Li-Wei Chen

□ +1 412 636 3999
 ☑ lwchen.jeff@gmail.com
 ☑ github.com/b04901014
 ☑ Google Scholar

Research Interests

- Speech processing, especially voice conversion (VC), text-to-speech synthesis (TTS), self-supervised representation learning (SSL), and speech emotion recognition (SER)
- o NLP tasks including natural language understanding, language modeling and task-oriented conversation
- O Design machine learning systems for the above tasks or improve existing algorithms

Education

2022–Present **Ph.D. in Language and Information Technology**, *Carnegie Mellon University*, Pittsburgh Sept.

2020–2022 Sept. Aug. **Master of Language Technologies**, *Carnegie Mellon University*, Pittsburgh *Overall GPA – 4.23/4.33*

2015–2020 Sept. Jan. Bachelor of Electronic Engineering, National Taiwan University, Taipei Overall GPA – 4.10/4.3 – 3.96/4.0

Research Experience

2022–Present _{Sept.}	 Ph.D. Student, Carnegie Mellon University, Pittsburgh Advisor: Alexander Rudnicky, Shinji Watanabe Developed an auto-regressive TTS system for real-world spontaneous speech that outperforms existing methods in terms of intelligibility, naturalness, and diversity Proposed a unified system for one-shot voice conversion (VC) on pitch, rhythm, and speaker attributes of speech, outperforming existing works
2020–2022 Sept. Aug.	 Master's Student, Carnegie Mellon University, Pittsburgh Advisor: Alexander Rudnicky Investigated the importance of temporal context and different features for speech emotion recognition Improved the performance on speech emotion recognition by a large margin by exploring different fine-tuning techniques of self-supervised pretrained models Designed a novel architecture with cross-modality attention mechanism to realize fine-grained style control on the transformer-based text-to-speech synthesis (TTS)
2018–2018 Aug. Sept.	 Research Intern, Taiwan AI Labs, Taipei Responsible for the TTS part of a smart speaker product, using Tacotron2 for speech synthesize Implemented parallel WaveNet as vocoder replacing WaveNet to significantly reduce latency
2017–2019 Sept. Sept.	 Undergraduate Student, National Taiwan University, Taipei Advisor: Hung-Yi Lee, Lin-Shan Lee Developed an end-to-end spoken term detection system with attention-based CNN Proposed a model using GANs to transform impaired speech into normal one while preserving linguistic content Achieved better results in terms of Mean Opinion Score compared to existing models Competition Experience
2021—2022 May. May.	 Alexa Prize Taskbot Competition, Carnegie Mellon University, Pittsburgh Advisor: Alexander Rudnicky Technical team leader of a 8 member team, mainly responsible for the software engineering of the dialogue logic Our system advanced to the semi-finals, see our paper (in publications) for the details of our system
2021–2021 Jan. May	 Zero Resource Speech Challenge 2021, Carnegie Mellon University, Pittsburgh Advisor: Alexander Rudnicky, Shinji Watanabe Collaborated with Yahoo! JAPAN to develop a algorithm on learning unsupervised speech representation, achieving top result in one of the metrics

• Paper accepted to Interspeech (see in publications)

Publications

- [1] L. Chen, S. Watanabe, A. Rudnicky, "A Unified One-Shot Prosody and Speaker Conversion System with Self-Supervised Discrete Speech Units", arXiv preprint arXiv:2211.06535, 2022. (Accepted to ICASSP 2023)
- [2] L. Chen, A. Rudnicky, "Exploring Wav2vec 2.0 fine-tuning for improved speech emotion recognition", arXiv preprint arXiv:2110.06309, 2021. (Accepted to ICASSP 2023)
- [3] P. Wu, L. Chen, C. Cho, S. Watanabe, L. Goldstein, A. Black, G. Anumanchipalli, "Speaker-Independent Acoustic-to-Articulatory Speech Inversion", arXiv preprint arXiv:2302.06774, 2023. (Accepted to ICASSP 2023)
- [4] L. Chen, A. Rudnicky, S. Watanabe, "A Vector Quantized Approach for Text to Speech Synthesis on Real-World Spontaneous Speech", arXiv preprint arXiv:2302.04215, 2023. (Accepted to AAAI 2023 Main Track)
- [5] L. Chen, A. Rudnicky, "Fine-grained style control in Transformer-based Text-to-speech Synthesis", in Proceedings of ICASSP 2022, 2022.
- [6] L. Chen, T. Chi, D. Shah, C. Gomes, J. Bao, K. Ganesan, P. Joshi, S. Kumar, D. Naik, J. Hagerty, A. Rudnicky, "Tartan: A taskbot that assists with recipes and do-it-yourself projects", Alexa Prize TaskBot Challenge Proceedings, 2022.
- [7] Y. Xia*, L. Chen*, A. Rudnicky, R. M. Stern, "Temporal Context in Speech Emotion Recognition", in Proceedings of the Interspeech 2021, 2021. (* Equal contribution)
- [8] T. Maekaku, X. Chang, Y. Fujita, L. Chen, S. Watanabe, A. Rudnicky, "Speech Representation Learning Combining Conformer CPC with Deep Cluster for the ZeroSpeech Challenge 2021", in Proceedings of the Interspeech 2021, 2021.
- [9] L. Chen, H. Lee, and Y. Tsao, "Generative Adversarial Networks for Unpaired Voice Transformation on Impaired Speech", in *Proceedings of the Interspeech 2019*, 2019.

2022–2022 Jan. May	Teaching Assistant, Carnegie Mellon University, Pittsburgh Course: Multimodal Machine Learning (Course number 11-777, 2022 Spring by Yonatan Bisk) Course Website: https://yonatanbisk.com/teaching/mmml-s22/ Graded and advised each team regarding their final project, responsible for teams that involves speech modality in their project
2018–2018 Jan. July	 Teaching Assistant, National Taiwan University, Taipei Course: Machine Learning and Having it Deep and Structured (2018 Spring by Hung-Yi Lee) Course Website: https://speech.ee.ntu.edu.tw/~hylee/mlds/2018-spring.php Designed and graded assignments of Reinforcement Learning, including Policy Gradient, Deep Q-learning Networks, Actor-Critic, and other improved algorithms of them

Computer Skills

Teaching Experience

- Basic JAVASCRIPT, HTML, MATLAB
- Intermediate C#, LTFX, Linux, Bash, Java
 - Advanced PYTHON, C++

 - Others O Speech Toolkits: Kaldi, World, HTK, SPTK • Machine Learning Libraries: Pytorch, Tensorflow, Keras

2/2

Language Proficiency

Native Mandarin Chinese, Taiwanese Hokkien

GRE General Q: 170, V: 161, AWA: 4.0

TOEFL iBT 106 (30/29/22/25)