



feedback generated needs to be understandable to students and help them with the code
production process. This study will collect the code produced at compile time by the stu-
dents, the verbal think-aloud protocols given by the students as they are completing the
problems and finally their ability to use the feedback produced by the system during the
problem solving process.

The Domain

The exercises chosen for this intervention are based on array algorithms that students typi-
cally see during an introductory course[28]. Although the topic of array algorithms may be
an advanced topic for a introductory course, it was chosen for the following reasons:
e The algorithm implementations, while brief, contain a number of conceptual chunks,
thereby requiring abstraction or perceptual chunking to hold in working memory.

¢ Pilot studies using worked examples with simple looping programs yielded results at
ceiling[?], indicating the need for increased difficulty.

Students will be asked to write short methods that make use of the following algorithms:

e Algorithms that involve a change to each element, requiring no selection such as sum
all and increment.

e Algorithms that require a selection of elements, such as min/max search, count less
than/greater than/property, sum select.

e Algorithms that require a selection of elements, with the potential for a return once
the element is found, such as indexof.

e Transfer questions include algorithms with the additional goal of interacting with
nearby array elements, such as isInOrder, nextTo.

The Task

During this study students will come to an office space or conference room to engage in a
think-aloud protocol while solving problems from the tutoring sequence. Participants will
first complete a pretest where they answer questions with no feedback. Then they will be
given the tutoring sequence consisting of four problems delivered in a pedagogical IDE. After
completing the tutoring sequence they will receive a post test. Students will be asked to
think aloud during all parts of the process, and screen capture software will be used to record
edits the students make on the screen between compiles.

The students will be randomized to one of four conditions: Abstraction Feedback No
Context(AFN), Abstraction Feedback Context(AFC), Output Feedback No Context(OFN),
Output Feedback Context(OFC). Table 4.1 shows two problem descriptions, one from the
Context conditions and one from the No Context conditions. Aside from the problem de-
scription and name of the array variable being used there will be no difference between
Context and No Context - specifically the feedback across those conditions will be the same.

The level of feedback provided is the other variable in this study. In order to provide
students feedback a rubric grading system combined with technical implementation described
in Section 4.3 will be used. Consider a solution to the problem proposed in Table 4.1 where

7



No Context

Context

Please complete the method find-
Minimum below. The method takes
an array of numbers called myList
as a parameter and returns the min-

Please complete the method least-
Expensive. The method takes an
array named prices containing the
difference in price between a par-

ticular store’s gallon of gas, and the
mean price. The method should re-
turn the minimum value stored in
the array.

imum value stored in the array.

Table 2: Example Code Production Problem

the student incorrectly initialized the variable that keeps track of the minimum value starting
at an arbitrary value (0) instead of the first element in the list. This solution is given below:

public double findMinimum(double myList[]){
double min = O;
for(int i=0; i<myList.length; i++){
if (myList[i] < min)
min = myList[i];
}
return min;

}

Assuming that the student was provided an example (edge case) where this would be a
problem, the following are examples of the feedback the student might receive:

Abstract Feedback

Your answer is incorrect.

You did not find the correct mini-
mum value, you may want to check
your initialization.

Output Based
Student enters: [1, 5, -3, 2, §]
Student gets: 0

Table 3: Example Feedback in Code Production Problems

In both conditions students will receive the same success conditions.

Anticipated Outcomes

As a result of this study I will be able to evaluate the following factors:

Model Refinement and Validation Working with students engaged in think aloud pro-
tocols during the problem solving process will be used to refine and validate the model
offered in Figure 2 and used to generate the feedback in future iterations of the Peda-
gogical IDE.

Feedback Comprehension During the think alouds the wording of the feedback will be
evaluated for comprehension and ability to direct students to the appropriate errors



in their code. It is anticipated that multiple iterations of feedback messages may be
required during the think alouds.

Use of Contextual Scaffolding During Reasoning Think aloud transcripts will be coded
for the use of contextual scaffolding during the reasoning process.

Special Cases

If during the initial think alouds students do not produce problem states that require feedback
from all the model stages, additional think alouds will be conducted where students are given
a pre-created buggy piece of code that will elicit the desired feedback. Although this will
not help with the first goal of the study, it will ensure the evaluation and refinement of the
error messages for all states of the model.

4.2 Study 2: Refinement of Code Evaluation Model

An important aspect of the Pedagogical IDE is its accuracy in diagnosing student problems.
This study will focus on assessing and improving the accuracy of the part of the pedagogical
IDE that creates a representation of the student’s code and then generates feedback for the
student.

The Data

The programs and attempts created by the students during the think alouds in Study 1 will
be used as the dataset for the evaluation. The programs will then be rated by at least two

human raters against the model. The human scores will be used as the target values for the
PIDE.

Technical Evaluation

The pedagogical IDE will undergo an iterative process of refinement designed to increase
the accuracy of the tests against the student data. In order to not overfit to the dataset a
testing set will be separated from the data and used only for the final evaluation, not for
the iterative refinement. In addition to correctness testing, the pedagogical IDE will also be
evaluated against exhaustive JUnit testing to provide a comparative analysis of the types
of feedback students would receive, and the percentage of errors that would be identified as
syntactic and then semantic.

Preliminary Results

This approach to evaluating code was explored in a proof of concept study with an under-
graduate researcher, Alexandra Johnson, in the spring of 2011[29]. Although the study used
researcher-generated programs designed to elicit particular errors by the system, the sys-
tem out-performed unit testing in its ability to detect and diagnose semantic errors within
incorrect code.



4.3 Study 3: Learning Gains from Abstract Feedback

Study 3 will evaluate the impact of instruction on algorithmic abstraction and contextual
scaffolding during the code production process. This study will also test the efficacy of the
primary technical contribution: generating pedagogical feedback for novices using problem
knowledge and abstract syntax trees.

The Task

While interacting with a web-based pedagogical integrated development environment (PIDE),
students will complete small methods requiring that they implement simple array algorithms.
Computer programming is an iterative task, and few novices are able to produce correct code
on their first attempt. Within each iteration, students receive feedback from the compiler
or the system about either compile or runtime errors. Students will be randomized to one
of four conditions, varying either the feedback they receive or the application of contextual
scaffolding to the problem statement. The four conditions are Abstraction Feedback No
Context(AFN), Abstraction Feedback Context(AFC), Output Feedback No Context(OFN),
Output Feedback Context(OFC). The details of the conditions are the same as described in
Study 1.

Research Design

The effects of feedback mechanisms on a student’s ability to solve problems and learning
gains will be evaluated using qualitative data gathering from the tutor as well as qualita-
tive methods from think aloud protocols. Figure 3 shows the planned research design and
evaluation points.

Tutoring Sequence for Each Condition

Context Context Context Context \
IUnit JUnit IUnit IUnit
Context Context Context Context

Algorithmic | Algorithmic | Algorithimic | Algarithmic

Fost-Test

Mo Context | Mo Context | Mo Context | Mo Context
IUnit IUnit IUnit IUnit
Mo Context | Mo Context | Mo Context | Mo Context

\Algorithmic Algorithmic | algorithmic Algnrithmic/

Pre-Tutor Class [nstruction
Pretest
Individual Factors Assessment
Individual Factors Assessment

Figure 3: Study 2 Design: Students will complete at least 4 code production activities in
each of the four conditions.

The participants will be students enrolled in a first or second semester computer science
course. The pre-tutor data collection will include the same individual factors assessment
used in Study 1. The pretest will consist of code writing questions without any feedback
from the system®. Students will also answer some code comprehension questions as well

5This means that the student will not receive any compiler or testing feedback, their first submitted
answer will be graded as is.
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(potential transfer measure) involving algorithms both seen during the tutoring sequence
and not seen.

Students will interact with the tutor, completing a series of code production activities
over several questions. In the Non-Abstract condition, students will only receive example-
based feedback (see table 4.1), while the students in the Abstract condition receive feedback
about why their answer is incorrect.

After completing the tutoring portion, students will complete a post-instruction assess-
ment. This assessment will include the same individual factors assessment from Study 1
and the pretest, as well as an assessment of computer science skills. The computer science
skills assessment will include code writing questions which students will complete without
any feedback from the system. The code writing questions will ask students to write code
snippets seen during the instruction (direct assessment) as well as not seen(near transfer).
The students will also receive code comprehension questions about snippets seen during the
instruction (near transfer) and not seen (far transfer).

In addition to the pre and post test measures within-instruction data will be collected
including initial code submissions, latency, and ability to resolve feedback messages. In addi-
tion students will be brought into the lab to complete think aloud protocols while interacting
with the system to look for differences in the way that students respond to the feedback in
the different conditions.

Expected Results

Based on the theoretical foundation the following results are anticipated:

Learning Gains All conditions are expected to show pre to post-test improvement on the
direct measures of instruction. Students in the abstract condition are expected to
perform better on the transfer measures as a result of the feedback during the study.
Students in the contextualized condition are also expected to perform worse on transfer
measures.

Latency Students in the abstraction condition are expected to take less time on post-test
assessments, as well as less time on tutoring problems as a result of the feedback.

Attempt Productiveness Each subsequent submission to the system (check against the
compiler or test cases) will be graded against the scoring rubric for the problem. Tt
is expected that students will have a higher average productiveness defined as the
difference in scores between consecutive attempts.

Pedagogical IDE Construction

The primary technical contribution of this thesis is in the development of the Pedagogical
IDE and feedback mechanism contained within it. The PIDE used in this study will be fine
tuned with the results of Study 1 and 2. The students code will be evaluated against the
model refined in Study 1, and tested using the techniques refined in Study 2. The system
will be evaluated for accuracy against a representative sample of student code in comparison
to evaluations by expert human raters.

11



5 Related Work

Since the beginning of computer science, there have been computer scientists building tools
to help programmers be more efficient and students learn the skill of programming. Although
there are still debates among hard core programmers about whether emacs or vi is the better
editing environment, many professionals make use of tools that scaffold the code writing
process and contain system output in nice boxes. In this section I relate previous work
regarding the instructional benefits of algorithmic abstraction, research regarding contextual
scaffolding in computer science classrooms and technological environments past and present
to highlight the unique contributions of the Pedagogical IDE presented in this proposal.

5.1 Abstraction and Expertise in CS Education

The use of feedback regarding the algorithmic strategies employed by the students is not
a new concept. Most of the early tutoring systems use this type of feedback for students
within the tutoring environments[8, 10, 5, 27]. There is a large body of correlational work
on the alignment between a novice’s ability to make complex relational connections between
the aspects of their programs[30]. The approach taken in this thesis is different from prior
tools in that the feedback students will receive will be given before compilation, and an effort
will be made to construct feedback that is scored as relational in the Solo Taxonomy|[24] or
the Block Model[20].

5.2 Contextualization in CS Education

The use of context as a scaffold for student problem solving in computer science is not a
new one. Mayer[31] suggested the use of physical objects such as filing cabinets could be
used to help students reason about the data structures they were trying to use in their
programs. Students in Mayer’s studies were working in a BASIC-like language and asked
to complete tasks where either they had to write or comprehend code. The model-using
group outperformed the control on tasks involving code production of looping programs,
but did worse in code comprehension of looping programs. Further explorations revealed
that having the students self-explain the models made them much more beneficial. In these
studies students were working with languages whose syntactical requirements was fairly low.
The heightened demand on students’ working memory by modern languages may alter the
benefit from an additional concrete model in the problem.

Current approaches to evaluating contextual scaffolding are concentrated on the effect on
student motivation[12], or student performance in an entire course[15]. Much of the research
involves finding the “right” context, and so contexts are compared against each other rather
than the presence or absence of context.

5.3 Technological Support for the Learning of Programming

Computer science education has a rich history of successful pedagogical tools and tutors
that have been shown to help improve student learning. Early tutoring systems include
the Lisp Tutor[8], as well as systems for Pascal[10, 27, 32]. These systems showed that a
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careful analysis of the programming process combined with other learning supports can have
significant impacts on students’ ability to learn programming. While these tools are effective,
unfortunately they are out-moded. The programs that teach procedural or object oriented
languages in their introductory courses tend to use Java or C++5.

Current approaches to the scaffolding of programming involve mainly one of two ap-
proaches. Some systems attempt to scaffold student’s problem solving through a step-
by-step interaction where students are prompted for the strategies required to solve the
problem[33, 9, 34]. These and other systems do show that students are able to complete
the programs faster, and score higher on the assignments. These systems, however, did not
show significant improvement in post-test scores. In a discussion of ProPl[9] the authors
indicated, “One possible explanation is that the students were not directly responsible for
the writing or organization of the design notes, in either condition. Therefore, no students
had any direct practice producing decompositions written in natural language. This suggests
students should be more involved with creating the design notes”[9]. Although the proposed
PIDE would not require students to write design notes as suggested by Lane, the students
would need to decompose the problem and attempt to implement strategies in order to solve
the problem, giving them the practice in retrieving those strategies from their own mental
search space.

The second approach to scaffolding programming tasks is to provide the student with a
concrete representation of the code execution. There are many different types of representa-
tions used, however the most prevalent are visualizations[35]. In addition to visualizations,
robots[13], media[36], and graphical environments|37, 38]. These approaches, while effective
in helping students to debug and troubleshoot their programs, are only able to be used after
the student achieves compilable code. Compilation is a major problem for novices[7| and
as illustrated in Section 1 many semantic errors are first presented to the student as syntax
problems.

There are also a number of verification strategies available for teachers and students in
order to check for code correctness. The use of JUnit testing as a method for code evaluation
is recognized as a useful pedagogical tool for introductory classes where Java is the language
of choice[39]. This has lead to the rise of pedagogical tools including an online system
called CodingBat’[40] which is very popular among teachers. The system allows students to
write short programs in a web-based environment that communicates both compile messages,
and once the program compiles, success messages for a series of unit tests. Although very
successful, the use of unit testing also relies on code compilation.

6 Contributions

This thesis offers the contribution of an experiment designed to infer causality of feedback us-
ing algorithmic abstraction and contextual scaffolding on student performance. The CS Edu-
cation literature contains a large number of examples where students’ focus on global goals of

6A small selection of programs use a functional style language such as scheme in their introductory
courses.
"Previously named JavaBat, the system was renamed with the addition of Python exercises.
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a program is strongly correlated with increased performance in a variety of measures|20, 41].
However, no research has been identified where instruction or feedback in global goals is ex-
perimentally manipulated to measure student performance. In domains outside of computer
science, abstract questioning and context has been shown to be detrimental to students[17],
and sometimes is difficult to understand by novices[18].

Prior work implies that there will be a relationship between the skill of the student and
their ability to make use of the questions and feedback about the global goals of the program.
Strong students will likely be able to integrate the feedback in a complex way, while weaker
students may not understand either the questions or feedback and so will benefit little from
the instruction. Stronger students will also benefit more from the contextual scaffolding,
while weaker students may struggle with seeing the underlying deep structure of the problem
through the context.

The technical contributions of this thesis offer not only an implementation of a pedagog-
ical IDE, but a paradigm shift in the approach to providing students feedback during code
production. Previous tutors and PIDEs have either treated students’ code as a black box,
testing with specific cases, or relied on complex models built by experts in several domains.
The proposed approach in this thesis has the potential to not only impact student learn-
ing, but also the ability for educators to engage in content creation for these complex tools
through rubric design.

Overall, this work has the potential to inform more than just computer science pedagogy,
but also any educational domain where a computational formulation that is different from
natural language is used. The influx of computational devices to the classroom is ahead of
the research about how best to use those devices. More research is needed to explore what
types of explicit instruction on the devices and their computational languages should be used
for students.

7 Timeline

Each of the studies above seeks to address a different aspect of the research questions.

Study 1:Pilot Testing the PIDE The infrastructure for the system will be constructed
during the months of June and July and tested on introductory students during July.
As the model is expected to be refined over time early versions of this study may take a
"wizard of oz” approach where the feedback is produced manually based on the model
instead of automatically through the system.

Study 2:Evaulation of the PIDE This study is expected to begin with the system de-
velopment and continue through early fall. As the think alouds will depend upon the
availability of subjects it is anticipated that a full data set for evaluation will not be
available until September.

Study 3:Learning Gains This study is expected to be conducted in November with stu-
dents enrolled in appropriate courses.
With the above research schedule I anticipate using the fall and early spring to conduct
and analyze the research and write the thesis paper. I anticipate graduating in the spring.
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