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Abstract 

We present the PONG method to compute 

selectional preferences using part-of-speech 

(POS) N-grams.  From a corpus labeled with 

grammatical dependencies, PONG learns the 

distribution of word relations for each POS 

N-gram.  From the much larger but unlabeled 

Google N-grams corpus, PONG learns the 

distribution of POS N-grams for a given pair 

of words.  We derive the probability that one 

word has a given grammatical relation to the 

other. PONG estimates this probability by 

combining both distributions, whether or not 

either word occurs in the labeled corpus.  

PONG achieves higher average precision on 

16 relations than a state-of-the-art baseline in 

a pseudo-disambiguation task, but lower 

coverage and recall. 

1 Introduction 

Selectional preferences specify plausible fillers 

for the arguments of a predicate, e.g., celebrate.  

Can you celebrate a birthday?  Sure.  Can you 

celebrate a pencil?  Arguably yes:  Today the 

Acme Pencil Factory celebrated its one-billionth 

pencil.  However, such a contrived example is 

unnatural because unlike birthday, pencil lacks a 

strong association with celebrate.  How can we 

compute the degree to which birthday or pencil 

is a plausible and typical object of celebrate? 

Formally, we are interested in computing the 

probability Pr(r | t, R), where (as Table 1 

specifies), t is a target word such as celebrate, r 

is a word possibly related to it, such as birthday 

or pencil, and R is a possible relation between 

them, whether a semantic role such as the agent 

of an action, or a grammatical dependency such 

as the object of a verb.  We call t the “target” 

because originally it referred to a vocabulary 

word targeted for instruction, and r its “relative.” 

 

Notation Description 

R a relation between words 

t a target word 

r, r' possible relatives of t 

g a word N-gram 

gi and gj i
th
 and j

th
 words of g 

p the POS N-gram of g 

 

Table 1:  Notation used throughout this paper 

 

Previous work on selectional preferences has 

used them primarily for natural language analytic 

tasks such as word sense disambiguation (Resnik, 

1997),  dependency parsing (Zhou et al., 2011), 

and semantic role labeling (Gildea and Jurafsky, 

2002).  However, selectional preferences can 

also apply to natural language generation tasks 

such as sentence generation and question 

generation.  For generation tasks, choosing the 

right word to express a specified argument of a 

relation requires knowing its connotations – that 

is, its selectional preferences.  Therefore, it is 

useful to know selectional preferences for many 

different relations.  Such knowledge could have 

many uses.  In education, they could help teach 

word connotations.  In machine learning they 

could help computers learn languages.  In 

machine translation, they could help generate 

more natural wording. 

This paper introduces a method named PONG 

(for Part-Of-Speech N-Grams) to compute 

selectional preferences for many different 

relations by combining part-of-speech 

information and Google N-grams.  PONG 

achieves higher precision on a pseudo-
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disambiguation task than the best previous model 

(Erk et al., 2010), but lower coverage. 

The paper is organized as follows.  Section 2 

describes the relations for which we compute 

selectional preferences.  Section 3 describes 

PONG.  Section 4 evaluates PONG.  Section 5 

relates PONG to prior work.  Section 6 concludes.   

2 Relations Used 

Selectional preferences characterize constraints 

on the arguments of predicates.  Selectional 

preferences for semantic roles (such as agent and 

patient) are generally more informative than for 

grammatical dependencies (such as subject and 

object).  For example, consider these 

semantically equivalent but grammatically 

distinct sentences: 

Pat opened the door. 

The door was opened by Pat.   

In both sentences the agent of opened, namely 

Pat, must be capable of opening something – an 

informative constraint on Pat.  In contrast, 

knowing that the grammatical subject of opened 

is Pat in the first sentence and the door in the 

second sentence tells us only that they are nouns. 

Despite this limitation, selectional preferences 

for grammatical dependencies are still useful, for 

a number of reasons.  First, in practice they 

approximate semantic role labels.  For instance, 

typically the grammatical subject of opened is its 

agent.  Second, grammatical dependencies can be 

extracted by parsers, which tend to be more 

accurate than current semantic role labelers.  

Third, the number of different grammatical 

dependencies is large enough to capture diverse 

relations, but not so large as to have sparse data 

for individual relations.  Thus in this paper, we 

use grammatical dependencies as relations. 

A parse tree determines the basic grammatical 

dependencies between the words in a sentence.  

For instance, in the parse of Pat opened the door, 

the verb opened has Pat as its subject and door 

as its object, and door has the as its determiner.  

Besides these basic dependencies, we use two 

additional types of dependencies. 

Composing two basic dependencies yields a 

collapsed dependency (de Marneffe and Manning, 

2008).  For example, consider this sentence: 

The airplane flies in the sky. 

Here sky is the prepositional object of in, which 

is the head of a prepositional phrase attached to 

flies.  Composing these two dependencies yields 

the collapsed dependency prep_in between flies 

and sky, which captures an important semantic 

relation between these two content words:  sky is 

the location where flies occurs.  Other function 

words yield different collapsed dependencies.  

For example, consider these two sentences: 

The airplane flies over the ocean. 

The airplane flies and lands. 

Collapsed dependencies for the first sentence 

include prep_over between flies and ocean, 

which characterizes their relative vertical 

position, and conj_and between flies and lands, 

which links two actions that an airplane can 

perform.  As these examples illustrate, collapsing 

dependencies involving prepositions and 

conjunctions can yield informative dependencies 

between content words. 

Besides collapsed dependencies, PONG infers 

inverse dependencies.  Inverse selectional 

preferences are selectional preferences of 

arguments for their predicates, such as a 

preference of a subject or object for its verb.  

They capture semantic regularities such as the set 

of verbs that an agent can perform, which tend to 

outnumber the possible agents for a verb (Erk et 

al., 2010). 

3 Method 

To compute selectional preferences, PONG 

combines information from a limited corpus 

labeled with the grammatical dependencies 

described in Section 2, and a much larger 

unlabeled corpus.  The key idea is to abstract 

word sequences labeled with grammatical 

relations into POS N-grams, in order to learn a 

mapping from POS N-grams to those relations.  

For instance, PONG abstracts the parsed 

sentence Pat opened the door as NN VB DT NN, 

with the first and last NN as the subject and 

object of the VB.  To estimate the distribution of 

POS N-grams containing particular target and 

relative words, PONG POS-tags Google N-

grams (Franz and Brants, 2006). 

Section 3.1 derives PONG’s probabilistic 

model for combining information from labeled 

and unlabeled corpora.  Section 3.2 and Section 

3.3 describe how PONG estimates probabilities 

from each corpus.  Section 3.4 discusses a 

sparseness problem revealed during probability 

estimation, and how we address it in PONG. 

3.1 Probabilistic model 

We quantify the selectional preference for a 

relative r to instantiate a relation R of a target t as 

the probability Pr(r | t, R), estimated as follows.  

By the definition of conditional probability: 



Pr( , , )
Pr( | , )

Pr( , )

r t R
r t R

t R  

We care only about the relative probability of 

different r for fixed t and R, so we rewrite it as:   

Pr( , , )r t R  

We use the chain rule: 

Pr( | , ) Pr( | ) Pr( )R r t r t t  

and notice that t is held constant: 

Pr( | , ) Pr( | )R r t r t  

We estimate the second factor as follows:

 
Pr( , ) freq( , )

Pr( | )
Pr( ) freq( )

t r t r
r t

t t  

We calculate the denominator freq(t) as the 

number of  N-grams in the Google N-gram 

corpus that contain t, and the numerator freq(t, r) 

as the number of N-grams containing both t and r. 

To estimate the factor Pr(R | r, t) directly from 

a corpus of text labeled with grammatical 

relations, it would be trivial to count how often a 

word r bears relation R to target word t.  

However, the results would be limited to the 

words in the corpus, and many relation 

frequencies would be estimated sparsely or 

missing altogether; t or r might not even occur. 

Instead, we abstract each word in the corpus as 

its part-of-speech (POS) label.  Thus we abstract 

The big boy ate meat as DT JJ NN VB NN.  We 

call this sequence of POS tags a POS N-gram.  

We use POS N-grams to predict word relations.  

For instance, we predict that in any word 

sequence with this POS N-gram, the JJ will 

modify (amod) the first NN, and the second NN 

will be the direct object (dobj) of the VB.   

This prediction is not 100% reliable.  For 

example, the initial 5-gram of The big boy ate 

meat pie has the same POS 5-gram as before.  

However, the dobj of its VB (ate) is not the 

second NN (meat), but the subsequent NN (pie).  

Thus POS N-grams predict word relations only 

in a probabilistic sense. 

To transform Pr(R | r, t) into a form we can 

estimate, we first apply the definition of 

conditional probability: 

 

Pr( , , )
Pr( | , )

Pr( , )

R t r
R t r

t r
 

To estimate the numerator Pr(R, t, r), we first 

marginalize over the POS N-gram p: 

 

Pr( , , , )
 

Pr( , )p

R t r p

t r  

We expand the numerator using the chain rule: 

 

Pr( | , , ) Pr( | , ) Pr( , )

Pr( , )p

R t r p p t r t r

t r  

Cancelling the common factor yields: 

 Pr( | , , ) Pr( | , )
p

R p t r p t r  

We approximate the first term Pr(R | p, t, r) as 

Pr(R | p), based on the simplifying assumption 

that R is conditionally independent of t and r, 

given p.  In other words, we assume that given a 

POS N-gram, the target and relative words t and 

r give no additional information about the 

probability of a relation.  However, their 

respective positions i and j in the POS N-gram p 

matter, so we condition the probability on them: 

 Pr( | , , ) Pr( | , , )R p t r R p i j
 

Summing over their possible positions, we get 

Pr( | , )

Pr( | , , ) Pr( | , )i j

p i j

R r t

R p i j p t g r g

 

As Figure 1 shows, we estimate Pr(R | p, i, j) by 

abstracting the labeled corpus into POS N-grams. 

We estimate Pr(p | t = gi, r = gj) based on the 

frequency of partially lexicalized POS N-grams 

like DT JJ:red NN:hat VB NN among Google N-

grams with t and r in the specified positions. 

Sections 3.2 and 3.3 describe how we estimate 

Pr(R | p, i, j) and Pr(p | t = gi, r = gj), respectively.  

Note that PONG estimates relative rather than 

absolute probabilities.  Therefore it cannot (and 

does not) compare them against a fixed threshold 

to make decisions about selectional preferences.  

3.2 Mapping POS N-grams to relations 

To estimate Pr(R | p, i, j), we use the Penn 

Treebank Wall Street Journal (WSJ) corpus, 

which is labeled with grammatical relations 

using the Stanford dependency parser (Klein and 

Manning, 2003).   

To estimate the probability Pr(R | p, i, j) of a 

relation R between a target at position i and a 

relative at position j in a POS N-gram p, we 

compute what fraction of the word N-grams g 

with POS N-gram p have relation R between 

some target t and relative r at positions i and j: 

Pr( | , , )

freq( . .POS( ) relation( , ) )

freq( . .POS( ) relation( , ))

i j

i j

R p i j

g s t g p g g R

g s t g p g g
 

3.3 Estimating POS N-gram distributions 

Given a target and relative, we need to estimate 

their distribution of POS N-grams and positions. 



 
Figure 1:  Overview of PONG.   

From the labeled corpus, PONG extracts abstract mappings from POS N-grams to relations. 

From the unlabeled corpus, PONG estimates POS N-gram probability given a target and relative. 

 

A labeled corpus is too sparse for this purpose, 

so we use the much larger unlabeled Google N-

grams corpus (Franz and Brants, 2006). 

The probability that an N-gram with target t at 

position i and relative r at position j will have the 

POS N-gram p is: 

Pr( | , )

freq( . .POS( ) , , ))

freq( . . )

i j

i j

i j

p t g r g

g s t g p g t g r

g s t g t g r
  

To compute this ratio, we first use a well-

indexed table to efficiently retrieve all N-grams 

with words t and r at the specified positions.  We 

then obtain their POS N-grams from the Stanford 

POS tagger (Toutanova et al., 2003), and count 

how many of them have the POS N-gram p. 

3.4 Reducing POS N-gram sparseness 

We abstract word N-grams into POS N-grams to 

address the sparseness of the labeled corpus, but 

even the POS N-grams can be sparse.  For n=5, 

the rarer ones occur too sparsely (if at all) in our 

labeled corpus to estimate their frequency. 

To address this issue, we use a coarser POS 

tag set than the Penn Treebank POS tag set.  As 

Table 2 shows, we merge tags for adjectives, 

nouns, adverbs, and verbs into four coarser tags.   

Coarse Original  

ADJ JJ, JJR, JJS 

ADVERB RB, RBR, RBS 

NOUN NN, NNS, NNP, NNPS 

VERB VB, VBD, VBG, VBN, VBP, VBZ 

Table 2:  Coarser POS tag set used in PONG 

To gauge the impact of the coarser POS tags, 

we calculated Pr(r | t, R) for 76 test instances 

used in an earlier unpublished study by Liu Liu, 

a former Project LISTEN graduate student.  Each 

instance consists of two randomly chosen words 

in the WSJ corpus labeled with a grammatical 

relation.  Coarse POS tags increased coverage of 

this pilot set – that is, the fraction of instances for 

which PONG computes a probability – from 69% 

to 92%. 

Using the universal tag set (Petrov et al., 2011) 

as an even coarser tag set is an interesting future 

direction, especially for other languages.  Its 

smaller size (12 tags vs. our 23) should reduce 

data sparseness, but increase the risk of over-

generalization. 

4 Evaluation 

To evaluate PONG, we use a standard pseudo-

disambiguation task, detailed in Section 4.1.  

Section 4.2 describes our test set.  Section 4.3 

lists the metrics we evaluate on this test set.  

Section 4.4 describes the baselines we compare 

PONG against on these metrics, and Section 4.5 

describes the relations we compare them on.  

Section 4.6 reports our results.  Section 4.7 

analyzes sources of error. 

4.1 Evaluation task 

The pseudo-disambiguation task (Gale et al., 

1992; Schutze, 1992) is as follows:  given a 

target word t, a relation R, a relative r, and a 

random distracter r', prefer either r or r', 

whichever is likelier to have relation R to word t. 

This evaluation does not use a threshold:  just 

prefer whichever word is likelier according to the 

model being evaluated.  If the model assigns only 

one of the words a probability, prefer it, based on 

the assumption that the unknown probability of 

the other word is lower.  If the model assigns the 

same probability to both words, or no probability 

to either word, do not prefer either word. 



4.2 Test set 

As a source of evaluation data, we used the 

British National Corpus (BNC).  As a common 

test corpus for all the methods we evaluated, we 

selected one half of BNC by sorting filenames 

alphabetically and using the odd-numbered files.  

We used the other half of BNC as a training 

corpus for the baseline methods we compared 

PONG to. 

A test set for the pseudo-disambiguation task 

task consists of tuples of the form (R, t, r, r').  To 

construct a test set, we adapted the process used 

by Rooth et al. (1999) and Erk et al. (2010). 

First, we chose 100 (R, t) pairs for each 

relation R at random from the test corpus. Rooth 

et al. (1999) and Erk et al. (2010) chose such 

pairs from a training corpus to ensure that it 

contained the target t.  In contrast, choosing pairs 

from an unseen test corpus includes target words 

whether or not they occur in the training corpus. 

To obtain a sample stratified by frequency, 

rather than skewed heavily toward high-

frequency pairs, Erk et al. (2010) drew (R, t) 

pairs from each of five frequency bands in the 

entire British National Corpus (BNC):  50-100 

occurrences; 101-200; 201-500; 500-1000; and 

more than 1000.  However, we use only half of 

BNC as our test corpus, so to obtain a 

comparable test set, we drew 20 (R, t) pairs from 

each of the corresponding frequency bands in 

that half:  26-50 occurrences; 51-100; 101-250; 

251-500; and more than 500. 

For each chosen (R, t) pair, we drew a separate 

(R, t, r) triple from each of six frequency bands:  

1-25 occurrences; 26-50; 51-100; 101-250; 251-

500; and more than 500.  We necessarily omitted 

frequency bands that contained no such triples.  

We filtered out triples where r did not have the 

most frequent part of speech for the relation R.  

For example, this filter would exclude the triple 

(dobj, celebrate, the) because a direct object is 

most frequently a noun, but the is a determiner. 

Then, like Erk et al. (2010), we paired the 

relative r in each (R, t, r) triple with a distracter r' 

with the same (most frequent) part of speech as 

the relative r, yielding the test tuple (R, t, r, r'). 

Rooth et al. (1999) restricted distracter 

candidates to words with between 30 and 3,000 

occurrences in BNC; accordingly, we chose only 

distracters with between 15 and 1,500 

occurrences in our test corpus.  We selected r' 

from these candidates randomly, with probability 

proportional to their frequency in the test corpus.  

Like Rooth et al. (1999), we excluded as 

distracters any actual relatives, i.e. candidates r' 

where the test corpus contained the triple (R, t, r').  

Table 3 shows the resulting number of (R, t, r, r') 

test tuples for each relation. 

 

Relation R # tuples for R # tuples for R
T
 

advmod 121 131 

amod 162 128 

conj_and 155 151 

dobj 145 167 

nn 173 158 

nsubj  97 124 

prep_of 144 153 

xcomp 139 140 

Table 3:  Test set size for each relation 

4.3 Metrics 

We report four evaluation metrics:  precision, 

coverage, recall, and F-score.  Precision (called 

“accuracy” in some papers on selectional 

preferences) is the percentage of all covered 

tuples where the original relative r is preferred.  

Coverage is the percentage of tuples for which 

the model prefers r to r' or vice versa.  Recall is 

the percentage of all tuples where the original 

relative is preferred, i.e., precision times 

coverage.  F-score is the harmonic mean of 

precision and recall. 

4.4 Baselines 

We compare PONG to two baseline methods.   

EPP is a state-of-the-art model for which Erk 

et al. (2010) reported better performance than 

both Resnik’s (1996) WordNet model and 

Rooth’s (1999) EM clustering model.  EPP 

computes selectional preferences using 

distributional similarity, based on the assumption 

that relatives are likely to appear in the same 

contexts as relatives seen in the training corpus.  

EPP computes the similarity of a potential 

relative’s vector space representation to relatives 

in the training corpus. 

EPP has various options for its vector space 

representation, similarity measure, weighting  

scheme, generalization space, and whether to use 

PCA.  In re-implementing EPP, we chose the 

options that performed best according to Erk et al. 

(2010), with one exception.  To save work, we 

chose not to use PCA, which Erk et al. (2010) 

described as performing only slightly better in 

the dependency-based space. 



Relation Target Relative Description 

advmod verb adverb Adverbial modifier 

amod noun adjective Adjective modifier 

conj_and noun noun Conjunction with “and” 

dobj verb noun Direct object 

nn noun noun Noun compound modifier 

nsubj verb noun Nominal subject 

prep_of noun noun Prepositional modifier 

xcomp verb verb Open clausal complement 

 

Table 4: Relations tested in the pseudo-disambiguation experiment.   

Relation names and descriptions are from de Marneffe and Manning (2008) except for prep_of.   

Target and relative POS are the most frequent POS pairs for the relations in our labeled WSJ corpus. 

 

Relation 
Precision (%) Coverage (%) Recall (%) F-score (%) 

PONG EPP DEP PONG EPP DEP PONG EPP DEP PONG EPP DEP 

advmod 78.7 - 98.6 72.1 - 69.2 56.7 - 68.3 65.9 - 80.7 

advmod
T
 89.0 71.0 97.4 69.5 100 59.5 61.8 71.0 58.0 73.0 71.0 72.7 

amod 78.8 - 99.0 90.1 - 61.1 71.0 - 60.5 74.7 - 75.1 

amod
T
 84.1 74.0 97.3 83.6 99.2 57.0 70.3 73.4 55.5 76.6 73.7 70.6 

conj_and 77.2 74.2 100 73.6 100 52.3 56.8 74.2 52.3 65.4 74.2 68.6 

conj_and
T
 80.5 70.2 97.3 74.8 100 49.7 60.3 70.2 48.3 68.9 70.2 64.6 

dobj 87.2 80.0 97.7 80.7 100 60.0 70.3 80.0 58.6 77.9 80.0 73.3 

dobj
T
 89.6 80.2 98.1 92.2 100 64.1 82.6 80.2 62.9 86.0 80.2 76.6 

nn 86.7 73.8 97.2 95.3 99.4 63.0 82.7 73.4 61.3 84.6 73.6 75.2 

nn
T
 83.8 79.7 99.0 93.7 100 60.8 78.5 79.7 60.1 81.0 79.7 74.8 

nsubj 76.1 77.3 100 69.1 100 42.3 52.6 77.3 42.3 62.2 77.3 59.4 

nsubj
T
 78.5 66.9 95.0 86.3 100 48.4 67.7 66.9 46.0 72.7 66.9 62.0 

prep_of 88.4 77.8 98.4 84.0 100 44.4 74.3 77.8 43.8 80.3 77.8 60.6 

prep_of
T
 79.2 76.5 97.4 81.7 100 50.3 64.7 76.5 49.0 71.2 76.5 65.2 

xcomp 84.0 61.9 95.3 85.6 100 61.2 71.9 61.9 58.3 77.5 61.9 72.3 

xcomp
T
 86.4 78.6 98.9 89.3 100 63.6 77.1 78.6 62.9 81.5 78.6 76.9 

average 83.0 74.4 97.9 82.6 99.9 56.7 68.7 74.4 55.5 75.0 74.4 70.5 

 

Table 5:  Coverage, Precision, Recall, and F-score for various relations; R
T
 is the inverse of relation R. 

PONG uses POS N-grams, EPP uses distributional similarity, and DEP uses dependency parses. 

 

To score a potential relative r0, EPP uses this 

formula:

,

, 0 0

arg ( , ) ,

( )
( ) ( , )

R t

R t

r Seen s R t R t

wt r
Selpref r sim r r

Z
 

Here sim(r0, r) is the nGCM similarity defined 

below between vector space representations of r0 

and a relative r seen in the training data: 
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The weight function wtr,t(a) is analogous to 

inverse document frequency in Information 

Retrieval. 

DEP, our second baseline method, runs the 

Stanford dependency parser to label the training 

corpus with grammatical relations, and uses their 

frequencies to predict selectional preferences.  

To do the pseudo-disambiguation task, DEP 

compares the frequencies of (R, t, r) and (R, t, r'). 

4.5 Relations tested 

To test PONG, EPP, and DEP, we chose the 

most frequent eight relations between content 

words in the WSJ corpus, which occur over 

10,000 times and are described in Table 4.  We 

also tested their inverse relations.  However, EPP 

does not compute selectional preferences for 

adjective and adverb as relatives.  For this reason, 

we did not test EPP on advmod and amod 

relations with adverbs and adjectives as relatives. 



4.6 Experimental results 

Table 5 displays results for all 16 relations.  To 

compute statistical significance conservatively in 

comparing methods, we used paired t-tests with 

N = 16 relations. 

PONG’s precision was significantly better 

than EPP (p<0.001) but worse than DEP 

(p<0.0001).  Still, PONG’s high precision 

validates its underlying assumption that POS N-

grams strongly predict grammatical 

dependencies. 

On coverage and recall, EPP beat PONG, 

which beat DEP (p<0.0001).  PONG’s F-score 

was higher, but not significantly, than EPP’s 

(p>0.5) or DEP’s (p>0.02). 

4.7 Error analysis 

In the pseudo-disambiguation task of choosing 

which of two words is related to a target, PONG 

makes errors of coverage (preferring neither 

word) and precision (preferring the wrong word). 

Coverage errors, which occurred 17.4% of the 

time on average, arose only when PONG failed 

to estimate a probability for either word.  PONG 

fails to score a potential relative r of a target t 

with a specified relation R if the labeled corpus 

has no POS N-grams that (a) map to R, (b) 

contain the POS of t and r, and (c) match Google 

word N-grams with t and r at those positions.  

Every relation has at least one POS N-gram that 

maps to it, so condition (a) never fails.  PONG 

uses the most frequent POS of t and r, and we 

believe that condition (b) never fails.  However, 

condition (c) can and does fail when t and r do 

not co-occur in any Google N-grams, at least that 

match a POS N-gram that can map to relation R.  

For example, oversee and diet do not co-occur in 

any Google N-grams, so PONG cannot score diet 

as a potential dobj of oversee. 

Precision errors, which occur 17% of the time 

on average, arose when (a) PONG scored the 

distracter but failed to score the true relative, or 

(b) scored them both but preferred the distracter.  

Case (a) accounted for 44.62% of the errors on 

the covered test tuples. 

One likely cause of errors in case (b) is over-

generalization when PONG abstracts a word N-

gram labeled with a relation by mapping its POS 

N-gram to that relation.  In particular, the coarse 

POS tag set may discard too much information.  

Another likely cause of errors is probabilities 

estimated poorly due to sparse data.   The 

probability of a relation for a POS N-gram rare in 

the training corpus is likely to be inaccurate.  So 

is the probability of a POS N-gram for rare co-

occurrences of a target and relative in Google 

word N-grams.  Using a smaller tag set may 

reduce the sparse data problem but increase the 

risk of over-generalization. 

5 Relation to Prior Work 

In predicting selectional preferences, a key 

issue is generalization.  Our DEP baseline simply 

counts co-occurrences of target and relative 

words in a corpus to predict selectional 

preferences, but only for words seen in the 

corpus.  Prior work, summarized in  

Table 6, has therefore tried to infer the similarity 

of unseen relatives to seen relatives. To illustrate, 

consider the problem of inducing that the direct 

objects of celebrate tend to be days or events. 

Resnik (1996) combined WordNet with a 

labeled corpus to model the probability that 

relatives of a predicate belong to a particular 

conceptual class.  This method could notice, for 

example, that the direct objects of celebrate tend 

to belong to the conceptual class event.  Thus it 

could prefer anniversary or occasion as the 

object of celebrate even if unseen in its training 

corpus.  However, this method depends strongly 

on the WordNet taxonomy. 

Rather than use linguistic resources such as 

WordNet, Rooth et al. (1999) and Wald et al. 

(2008) induced semantically annotated 

subcategorization frames from unlabeled corpora. 

They modeled semantic classes as hidden 

variables, which they estimated using EM-based 

clustering.  Ritter (2010) computed selectional 

preferences by using unsupervised topic models 

such as LinkLDA, which infers semantic classes 

of words automatically instead of requiring a pre-

defined set of classes as input. 

The contexts in which a linguistic unit occurs 

provide information about its meaning.  Erk 

(2007) and Erk et al. (2010) modeled the 

contexts of a word as the distribution of words  

that co-occur with it.  They calculated the 

semantic similarity of two words as the similarity 

of their context distributions according to various 

measures.  Erk et al. (2010) reported the state-of-

the-art method we used as our EPP baseline. 

In contrast to prior work that explored various 

solutions to the generalization problem, we don’t 

so much solve this problem as circumvent it.  

Instead of generalizing from a training corpus 

directly to unseen words, PONG abstracts a word 

N-gram to a POS N-gram and maps it to the 

relations that the word N-gram is labeled with. 



 

Table 6:  Comparison with prior methods to compute selectional preferences 

 

To compute selectional preferences, whether the 

words are in the training corpus or not, PONG 

applies these abstract mappings to word N-grams 

in the much larger Google N-grams corpus. 

Some prior work on selectional preferences 

has used POS N-grams and a large unlabeled 

corpus.  The most closely related work we found 

was by Gormley et al. (2011).  They used 

patterns in POS N-grams to generate test data for 

their selectional preferences model, but not to 

infer preferences.  Zhou et al. (2011) identified 

selectional preferences of one word for another 

Reference Relation to 

target 

Lexical 

resource 

Primary  corpus 

(labeled) & 

information 

used 

Generalization  

corpus 

(unlabeled) & 

information used 

Method 

Resnik, 

1996 

Verb-object 

Verb-subject 

Adjective-noun 

Modifier-head 

Head-modifier 

Senses in 

WordNet 

noun 

taxonomy 

Target, relative, 

and relation in a 

parsed, partially 

sense-tagged 

corpus (Brown 

corpus) 

none Information 

theoretic 

model 

Rooth et 

al., 1999 

Verb-object 

Verb-subject 

none Target, relative, 

and relation in a 

parsed corpus 

(parsed BNC) 

none EM-based 

clustering 

Ritter, 

2010 

Verb-subject 

Verb-object 

Subject-verb-

object 

none Subject-verb-

object tuples 

from 500 million 

web-pages 

none LDA model 

Erk, 2007 Predicate and 

Semantic roles 

none Target, relative, 

and relation in a 

semantic role 

labeled corpus 

(FrameNet) 

Words and their 

relations in a 

parsed corpus 

(BNC) 

Similarity 

model based 

on word co-

occurrence  

Erk et al., 

2010 

SYN option:  

Verb-subject 

Verb-object, and 

their inverse 

relations 

SEM option:  

verb and 

semantic roles 

that have nouns 

as their headword 

in a primary 

corpus, and their 

inverse relations 

none Target, relative, 

and relation in 

SYN   option:  a  

parsed corpus 

(parsed BNC) 

SEM   option:  a 

semantic role 

labeled corpus 

(FrameNet) 

Two options: 

 

WORDSPACE:  

an unlabeled 

corpus (BNC) 

 

DEPSPACE:  

Words and their 

subject and object 

relations in a 

parsed corpus 

(parsed BNC) 

Similarity 

model using 

vector space 

representation 

of words 

Zhou et 

al., 2011 

Any (relations 

not distinguished) 

none Counts of words 

in Web or 

Google N-gram 

none PMI 

(Pointwise 

Mutual 

Information) 

This paper All grammatical 

dependencies in a 

parsed corpus, 

and their inverse 

relations 

none POS N-gram 

distribution for 

relations in 

parsed WSJ 

corpus 

POS N-gram 

distribution for 

target and relative 

in Google N-gram 

Combine both 

POS N-gram 

distributions 



by using Pointwise Mutual Information (PMI) 

(Fano, 1961) to check whether they co-occur 

more frequently in a large corpus than predicted 

by their unigram frequencies.  However, their 

method did not distinguish among different 

relations. 

6 Conclusion 

This paper describes, derives, and evaluates 

PONG, a novel probabilistic model of selectional 

preferences.  PONG uses a labeled corpus to map 

POS N-grams to grammatical relations.  It 

combines this mapping with probabilities 

estimated from a much larger POS-tagged but 

unlabeled Google N-grams corpus. 

We tested PONG on the eight most common 

relations in the WSJ corpus, and their inverses – 

more relations than evaluated in prior work.  

Compared to the state-of-the-art EPP baseline 

(Erk et al., 2010), PONG averaged higher 

precision but lower coverage and recall.  

Compared to the DEP baseline, PONG averaged 

lower precision but higher coverage and recall.  

All these differences were substantial (p < 0.001). 

Compared to both baselines, PONG’s average F-

score was higher, though not significantly. 

Some directions for future work include:  First, 

improve PONG by incorporating models of 

lexical similarity explored in prior work.  Second, 

use the universal tag set to extend PONG to other 

languages, or to perform better in English.  Third, 

in place of grammatical relations, use rich, 

diverse semantic roles, while avoiding sparsity.  

Finally, use selectional preferences to teach word 

connotations by using various relations to 

generate example sentences or useful questions. 
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