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Abstract
This paper presents initial studies on building a vocabulary self-
learning speech recognition system that can automatically learn
unknown words and expand its recognition vocabulary. Our rec-
ognizer can detect and recover out-of-vocabulary (OOV) words
in speech, then incorporate OOV words into its lexicon and lan-
guage model (LM). As a result, these unknown words can be
correctly recognized when encountered by the recognizer in fu-
ture. Specifically, we apply the word-fragment hybrid system
framework to detect the presence of OOV words. We propose a
better phoneme-to-grapheme (P2G) model so as to correctly re-
cover the written form for more OOV words. Furthermore, we
estimate LM scores for OOV words using their syntactic and
semantic properties. The experimental results show that more
than 40% OOV words are successfully learned from the devel-
opment data, and about 60% learned OOV words are recognized
in the testing data.
Index Terms: Vocabulary learning, OOV word detection and
recovery, lexicon expansion

1. Introduction
Most speech recognition systems are closed-vocabulary and
do not accommodate out-of-vocabulary (OOV) words. But in
many applications, e.g., voice search or spoken dialog systems,
OOV words are usually content words such as names and loca-
tions which contain information crucial to the success of these
tasks. Speech recognition systems in which OOV words can be
detected and recovered are therefore of great interest.

Several approaches are recently proposed for OOV word
detection [1-17], where the word-fragment hybrid system re-
ceives the most attention. Hybrid speech recognition systems
apply a hybrid lexicon and hybrid language model (LM) during
decoding to explicitly represent OOV words with smaller sub-
lexical units [9-17]. In our previous work, we built hybrid sys-
tems for OOV word detection and recovery using mixed types
of sub-lexical units [18-20]. We also studied how to identify re-
current OOV words and how to use their multiple occurrences
to estimate lexical properties for OOV words [21, 22].

In this paper, we extend our previous work to design a
speech recognition system that can automatically learn new
words during its routine operation. To achieve this goal, we
need to convert OOV words into IV words. In particular, we
need to estimate the pronunciation and written form for OOV
words, so that we can integrate OOV words into the recognizer’s
lexicon. We also need to estimate LM scores for OOV words to
add them into the LM. First, we obtain the pronunciation of
OOV words from the hybrid decoding result. Then we esti-
mate the written form of OOV words through the phoneme-to-
grapheme (P2G) conversion, where we train a better P2G model
by learning from recognition errors on training speech. Finally,

we estimate LM scores for OOV words using their syntactic and
semantic properties. Particularly, we estimate LM scores of an
OOV word by utilizing its part-of-speech (POS) label. We also
predict new contexts an OOV word may appear in future based
on its semantic relatedness with IV words. The proposed work
is tested on tasks with different speaking styles and recording
conditions including the Wall Street Journal (WSJ), Broadcast
News (BN), and Switchboard (SWB) datasets. Our experimen-
tal results show that we can learn more than 40% OOV words
from the development data and recognize about 60% learned
OOV words in the testing data.

The remainder of this paper is organized as follows. Sec-
tion 2 describes major components of our recognition system,
including the word-fragment hybrid system framework, the lex-
icon expansion module, as well as the LM score estimator. Sec-
tion 3 and 4 discuss experiments and results. Concluding re-
marks are provided in Section 5.

2. Method
Building a vocabulary self-learning speech recognition system
involves several steps. We first detect the presence of OOV
words in speech using the word-fragment hybrid system. From
the hybrid decoding result, we collect the pronunciation for
each OOV word and then perform P2G conversion to infer its
written form. At this point, we can integrate recovered OOV
words into the recognition lexicon. To add these words into the
LM, we estimate LM scores for seen OOV n-grams using the
inferred POS label of an OOV word. We also predict unseen
contexts where OOV words may appear in future based on their
semantic relatedness with in-vocabulary (IV) words.

2.1. OOV word detection using the hybrid system

We use a hybrid lexicon and hybrid LM during decoding to de-
tect the presence of OOV words. The hybrid lexicon is obtained
by incorporating sub-lexical units and their pronunciations into
the word lexicon. The hybrid LM is trained in a flat manner.
First, the pronunciation of OOV words is estimated through the
grapheme-to-phoneme (G2P) conversion [23], and then used to
train the sub-lexical units. After that, OOV words in the train-
ing text are replaced by corresponding sub-lexical units to get
a new hybrid text corpus. Finally, a hybrid LM is trained from
this hybrid text data. When training the hybrid LM, sometimes
two or more OOV words may appear consecutively in the train-
ing data. After representing OOV words using sub-lexical units,
we lose the word boundary between two OOV words. To solve
this problem, we add two more symbols into the sub-lexical se-
quence of each OOV word, which are the word start “∧” and
word end “$”. In this paper, we use a word-syllable hybrid sys-
tem which allows us to achieve the best OOV word recovery
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performance. More details of our hybrid system can be found
in [18, 20].

In the hybrid decoding result, we consider recognized sylla-
ble unit sequences as detected OOV words, where word bound-
ary symbols are used to segment a sequence of syllable units
into multiple OOV words. We then extract the pronunciation
for OOV words by concatenating their corresponding syllable
units. Since recognition errors may be embedded in the de-
coded syllable units, the estimated pronunciation of an OOV
word may contain errors. For example, as given in Table 1, the
correct pronunciation of OOV word w3 should be “K AE D R
IY”. The quality of estimated OOV word pronunciations will
depend on the hybrid decoding accuracy.

Table 1: Examples of the estimated pronunciation of detected
OOV words.

Detected OOV Estimated Pronunciation
w1 N OW L AH N
w2 HH AO T EH N S
w3 K AE D IY

2.2. Incorporating OOV words into lexicon

After extracting the pronunciation for detected OOV words
from the hybrid decoding result, we perform the P2G conver-
sion to produce a written form. To achieve better P2G con-
version performance, we train a 6-gram joint sequence model
with short graphone units as suggested in [24]. With both the
pronunciation and written form of an OOV word, we can then
integrate it into the lexicon.

In our experiment, we found that the estimated pronunci-
ation for many OOV words is incorrect. But the P2G model,
which is trained using only IV words whose pronunciation is
always correct, cannot handle phone sequences embedded with
recognition errors. As a result, we are unable to estimate the
correct written form for many detected OOV words. Figure 1
shows the P2G conversion on OOV word w3. It can be seen
that the estimated spelling “CADY” is wrong, because w3 is
incorrectly recognized as “K AE D IY”.

HYP K AE D IY CADY

REF K AE D R IY CADRE

Pronunciation Spelling

P2G

better
P2G

Figure 1: An example of the P2G conversion on an OOV word
with incorrect pronunciation.

We therefore investigated training a better P2G model us-
ing both positive and negative examples, so that we can cor-
rectly estimate the written form of an OOV word even if its
pronunciation includes recognition errors. Positive examples
are alignments between the correct spelling and correct pronun-
ciation collected from IV words, while negative examples are
alignments between the correct spelling and incorrect pronun-
ciation collected from the hybrid decoding results of the train-
ing speech. We assume that the recognizer will make similar
errors on the training speech as on the testing speech, therefore
our P2G model should learn rules to match incorrect pronun-
ciations to correct spellings. The P2G conversion should more

accurately recover OOV orthographies from the noisy hybrid
decoding output. For instance, we can now estimate the correct
written form “CADRE” for OOV word w3 from its incorrect
pronunciation “K AE D IY”.

2.3. Incorporating OOV words into language model

To incorporate recovered OOV words into the recognizer’s LM,
we need to estimate n-gram LM scores for these words. It is
difficult to estimate LM scores for an OOV word, as we do not
have any OOV text data except the decoded sentences in which
the OOV word appears. We therefore use the syntactic and se-
mantic properties of an OOV word.

In the hybrid decoding result, we estimate the POS label for
OOV words using the Stanford MaxEnt POS tagger [25]. We
adopt all 35 labels from the Penn Treebank POS tag set [26].
Then LM scores of an OOV word can be estimated from IV
words in the same syntactic category - IV words with the same
POS label. Precisely, the unigram score of OOV word wi with
POS label li at the i-th position in a sentence is calculated as

p(wi) =
X

li

p(wi|li)p(li)

p(li|wi)
, (1)

where p(li) is the prior probability of POS label li, p(wi|li) is
the likelihood of observing OOV word wi from all words with
POS label li, while p(li|wi) is the probability of OOV word wi

having the POS label li. We sum over all li, because an OOV
word may be labeled with different POS tags. In this paper, we
obtain p(li) from a POS label LM trained from the training text
data. We approximate p(wi|li) as

p(wi|li) =
1

N
, (2)

where N is the number of IV words with POS label li in the
training data. Furthermore, we calculate

p(li|wi) =
C(li, wi)

C(wi)
, (3)

where C(wi) is the count of OOV word wi in the development
data and C(li, wi) is the count of OOV word wi with POS label
li. Similarly, we can estimate the bigram and trigram LM score
for OOV word wi as

p(wi|wi−1) =
X

li

p(wi|li)p(li|li−1)

p(li|wi)
, (4)

and

p(wi|wi−1, wi−2) =
X

li

p(wi|li)p(li|li−1, li−2)

p(li|wi)
, (5)

where li−1 and li−2 is the POS label of the word at the (i− 1)-
th and (i− 2)-th position respectively. During our experiment,
we find that p(wi|li) can be very small, especially for nouns,
where N is very large. As a result, estimated LM scores of
OOV words are usually much smaller than LM scores of IV
words. We therefore set a floor on p(wi|li) to prevent it from
being too small. The threshold is tuned on the development data
to produce the best performance.

Using the above method, we can estimate LM scores for an
OOV word in observed contexts - sentences containing the OOV
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word. However, an OOV word may come up in an unseen con-
text in future. Therefore we also try to estimate possible con-
texts an OOV word may appear by using its semantic proper-
ties collected from the WordNet [27]. Particularly, for an OOV
word, we identify IV words that are similar to it by measuring
their semantic relatedness using the information content of con-
cepts in WordNet [28, 29]. We then explore two approaches
to predict new contexts for an OOV word. In one method, we
use n-grams belonging to IV words which are similar to the
OOV word to build new OOV n-grams. For example, for re-
covered OOV word “APTITUDE”, we find similar IV words,
such as “TALENT”, from WordNet. Then, for n-grams contain-
ing “TALENT”, we replace “TALENT” with “APTITUDE” to
build new OOV n-grams. In another method, we use IV words
that are similar to IV words surrounding an OOV word to build
new n-grams. For example, “TEST” is the word after the OOV
word “APTITUDE” in the recognition hypothesis. We then use
similar words, such as “EXAM”, to replace “TEST” to build
new n-grams for OOV word “APTITUDE”. However, from the
experimental results on the development data, we find that it
is very difficult to correctly predict new contexts for an OOV
word. Furthermore, because we add many irrelevant n-grams
into the LM, the recognition accuracy can be worse. Therefore,
in the following experiments, we do not predict new OOV n-
grams, but use learned OOV unigrams to recognize OOV words
appearing in unseen contexts. In our future work, similar to
[30], we will investigate the use of the large amount of data on
the Internet to estimate new contexts for OOV words.

3. Experiment setup

3.1. The word-fragment hybrid system

We build word-syllable based hybrid systems from the Wall
Street Journal (WSJ), Broadcast News (BN), and Switchboard
(SWB) corpora, respectively. To have enough OOV words for
training and testing and to maintain a comparable OOV rate to
practical systems, we select the top 20k words as vocabulary for
the WSJ and BN system, and the top 10k words for the SWB
system. For WSJ, the development and testing data are selected
from the WSJ ’92 and ’93 Eval sets; for BN, the 1996 HUB4
Eval data is used; for SWB, we test on a subset of the SWB2
data. Table 2 presents some statistics on the development and
testing data of each task. We can find that these datasets have
about 2% OOV words in the development and testing sets. We
also notice that some OOV words in the testing data are repeat-
ing OOV words that already appear in the development set. In
this paper, we perform OOV word detection and recovery on
the development set to learn OOV words. Then we evaluate
how many learned OOV words can be recognized when they
appear again in the testing data.

Table 2: Statistics on the development and testing data.

Task WSJ BN SWB
Development OOV Rate 2.2% 2.0% 1.7%

Testing OOV Rate 2.1% 2.8% 1.8%
OOV words in Testing 52.3% 23.9% 66.1%

that also in Development
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Figure 2: The OOV word recovery performance on the develop-
ment data.

3.2. Evaluation metrics

We use precision and recall to measure the OOV word detection
performance.

Precision =
#OOVs detected
#OOVs reported

× 100% (6)

Recall =
#OOVs detected

#OOVs in reference
× 100% (7)

We use pronunciation accuracy (PA) and recovery rate (RR) to
measure the OOV word recovery performance.

PA =
#OOVs detected with correct pronunciation

#OOVs detected
× 100%

(8)
RR =

#OOVs recovered with correct spelling
#OOVs detected

× 100% (9)

Finally, we calculate the word error rate (WER) to evaluate the
overall performance of our speech recognition system.

4. Experiment results
4.1. The OOV word detection performance

From the OOV word detection performance in Table 3, we find
that the hybrid system performs very well in the WSJ and SWB
tasks - precision is more than 60% and up to 75% OOV words
are detected. But in the BN task, utterances are usually much
longer than those in the WSJ and SWB tasks and multiple OOV
words can appear in one utterance or even in a sequence, which
make OOV word detection more difficult.

Table 3: The OOV word detection performance on the develop-
ment data.

Task WSJ BN SWB
Precision 63.8% 49.8% 67.2%

Recall 74.0% 62.4% 74.6%

4.2. The OOV word recovery performance

After detecting OOV words in the development data, we try to
recover their written form. The OOV word recovery perfor-
mance on the development data is shown in Figure 2. It can
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be seen that less than 50% OOV words are decoded with the
correct pronunciation. If we perform the P2G conversion us-
ing the conventional model as described in [18], even fewer
OOV words are recovered with the correct orthography. Instead,
when using the proposed P2G model, we are able to correctly
estimate the written form for more OOV words. In the BN and
SWB tasks, RR is even larger than PA, as many OOV words
are now recovered from incorrect pronunciations. The improve-
ment in the WSJ task is smaller than that in the BN and SWB
tasks. This may be because we have fewer negative examples in
the WSJ task when training the proposed P2G model.

Having the pronunciation and written form of an OOV
word, we can integrate recovered OOV words into our recog-
nizer’s lexicon. Table 4 provides the size and OOV rate of the
OOV expanded lexicon. Comparing with Table 2, we can find
that by only increasing the vocabulary size about 1%, the OOV
rate of both the development and testing data is significantly re-
duced. On average, more than 40% OOV words are successfully
learned from the development data.

Table 4: The size and OOV rate of the OOV expanded lexicon.

Task WSJ BN SWB
Vocabulary Size 20267 20305 10145

Development OOV Rate 1.2% 1.5% 0.9%
Testing OOV Rate 1.6% 2.5% 1.2%

4.3. The recognition result on the testing data

Before evaluating on the testing data, we need to incorporate
learned OOV words into the recognizer’s LM. We first perform
POS tagging on all words in the hybrid decoding result, where
the POS tagging accuracy on OOV words is about 80%. Then
we estimate LM scores for OOV words using POS labels of the
word and its surrounding words. The number of new n-grams
added into the recognizer’s LM is provided in Table 5. It can be
seen that only a small number of new n-grams are added.

Table 5: The number of n-grams added into the recognizer’s
LM.

Task WSJ BN SWB
Unigram 267 305 145
Bigram 536 621 312
Trigram 683 860 442

The goal of learning OOV words is to correctly recognize
them if encountered by the recognizer in future. Therefore we
count how many repeating OOV words – OOV words that ap-
pear in both development and testing data, can be successfully
learned from the development data and then correctly recog-
nized in the testing data. Figure 3 shows the percentage of
learned repeating OOV words that are recognized in the testing
data when gradually expanding the LM with OOV unigrams, bi-
grams and trigrams. The red bar is the result when only adding
unigram scores, the green bar corresponds to adding both un-
igram and bigram scores, and the blue bar is the result when
adding all OOV n-grams. We can find that by only expanding
the LM with OOV unigrams, we can already recognize more
than 50% learned repeating OOV words. Because many repeat-
ing OOV words appear in unseen contexts in the testing data,
adding bigram and trigram scores into the LM does not help
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Figure 3: The percentage of learned repeating OOV words are
recognized in the testing data.

very much. On average, we can recognize about 60% learned
repeating OOV words in the testing data.

Finally, let us examine how the overall WER changes af-
ter expanding the recognizer’s vocabulary with learned OOV
words. From Table 6, it can be seen that because we now
correctly recognize about 60% learned repeating OOV words,
the WER on the testing data is improved. In Table 6, we also
present the approximate lower bound of the overall WER by
assuming that we can correctly recognize all repeating OOV
words in the testing data. We can see that our recognition per-
formance is very close to the approximate lower bound. The
true lower bound should be slightly smaller than the approxi-
mate one, as we should make fewer recognition errors on sur-
rounding IV words of correctly recognized OOV words.

Table 6: The WER on the testing data when decoding with dif-
ferent LMs.

Task WSJ BN SWB
No OOV Learning 10.1% 30.4% 33.3%

Unigram 9.4% 30.2% 32.7%
Unigram & Bigram 9.3% 30.2% 32.7%

All n-grams 9.3% 30.2% 32.6%
Approximate Lower Bound 9.0% 29.7% 32.1%

5. Conclusion
This paper introduces a learning scheme for speech recognition
system that can automatically expand its vocabulary with new
words inferred from OOV regions in testing speech. We de-
scribe how to detect and recover OOV words and then integrate
them into the recognizer’s lexicon. We also propose a method to
add OOV words into the recognizer’s LM by using their syntac-
tic and semantic properties. From the experimental results, we
find that more than 40% OOV words are successfully learned
from the development data and about 60% learned OOV words
are correctly recognized in the testing data. Furthermore, by
recognizing learned repeating OOV words, the overall WER is
improved. Because many OOV words may appear in unseen
contexts when encountered by the recognizer in future, our next
step is to investigate the use of extensive data from Web sources
to predict new contexts for OOV words.
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