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bstract

Multiple regioregular polythiophene polymers with a variety of side chains, end groups and secondary polymer chains were used as active sensing
ayers in a single chip chemresistor sensor array device. A custom inkjet system was used to selectively deposit the polymers onto the array of
ransduction electrodes. The sensor demonstrated sensitivity and selectivity for detection and discrimination of volatile organic compounds (VOCs).

he conductivity responses to VOC vapors are dependent on the chemical structure of the polymers. For certain VOCs, conductivity increased in
ome polymers, while it decreased in others. Principal component analysis (PCA) of sensor responses was used to discriminate between the tested
OCs. These results are correlated to the chemical structures of the different polymers, and qualitative hypothesis of chemical sensing mechanisms
re proposed. This research demonstrates the potential for using such devices in VOC detection and discrimination sensing applications.
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. Introduction

The development of a low cost, low power and portable
evice for detection and identification of volatile organic com-
ounds (VOCs) is needed for applications such as homeland
ecurity and monitoring of agriculture, medical, and manufac-
uring environments [1–9]. One of the most difficult challenges
s to find sensing materials that have good sensitivity and
obust selectivity to the substances to be detected. While there
as been some success in sensor development for greenhouse
ases (CO2, CH4, N2O, NO and CO), the technology for the
etection of VOCs remains challenging due to the similari-

ies in chemical composition and structure between the small
OC molecules. For one example, semiconducting metal oxide

ensors, which are based on chemical oxidizing and reduc-

∗ Corresponding author. Tel.: +1 412 268 3674; fax: ++1 412 268 4916.
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ic compounds

ng reactions between the oxygen ion and analytes at elevated
emperatures (300–500 ◦C) [1,10], are limited because VOCs
enerally have similar reducing reaction energies. For another
xample, carbon black composite materials operate based on
welling of the polymers by the absorbed analytes, which
ncreases the space between carbon particles, leading to a
ecrease in conductivity upon exposure to VOCs [7,11]. This
ercolation-based sensing mechanism has been a limiting factor
or these materials because it is restricted to a single sensing
odality that has similar responses to many VOCs.
Conductive conjugated polymers are a relatively new class

f VOC sensing materials that show considerable promise to
vercome these limitations. First, their chemical composition
s similar to VOCs, which may induce physical interactions
etween sensing materials and analytes, leading to new sensing

echanisms [2]. Second, their chemical structures are readily
odified, which enables custom material designs with specific

electivity to target analytes. And third, unlike the semicon-
ucting metal oxide sensors, the sensing operation occurs

mailto:lambeth@ece.cmu.edu
dx.doi.org/10.1016/j.snb.2006.09.064
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Fig. 1. Schematic diagram of regioregular polythiophene based polymers.

t room temperature, which lowers the power consumption
equirements.

For example, regioregular polythiophenes (rr-PTs) polymers
ave an air-stable conducting property that makes them suitable
s chemresistive sensing materials. Their solubility in a variety
f organic solvents also enables them to be inkjet printed for
evice fabrication [12,13]. Fig. 1 shows the general chemical
tructure of the regioregular polythiophenes. The backbone of
he polymer is formed by thiophene rings. A chemical side-chain
roup can be attached on each thiophene ring along the poly-

er and an end-group or a secondary copolymer chain can be

dded to each end of the polythiophene. This variety of possible
tructures enables a potentially broad library of candidate mate-
ials for VOC sensing. Combinatorial analysis of sensor arrays

u
c
T

able 1
hemical structures and properties of thiophene based polymers

olymer Chemical structure

oly(3-hexylthiophene) (P3HT)

oly(3-dodecylthiophene) (PDDT)

oly(3-methoxyethoxy-ethoxymethyl)thiophene
(PMEEM)

romoester terminated poly(3-hexylthiophene)
(P3HT-bromoester)

enzyl terminated Poly(3-hexylthiophene)
(P3HT-benzyl)

oly(3-hexylthiophene)-b-polystyrene)
(P3HT-b-PS)

oly(3-hexylthiophene)-b-poly(methylacrylate)
(P3HT-b-PMA)

oly(hexylthiophene)-b-poly(butylacrylate)
(P3HT-PBA)

oly(3-dodecylthiophene-ran-3-methylthiophene)
(PDDT-r-PMT)

a Mole percentage of PHT composition was determined by 1H NMR spectroscopy.
b Number average molecular weight and polydispersity were determined by GPC w
rs B 123 (2007) 651–660

ncorporating these multi-materials has the potential to provide
obust and selective detection of VOCs via the ‘electronic nose’
oncept [7].

In the work reported here, nine regioregular polythiophene-
ased polymers with different side chains, end-groups and
opolymers were characterized for their conductance responses
o 10 different VOCs. The materials, device construction,
nd testing procedure are described, and then correlation
etween conductivity responses, analytes properties and poly-
er chemical structures are discussed. Lastly, possible sensing
echanisms involving different physical interactions between

nalytes and polymer molecules are proposed.

. Experimental

.1. Materials
The rr-PTs polymers used in this study were synthesized
sing methods previously described [14–18]. The chemi-
al structures and properties of these polymers are shown in
able 1. Poly(3-hexylthiophene) (P3HT) was used as a reference

Compositiona Molecular weightb PDIb

100 mol% P3HT 11600 1.2

100 mol% PDDT 47352 1.2

100 mol% PMEEM N/A N/A

100 mol% P3HT 11200 1.2

100 mol% P3HT 13670 1.2

65 mol% P3HT 16500 1.3

80 mol% P3HT 14620 1.2

82 mol% P3HT 16000 1.2

50 mol % PDDT 11950 1.2

ith polystyrene as standard.
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olymer since it and its properties have been discussed in the lit-
rature [19–21]. P3HT, poly(3-dodecylthiophene) (PDDT) and
oly(3-methoxyethoxyethoxymethyl)thiophene (PMEEM) are
olythiophene polymers with different side chains. P3HT, be-
zyl terminated P3HT (P3HT-benzyl), and bromoester termi-
ated P3HT (P3HT-bromoester) are polythiophene polymers
ith different end groups. Poly(3-hexylthiophene)-b-polyst-
rene (P3HT-b-PS), poly(3-hexylthiophene)-b-poly(butyl-
crylate) (P3HT-b-PBA), and poly(3-hexylthiophene)-b-
oly(methylacrylate) (P3HT-b-PMA) are polythiophene-based
lock copolymers with different secondary polymer chains.
nd, poly(3-dodecylthiophene-ran-methylthiophene) (PDDT-

-PMT) is a random copolymer with a different secondary
olymer chain randomly inserted into the primary polythio-
hene chain. To form inks for inkjet deposition, the polymers
ere dissolved in trichlorobenzene at 5 mg/ml concentration

nd then filtered with a 0.4 �m PTFE syringe filter.

.2. Sensor array
.2.1. Sensor design
The sensor array consists of 24 sensor elements in a 4 × 6

atrix, as shown in Fig. 2(a). Each sensor element uses two
oncentric spiral electrodes (Fig. 2(b)) to measure polymer con-

ig. 2. Optical micrograph of sensor arrays. (a) Completed, wire bonded,
est chip showing 24 electrode patterns with ink-jetted polymers on 20 of
hese. The sensors in the first column were used for reference. The rest of the
lectrodes have one type polymer jetted on each column. From left to right, the
olymers are poly(3-hexylthiophene)-b-polystyrene), poly(hexylthiophene)-b-
oly(butylacrylate), poly(3-methoxyethoxyethoxymethyl)thiophene, poly(3-
odecylthiophene-ran-3-methylthiophene), poly(3-hexylthiophene)-b-poly-
methylacrylate). (b) Enlarge view of the gold spiral electrodes with no polymer.
c) Spiral electrodes with jetted poly(3-hexylthiophene) polymer formed from
0 drops of 5 mg/mL polymer concentration dissolved in trichlorobenzene.
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uctance. One electrode is connected to a common power bus
nd the other is dedicated to the particular element. The gap
etween the electrodes forms the active sensing area. The spiral
lectrode geometry maximizes the sensing area per overall sen-
or size. The diameter of the spiral electrodes is 200 �m; the gap
s 3 �m; the width of the electrode metal is 4 �m; the total length
f the electrodes is around 4 mm. Hence, each sensor element
s approximately 200 �m in diameter and the overall test chip is
mm × 3 mm in size.

.2.2. Sensor fabrication
Sensors were prepared on conductive n + silicon substrates

ith a thermally grown 700 nm insulating SiO2 surface. The
abrication process requires two masks. A 5 nm layer of Ti cov-
red by a 50 nm layer of Au was sputter deposited and patterned
s the electrodes using the first mask. The Ti layer was used to
mprove the adhesion of Au to the silicon dioxide layer. The Au
ayer was used as the contact layer to interface to the polythio-
hene polymers. The work function of Au matches the ionization
otential of polythiophenes; therefore, it tends to form an ohmic
ontact between electrodes and polymers [22]. The second mask
as used to deposit an additional 1 �m of Au onto the bonding
ad area to make it more robust.

There are several requirements for polymer deposition. First,
ultiple polymer solutions must be selectively deposited onto a

ingle sensor chip to provide combinatorial sensing responses.
econd, due to the small size of each sensor element, the deposi-

ion process must be able to control picoliter solution volumes.
hird, the targeting accuracy for depositing the polymer onto
ach element must be within a few microns. Inkjet deposi-
ion satisfies these requirements. It is a versatile, cost-effective,
nd programmable approach that has been used for a range
f other organic electronic manufacturing applications, includ-
ng organic thin-film transistors, organic light-emitting diodes,
nd other sensors [23,24]. A custom inkjet deposition system
as designed and constructed in order to have complete control
ver the jetting parameters, deposition sequence, and targeting
ccuracy. With the aid of computer vision-based calibration, a
argeting accuracy of ±4 �m or less was achieved. The inkjet
ystem can deposit 50 pL droplets using an OEM drop-on-
emand printhead with a 30 �m diameter nozzle (Microfab, Inc.,
lano, TX). The details of our inkjet system and the deposition
rocess are described in detail in [25]. For example, Fig. 2(a)
hows a fabricated sensor integrating multiple deposited poly-
ers on the electrode site array. Fig. 2(b) and (c) show a sensor

lement before and after polymer deposition, respectively. Sen-
or data in the results section are given for devices printed with
0 sequential drops on each element. After polymer jetting, the
ensors were vacuum annealed at 100 ◦C for 12 h to drive off
ny remaining solvent.

.3. Sensor testing
Fig. 3 shows a schematic of the computer-controlled testing
ystem. A nitrogen gas supply is split into two gas branches.
ne is the carrier gas stream. The other branch flows through an

nalyte bubbler and generates saturated analyte vapor, which is
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Fig. 3. Block diagram of computer c

ater mixed with the carrier nitrogen stream to achieve the desired
nalyte concentration. Two mass flow controllers are used to
ontrol the gas flow of these branches. The carrier gas stream is
et at 1 L/min, and the analyte vapor flow can be adjusted from 0
o 10 mL/min for different analyte concentrations. The analyte
apor is directed to either the sensor test chamber or an exhaust
y a three-way solenoid valve. The time delay for analyte vapor
rriving at the test vessel is around 20 s for the lowest analyte
apor flow. All the solenoid valves and mass flow controllers
re controlled by a Keithley 7706 DAQ card installed inside the
eithley 2700 digital multimeter.

Fabricated sensors were mounted in 40-pin DIP packages and
hen plugged into a custom printed circuit board (PCB) mounted
nside of an aluminum test chamber with a volume of less than
in.3. The PCB contains signal amplification and multiplexing
lectronics. An Agilent E3647A dual output DC power supply
upplies the proper DC voltages to the PCB electronics and sen-
or electrodes. The amplified sensor signals are acquired by the
eithley 2700 multimeter. The entire system is controlled over

n IEEE 488 control bus using a custom Labview program.
In this study, six polar VOC vapors (methanol, ethanol, iso-

ropanol, acetone, methylene chloride, and acetonitrile) and four
on-polar vapors (hexane, cyclohexane, toluene and benzene)
ere tested. The analytes were introduced into the continuous

arrier gas flow to the sensor test chamber with a schedule of
0 min on and 10 min off. Care was taken to ensure that the total
as flow rate during testing was a constant. Sequential pulses of
ve or six concentrations were tested for each VOC vapor by
amping up from a low analyte concentration to a high analyte
oncentration. The concentration of each vapor at a fixed flow
ate depends on its vapor pressure. The concentration of each
nalyte at each flow rate was accurately measured using a gas
hromatography system (Model 8610, SRI Instruments, Inc.).
uring each test run, the currents flowing through six individ-
al chemresistor sensors were recorded simultaneously at 5 s
ampling intervals.

. Results
.1. Polymer characterization

Film morphology has an important role in determining the
aterial’s sensing properties [26]. This is especially true when

o
a
s
c

lled chemical vapor testing system.

omparing the crystalline structures to those of a totally amor-
hous structure. These variations, such as lattice parameters,
orosity, nanostructure geometry, and grain boundary geome-
ry, alter the electrical conduction mechanisms and thus alter
he sensitivity, selectivity, and response time for a given analyte.

Prior to using inkjetting to deposit polymers, we used atomic
orce microscopy (AFM) to investigate the morphology of poly-
ers drop cast from a slowly evaporating solvent onto an

xidized silicon substrate. Our polymers generally showed poly-
rystalline morphologies. As examples of the observed possible
anostructures, Fig. 4 shows four polymer AFM tapping mode
mages illustrating nanofibriles and nano-size grains. Other
eports [12,27] indicate that, due to the interchain stacking of
he polythiophene molecules, dense crystalline nanofibrile struc-
ures form from the P3HT homopolymer, and that the electronic
roperties are correlated to the molecular weight and microstruc-
ure. It is reasonable to believe that rr-PTs with different side
hains and end groups have different lattice spacing down the
ength of the nanofibriles, as well as, a varied polycrystalline
tructure. It is highly likely that the differences in microstruc-
ure between these polymers could lead to different VOC sensing
ehaviors.

Surfaces of deposited inkjetted drops are rougher. It is well
nown from other inkjet studies that during the fast drying
rocess there is considerable fluid motion [28,29]. In some
ases this is so severe that a coffee ring appearance results.
erhaps these dynamics cause the drop roughness and the
ppearance of an amorphous structure. Hence, the AFM images
re less well defined and observation of any distinctive crys-
alline microstructure is difficult. However, it is conjectured that

olecular ordering may exist at least over shorter distances. The
elationship between jetting parameters, polymer morphology,
nd sensing response is currently being investigated and will
e discussed in the future. For the remainder of this work all
olymers discussed were prepared by ink jetting.

.2. Sensor array response

Fig. 5 shows the normalized conductance responses over time

f different polymers to acetone, methylene chloride, toluene
nd cyclohexane. Normalization is used to analyze polymer sen-
or data so that sensors with different base resistances can be
ompared. The baseline of the sensors also showed drift over
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ig. 4. Tapping mode AFM phase images illustrate the various nanostructures o
b) Poly(3-hexylthiophene)-b-polystyrene. (c) Poly(hexylthiophene)-b-poly(but

ong periods of time due to temperature variations. A custom
abview program was used to do the normalization and base-

ine calibration during the measurement. The normalization is
ased on Eq. (1) in which sensor response is given by

response = Gsens − G0

G0
(1)

here Gsens is the sensor conductance during vapor exposure,
nd G0 is the initial conductance. A spline fitting is performed on
he baseline data and subtracted to obtain the response curves in
ig. 5. Response sensitivities measured in conductance change
er ppm of all tested polymers to 10 VOC vapors are shown in
able 2.

There are several interesting observations from Fig. 5: (1)
lmost all of the polymers demonstrated a fast chemical response
ime, with typical rise-times less than 30 s (0–90% of final
alue); (2) the sensors recovered completely to their baseline
fter the VOC exposure was removed; (3) with the exception of
xposure of P3HT-benzyl to toluene, the sensor responses were

early linear with analyte concentration; (4) different polymers
howed different sensitivity amplitudes; (5) the conductance
esponses of different polymers can have different signs. For
cetone, which is a polar analyte and not a solvent for rr-PTs,

t
t
w
[

mer films made by slow evaporation of the solvent. (a) Poly(3-hexylthiophene).
late). (d) Poly(3-dodecylthiophene-ran-3-methylthiophene).

oth positive and negative responses were found for the different
ested polymers; PMEEM gave the strongest positive response
nd PDDT-r-PMT gave the strongest negative response. For
ethylene chloride, which is a polar analyte and strong sol-

ent for rr-PTs, all tested polymers showed positive responses,
ith P3HT being the strongest. For toluene, which is a non-
olar analyte and solvent for rr-PTs, results again showed both
ositive and negative responses. However, the response pat-
ern is very different from acetone. For toluene, P3HT-benzyl
howed the largest positive response. PDDT and PDDT-r-PMT
howed the largest negative responses. For cyclohexane, which
s a non-polar analyte and not a solvent for rr-PTs, all tested poly-
ers showed negative responses, except PMEEM which gave a

ery small positive response. Here, PDDT showed the strongest
egative response.

The complete set of responses of tested polymers, which is
hown in Table 2, further illustrates the variety of responses,
ith different polymers clearly showing a different response
attern. The conductance response amplitude per ppm is on

he order of 10−6 to 10−5, which is relatively small compared
o semiconducting metal oxides [1]; however, it is consistent
ith other reported sensing results for conductive polymers

3,20].
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ig. 5. Sensor responses for various polymers and various VOC vapors. The le
he response to concentration. The analytes corresponding to the figures are (a–

.3. Principal component analysis

Principal component analysis (PCA) was used to reduce the
ighly dimensional sensor data into a few uncorrelated dimen-
ions. PCA requires that the exposing analyte concentration for
ach polymer tested be the same. While our exposure concentra-
ions varied due to the experimental conditions, we can see from
ig. 5, with the possible exception of P3HT-benzyl exposure to

oluene, the responses were highly linear with analyte concen-
ration. Hence, we used a linear fit of this data to extrapolate

esponse values of 9 polymers for 10 VOCs at analyte concen-
ration of 200, 400, 600, 800, and 1000 ppm. These response
alues were then employed in the PCA analysis using XLStat
.5 (Addinsoft Inc.). The first two principal components F1 and

a
n
i
n

mn of figures is time response curves while the right column of figures shows
tone, (c–d) methylene chloride, (e–f) toluene, and (g–h) cyclohexane.

2 are used as classification vectors. Fig. 6 shows the PCA score
lot of 10 analytes.

It can be seen from Fig. 6 that the sensor array response dis-
riminates quite well between some of the VOCs. As anticipated,
he score magnitudes linearly increase with analyte concentra-
ion. The deviation of the score plots starting at the origin is most
ikely due to the experimental inaccuracy at very low concentra-
ions. However, for low concentrations the scores for the polar
OCs tend to be clustered in the 1st quadrant, which makes them
arder to be identified. The scores for the non-polar vapors are

ll on the negative half of the F1 axis. It is of interest that the
on-polar benzene and toluene, which contain the double bond
n the benzene ring, have a positive F2 score while the non-polar
on-double bonded ring vapors, hexane and cyclohexane, show
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ig. 6. Principal component score plot of responses of nine polymers to 10 VOC
apors at 200, 400, 600, 800, and 1000 ppm.

negative F2 score. This leads to a clear discrimination of these
nalytes.

. Discussion

The response of this family of rr-PT-based polymers is selec-
ive for the range of the VOCs tested. It is inferred that the film

icrostructure and the molecular structure of these polymers
hich is related to the different side and end groups have a strong

nfluence on their sensing properties. In general, the sensing
ehaviors of polymers are related to molecular interactions such
s bonding, chemical reactions, dipole interaction and the van
er Waals force between the analytes and polymer molecules.
or polycrystalline films the behaviors are also related to the
icrostructure of the material. These interactions possibly mod-

fy the charge transportation inside the polymer molecules, or
nside the grains, or at the grain boundaries of the nanostruc-
ures. At room temperature, phonon-assisted polaron hopping
as been proposed to be the conduction mechanism for both
nter- and intra-grain charge transportation inside conductive
olymers [30]. At the material microstructure level, parame-
ers like film morphology, density and height of grain boundary
arrier [31], and density and distribution of delocalized hop-
ing states may determine the current density. At the polymer
olecule level, parameters like polymer backbone planarity, side

hain length, conjugation length, and reorganization energies
32] may influence the conductivity. The interactions between
nalytes and polymers most likely modulate one or more of
hese parameters, thus modulating the current density through
he thin film polymers. This implies the possibility of multiple
ensing mechanisms acting at the same time. Upon exposure
f a specific polymer to a particular analyte, one mechanism
ossibly dominates the others, resulting in either a conductiv-
ty increase or decrease. As the microstructure is changed, by
hoice of polymer chemical construction or even by film pro-

essing conditions, the potential dominant sensing mechanism
ay change. In the following we propose some specific sensing
echanisms for the rr-PT polymers resulting from their different
olecular structures.
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ig. 7. Molecular structure effects on response pattern: (a) side chain effects,
b) end group effects and (c) copolymer effects.

.1. Side chain effects

The response patterns of P3HT, PDDT and PMEEM poly-
ers, which have different side chains, are shown in Fig. 7(a).
3HT and PDDT both have an alkyl side chain, and corre-
pondingly they show similar response patterns. Both polymers
roduce a positive response to polar analytes and a negative
esponse to non-polar analytes. One possible explanation is that
he dipole–dipole electrostatic force between polar analytes
ith certain dipole moments and polymer dipolar alkyl side

hains can push the polymer molecules closer together, thus
educing the hopping distances and energy. This would result
n a conductance increase. In contrast, non-polar analytes
uch as toluene and benzene, which are actually solvents for

hese polymers, dissolve into the polymer and separate the
olymer molecules and film microstructures. Hence, the carrier
opping distance and barrier energy increase and conductivity
ecreases. This ‘swelling’ effect is also observed in other types

s
o

rs B 123 (2007) 651–660

f polymer sensors such as carbon black composites [11]. Also,
DDT showed a much stronger response to non-polar analytes

han did P3HT. This is probably because a longer side chain
ould result in a more open structure, and hence, more room
or analyte absorption.

PMEEM, which has a side chain containing oxygen atoms,
howed a positive response to all VOCs. Due to the oxygen atoms
n PMEEM, the side chain of PMEEM has a much higher dipole

oment than the alkyl side chains in P3HT and PDDT. There-
ore, stronger electrostatic interactions occurred when PMEEM
olymer was exposed to all tested analytes. It is plausible this is
hy PMEEM generally shows a positive response to the VOCs.

.2. End group effects

The response patterns of P3HT, P3HT-benzyl, and P3HT-
romoester polymers, which have different end groups, are
hown in Fig. 7(b). While the P3HT-bromoester and P3HT
howed a small response to toluene and benzene, P3HT-benzyl
howed a large positive response. Toluene and benzene are
on-polar molecules with a very small or zero dipole moment.
his means the previously described dipole interaction does
ot apply. Since the benzyl end group has a benzene ring, it
s plausible that the induced van der Waals force is the main
nteraction between analytes and end groups with a similar
tructure to the analytes. This interaction is attractive; thus,
t brings the polymer molecules closer together and reduces
he charge hopping distance. Therefore, the conductivity in
3HT-benzyl increases upon exposure to toluene and benzene.
or the other two non-polar analytes, hexane and cyclohexane,

he polymer showed no response.

.3. Copolymers

The sensing properties of copolymers depend on the structure
f the secondary polymer chain as well as the primary chain. For
xample, PHT-b-PS shows a strong positive response to toluene
nd benzene, which are solvents for polystyrene and also have
similar chemical structure to the side chain of polystyrene.
gain, it is likely that the induced van der Waals force tends

o bring the similar chemical structures closer together, which
educes the charge carrier hopping distance and energy, causing
n increase in conductivity.

The PDDT-r-PMT polymer, in which the secondary chain
as inserted inside the primary polymer in random segment

engths, showed a negative response for most VOCs. This sug-
ests that the interaction of the analyte molecules and alternating
ide groups might twist the copolymer molecules and reduce
he polymer chain conjugation length. Thus, the electronic cou-
ling between adjacent monomer units is interfered with and the
urrent density along the molecule chain decreases [33].

. Conclusion
Sensors based on arrays of rr-PT chemresistors were demon-
trated to be viable options for detection and discrimination
f VOCs. The family of rr-PT-based conductive polymers and
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opolymers with various side chains and end groups were syn-
hesized and tested. Their responses showed a variety of distinct
ew patterns that might significantly enhance sensor discrimi-
ation capability between VOCs. Possible sensing mechanisms
nd interactions between the VOC vapors and the variety of rr-
T chemistries that might account for the observed electrical
roperty changes were described. This work provides the foun-
ation for further research and development to design chemical
tructures to optimally respond to a given analyte. Also, while
e anticipate the sensor response to be both humidity and tem-
erature dependent this analysis represents a significant effort.
e have just begun this and hope to present these results in a

ater publication.
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