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1 Auxiliary Function

In the EM training of HMM parameters, we usually maximize an “auxiliary
function” in the M-step. This auxiliary function is a function, when its value
increases, the likelihood of the data given HMMs is bound to increase too. We
maximize the auxiliary function instead of the likelihood function is because the
auxiliary function is usually easier to directly maximize.

There are two kinds of auxiliary functions - the strong-sense auxiliary func-
tion and the weak-sense auxiliary function.

1.1 Strong-sense auxiliary function

If a function F(\) is to be maximized, then function g(A, \') is a strong-sense
auxiliary function for F'(\) around X, iff

g()‘v )‘/) - g()‘/a /\/) < F()‘) - F(A/)a (1)

where g(A, ') is a smooth function of A. The strong-sense auxiliary function is
the one we used in the EM algorithm. If g increases, then F also increases; if g
is at a local maximum, then F is also at a local maximum. Therefore, repeated
maximization of the auxiliary function is guaranteed to reach a local maximum

of F()).

1.2 Weak-sense auxiliary function

A weak-sense auxiliary function for F'(\) is a smooth function g(A, \') such that

0 , 0
ANy = o5
So basically, the gradients of the two functions are the same around ). Al-
though maximizing the auxiliary function g(A, A’) w.r.t. A does not guarantee
an increase of F'()), if the update converges (no change of \), this implies that
we have reached a local maximum of F'(X\) (the gradient is zero). Weak-sense
auxiliary functions are useful when optimizing functions containing some terms
that can be optimized by strong-sense auxiliary functions but others that can-
not.

F(N)|xen- (2)



1.3 Smoothing function

A smoothing function around )\ is a smooth function of A, g(A, ), such that
g N) < g(N' X)) (3)

for all A. This smoothing function has its maximum at the initial point N’
(gradient is zero, so if a smoothing function around X is added to an objective
function, the resulting function is a strong-sense function for that objective
function around X. A smoothing function could also be added to a weak-sense
auxiliary function to improve convergence without affective the local gradient.

2 Maximum Likelihood (ML)

In the ML training of HMMs, we want to find HMM parameters, so as to
maximize the likelihood p(O|s, A),

Fur(A) =log Y fo(N), (4)

where f,()\) is the likelihood of a specific state sequences p(O|s,\,z). The
strong-sense auxiliary function for F()) is
fa(X)

gAN) =" S, L) log(fz(A))- (5)

As the first term in the summation is just the posterior probability of state
sequence z, the auxiliary function could be re-written as
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The maximum occurs (set the gradient of Equ. 6 to 0), when u; = ej’gjO) and
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3 Maximum Mutual Information (MMI)

The MMI training attempts to optimize the correctness of a model by formu-
lating an objective function that penalizes the confusable models to the true
model,

p(Or|8r, A) P(sr)
225 P(Orls, \)P(s)
= logp(Ols™™, \) —log p(O]s™", X). (10)

FMMI()\) = log




As for the ML estimation, strong-sense auxiliary functions g™*™(\,\’) and
g%™(\, \') could be derived separately. However, as the second term is negated,
we can only apply weak-sense auxiliary function for the MMI objective func-
tion. To make the auxiliary function convex (it’s concave when 7™ < 7;-{6"),

a smoothing function is added,
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The final auxiliary function becomes
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Equ. 12 could be written as
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To maximize the MMI auxiliary function Equ. 12, we calculate
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4 {fMMI

fMMI is a feature space discriminative training with the same objective function
as the mode space MMI training. In fMMI, at first, a very high dimension feature
vector hy (Gaussian posteriors) is built; after applying a global matrix M, this
high dimension feature vector is projected back the original feature space and
added to the original features, such as

Yy = o + Mhy. (26)
Therefore, the fMMI objective function is

p(Yrlsrs A P(sr)
2 P(yrls; A)P(s)
The feature transform M in Equ. 26 could be estimated by linear methods,
such as gradient descent,

Fyvr(M) = log (27)

OF
Mij = Mij + Vg5 TM,']‘ s (28)
where v;; is the parameter specific learning rate. Given Equ. 26, we can have
T
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> —hy (29)
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As we use gradient descent, instead of the extend Baum-Welch algorithm, to
optimize the fMMI objective function g(A, \’), there is no smoothing function
added,

g()\7)\/) — gnum()\’)\/) _ gdeno\, )\/). (30)
Therefore, we have
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Now, the question is how to calculate %. This can be done similarly to the
fMPE training, '
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The first term in Equ. 32 can be calculated as
gg et 99 Dlogplyulhi) (33)
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Considering the definition of auxiliary functions g"*™(\, X') and g?"(\, \') in
Equ. 6, we can easily get
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We can also easily compute
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Now, we have already computed the direct differential as
ag direct d i — Yt
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The indirect differential is added here, because the features will affect the ML
trained parameters. So during the optimization of M, we also take account the
HMM parameters A, so

dg indirect B dg O\ B Og 5,111 dg (3'0’Z2

= = —= . 37
0yt ONi Oyi Opi Oy Oo? Oy (37)
As we can easily get
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in addition, we already calculated t%]i and % in Section 3, the indirect differ-
ential is 1
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By far, we have already presented how to calculate the differential %. The
ij
iterative training of the feature matrix is

e Starting from ML model Ay, generate num + den lattices N, D

— Iteration 1:
* Phase 0: (needs A\g, N, D, M, is 0)
- Accumulate MMI and ML statistics
- Compute ;—i and ML Gaussian counts
* Phase 1: (needs Ao, N, D, g—fo)
- Accumulate ag—ij
- Compute M; using gradient descent
* Phase 2: (needs Ao, N, M)
- Accumulate ML statistics using new transform M;
- Compute new parameters A\
— Iteration 2:
*x Etc.
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5 Minimum Phone Error (MPE)
6 fMPE
7 Boosted-MMI

The objective function for boosted-MMI is

1o p(O,,.|57.,)\)P(S7-)
v =108 5~ 6 16 ) P(s) exp(—bA(s, 5,))

(45)

where A(s, s,) is the raw phone accuracy of sentence s given the reference s,
which equals the number of correct phones minus the number of insertions. As
A(s, s,) is not a function of A, the update formula of u; and O'JQ- will be exactly
the same as Equ. 23 and Equ. 24. The only difference between MMI and
BMMI is that, when performing the forward-backward algorithm on the lattice,
besides the acoustic score and language score, there is also a phone accuracy

score A(s, s,) for each arc.

8 fBMMI

The fBMMI training is very similar to the fMMI training we discussed in Section
4. In fMMI, we try to optimize the feature transform with regard to the MMI
objective function. However, in fBMMI, we optimize the feature transform with
regard to the BMMI objective functions. Again, the training procedure and
statistics accumulation in fBMMI in exactly the same as in fMMI. The only
difference here is when performing forward-backward algorithm on the lattices,
besides the acoustic score and language score, we also need to compute the raw
phone accuracy for each arc.



