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1 Auxiliary Function

In the EM training of HMM parameters, we usually maximize an “auxiliary
function” in the M-step. This auxiliary function is a function, when its value
increases, the likelihood of the data given HMMs is bound to increase too. We
maximize the auxiliary function instead of the likelihood function is because the
auxiliary function is usually easier to directly maximize.

There are two kinds of auxiliary functions - the strong-sense auxiliary func-
tion and the weak-sense auxiliary function.

1.1 Strong-sense auxiliary function

If a function F (λ) is to be maximized, then function g(λ, λ′) is a strong-sense
auxiliary function for F (λ) around λ′, iff

g(λ, λ′)− g(λ′, λ′) ≤ F (λ)− F (λ′), (1)

where g(λ, λ′) is a smooth function of λ. The strong-sense auxiliary function is
the one we used in the EM algorithm. If g increases, then F also increases; if g
is at a local maximum, then F is also at a local maximum. Therefore, repeated
maximization of the auxiliary function is guaranteed to reach a local maximum
of F (λ).

1.2 Weak-sense auxiliary function

A weak-sense auxiliary function for F (λ) is a smooth function g(λ, λ′) such that

∂

∂λ
g(λ, λ′)|λ=λ′ =

∂

∂λ
F (λ)|λ=λ′ . (2)

So basically, the gradients of the two functions are the same around λ′. Al-
though maximizing the auxiliary function g(λ, λ′) w.r.t. λ does not guarantee
an increase of F (λ), if the update converges (no change of λ), this implies that
we have reached a local maximum of F (λ) (the gradient is zero). Weak-sense
auxiliary functions are useful when optimizing functions containing some terms
that can be optimized by strong-sense auxiliary functions but others that can-
not.

1



1.3 Smoothing function

A smoothing function around λ′ is a smooth function of λ, g(λ, λ′), such that

g(λ, λ′) ≤ g(λ′, λ′) (3)

for all λ. This smoothing function has its maximum at the initial point λ′

(gradient is zero, so if a smoothing function around λ′ is added to an objective
function, the resulting function is a strong-sense function for that objective
function around λ′. A smoothing function could also be added to a weak-sense
auxiliary function to improve convergence without affective the local gradient.

2 Maximum Likelihood (ML)

In the ML training of HMMs, we want to find HMM parameters, so as to
maximize the likelihood p(O|s, λ),

FML(λ) = log
∑
x

fx(λ), (4)

where fx(λ) is the likelihood of a specific state sequences p(O|s, λ, x). The
strong-sense auxiliary function for F (λ) is

g(λ, λ′) =
∑
x

fx(λ′)∑
y fy(λ′)

log(fx(λ)). (5)

As the first term in the summation is just the posterior probability of state
sequence x, the auxiliary function could be re-written as

g(λ, λ′) =
J∑
j=1

T∑
t=1

γj(t) logN(o(t)|µj , σ2
j ) (6)

=
J∑
j=1

−1
2

(
γj log(2πσ2

j ) +
θj(O2)− 2θj(O)µj + γjµ

2
j

σ2
j

)
(7)

=
J∑
j=1

Q
(
γj , θj(O), θj(O2)|µj , σ2

j

)
(8)

The maximum occurs (set the gradient of Equ. 6 to 0), when µj = θj(O)
γj

and

σ2
j = θj(O

2)
γj
− µ2

j .

3 Maximum Mutual Information (MMI)

The MMI training attempts to optimize the correctness of a model by formu-
lating an objective function that penalizes the confusable models to the true
model,

FMMI(λ) = log
p(Or|sr, λ)P (sr)∑
s p(Or|s, λ)P (s)

(9)

= log p(O|snum, λ)− log p(O|sden, λ). (10)
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As for the ML estimation, strong-sense auxiliary functions gnum(λ, λ′) and
gden(λ, λ′) could be derived separately. However, as the second term is negated,
we can only apply weak-sense auxiliary function for the MMI objective func-
tion. To make the auxiliary function convex (it’s concave when γnumj < γdenj ),
a smoothing function is added,

gsm(λ, λ′) =
J∑
j=1

Q
(
Dj , Djµ

′
j , Dj(µ′2

j + σ′2
j )|µjσ2

j

)
. (11)

The final auxiliary function becomes

g(λ, λ′) = gnum(λ, λ′)− gden(λ, λ′) + gsm(λ, λ′) (12)

=
J∑
j=1

(
Q
(
γnumj , θnumj (O), θnumj (O2)|µj , σ2

j

)
(13)

−Q
(
γdenj , θdenj (O), θdenj (O2)|µj , σ2

j

)
(14)

+Q
(
Dj , Djµ

′
j , Dj(µ′2

j + σ′2
j )|µjσ2

j

))
. (15)

Equ. 12 could be written as

g(λ, λ′) =
J∑
j=1

Q(t,X, S|µj , σ2
j ) (16)

=
J∑
j=1

−1
2

(
t log(2πσ2

j ) +
S − 2Xµj + tµ2

j

σ2
j

)
, (17)

where

t = γnumj − γdenj +Dj , (18)

X = θnumj (O)− θdenj (O) +Djµ
′
j , (19)

S = θnumj (O2)− θdenj (O2) +Dj(µ′2
j + σ′2

j ). (20)

To maximize the MMI auxiliary function Equ. 12, we calculate

∂g

∂µj
= −1

2
∗ (
−2X + 2tµj

σ2
J

) = 0 (21)

and

∂g

∂σ2
j

= −1
2
∗ (

t

σ2
j

−
S − 2Xµj + tµ2

j

σ4
j

) = 0. (22)

So we can find

µj =
X

t
=
θnumj (O)− θdenj (O) +Djµ

′
j

γnumj − γdenj +Dj
, (23)

then given µj = X
t , we have

σ2
j =

S − 2xµj + tµ2
j

t
=
S

t
− 2µ2

j + µ2
j =

S

t
− µ2

j (24)

=
θnumj (O2)− θdenj (O2) +Dj(µ′2

j + σ′2
j )

γnumj − γdenj +Dj
− µ2

j (25)
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4 fMMI

fMMI is a feature space discriminative training with the same objective function
as the mode space MMI training. In fMMI, at first, a very high dimension feature
vector ht (Gaussian posteriors) is built; after applying a global matrix M , this
high dimension feature vector is projected back the original feature space and
added to the original features, such as

yt = xt +Mht. (26)

Therefore, the fMMI objective function is

FMMI(λ) = log
p(yr|sr, λ)P (sr)∑
s p(yr|s, λ)P (s)

. (27)

The feature transform M in Equ. 26 could be estimated by linear methods,
such as gradient descent,

Mij := Mij + vij
∂F

∂Mij
, (28)

where vij is the parameter specific learning rate. Given Equ. 26, we can have

∂F

∂Mij
=

T∑
t=1

∂F

∂yti
htj (29)

As we use gradient descent, instead of the extend Baum-Welch algorithm, to
optimize the fMMI objective function g(λ, λ′), there is no smoothing function
added,

g(λ, λ′) = gnum(λ, λ′)− gden(λ, λ′). (30)

Therefore, we have

∂g

∂Mij
=

T∑
t=1

∂g

∂yti
htj (31)

Now, the question is how to calculate ∂g
∂yti

. This can be done similarly to the
fMPE training,

∂g

∂yti
=

∂g

∂yti

direct

+
∂g

∂yti

indirect

. (32)

The first term in Equ. 32 can be calculated as

∂g

∂yti

direct

=
∂g

∂ log p(yti|λi)
∂ log p(yti|λi)

∂yti
(33)

Considering the definition of auxiliary functions gnum(λ, λ′) and gden(λ, λ′) in
Equ. 6, we can easily get

∂g

∂ log p(yti|λi)
= γnumi (t)− γdeni (t). (34)

We can also easily compute

∂ log p(yti|λi)
∂yti

=
µi − yti
σ2
i

. (35)
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Now, we have already computed the direct differential as

∂g

∂yti

direct

=
(
γnumi (t)− γdeni (t)

)(µi − yti
σ2
i

)
. (36)

The indirect differential is added here, because the features will affect the ML
trained parameters. So during the optimization of M , we also take account the
HMM parameters λ, so

∂g

∂yti

indirect

=
∂g

∂λi

∂λi
∂yti

=
∂g

∂µi

∂µi
∂yti

+
∂g

∂σ2
i

∂σ2
i

∂yti
. (37)

As we can easily get

∂µi
∂yti

=
∂

∂yti

∑T
t=1

(
γi(t)yti

)
γi

=
γi(t)
γi

(38)

and

∂σ2
i

∂yti
=

∂

∂yti

(∑T
t=1(γi(t)y2

ti)
γi

−µ2
i

)
=

2γi(t)yti
γi

−2γi(t)µi
γi

=
2γi(t)(yti − µi)

γi
,(39)

in addition, we already calculated ∂g
∂µi

and ∂g
∂σ2

i

in Section 3, the indirect differ-
ential is

∂g

∂yti

indirect

=
γi(t)
γi

( ∂g
∂µi

+
∂g

∂σ2
i

(yti − µi)
)

(40)

=
γi(t)
γi

(X − dµj
σ2
J

+
(S − 2Hµj + dµ2

j

σ4
j

− d

σ2
j

)
(yti − µi)

)
,(41)

where

d = γnumj − γdenj , (42)

H = θnumj (x)− θdenj (x), (43)

S = θnumj (x2)− θdenj (x2). (44)

By far, we have already presented how to calculate the differential ∂g
∂Mij

. The
iterative training of the feature matrix is

• Starting from ML model λ0, generate num + den lattices N, D

– Iteration 1:
∗ Phase 0: (needs λ0, N, D, M0 is 0)
· Accumulate MMI and ML statistics
· Compute ∂g

∂λ0
and ML Gaussian counts

∗ Phase 1: (needs λ0, N, D, ∂g
∂λ0

)

· Accumulate ∂g
∂Mij

· Compute M1 using gradient descent
∗ Phase 2: (needs λ0, N, M1)
· Accumulate ML statistics using new transform M1

· Compute new parameters λ1

– Iteration 2:
∗ Etc.
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5 Minimum Phone Error (MPE)

6 fMPE

7 Boosted-MMI

The objective function for boosted-MMI is

FBMMI = log
p(Or|sr, λ)P (sr)∑

s p(Or|s, λ)P (s) exp(−bA(s, sr))
, (45)

where A(s, sr) is the raw phone accuracy of sentence s given the reference sr,
which equals the number of correct phones minus the number of insertions. As
A(s, sr) is not a function of λ, the update formula of µj and σ2

j will be exactly
the same as Equ. 23 and Equ. 24. The only difference between MMI and
BMMI is that, when performing the forward-backward algorithm on the lattice,
besides the acoustic score and language score, there is also a phone accuracy
score A(s, sr) for each arc.

8 fBMMI

The fBMMI training is very similar to the fMMI training we discussed in Section
4. In fMMI, we try to optimize the feature transform with regard to the MMI
objective function. However, in fBMMI, we optimize the feature transform with
regard to the BMMI objective functions. Again, the training procedure and
statistics accumulation in fBMMI in exactly the same as in fMMI. The only
difference here is when performing forward-backward algorithm on the lattices,
besides the acoustic score and language score, we also need to compute the raw
phone accuracy for each arc.
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