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ABSTRACT

A manufacturing technique called microcasting is being
developed as part of the Shape Deposition Manufacturing process.
Using microcasting, multi-material metal artifacts can be created by
successively depositing layers of material into the desired
configuration. By combining microcasting with machining
operations and the use of sacrificial support materials, complex,
multi-material geometries and composite structures can be
manufactured. The advantage of the SDM process lies in directly
generating free-form, near net-shape structures that traditional
machining, casting or spraying methods cannot readily achieve.

Ongoing research efforts seek to improve the microcasting
process and to minimize manufacturing defects in the deposition
layer. Numerical predictions and experimiental testing are required to
relate microcasting parameters with measurable deposition quality.
Previous experiments focused on layers of material; the current work
focuses on the individual drops that make up the layers. Adaptive
Bayesian surrogate models, in conjunction with optimal sampling,
provide an efficient method for selecting and evaluating experiments
and exploring the influence of different application parameters.

Sequential updating of surrogates along with optimal sampling
for data collection improves surrogate accuracy in our multistage
approach and reduces the amount of data collection required. The use

of statistical techniques helps the development of an understanding of

the relationship between process characteristics and the final quality
of the deposition layer.
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1. INTRODUCTION

At Carnegie Mellon and Stanford Universities, we are
developing a novel manufacturing technique called microcasting as
one process for Shape Deposition Manufacturing (SDM). Improving
new manufacturing processes such as microcasting requires an
understanding of the effects and interactions of process variables on
the final quality of the manufactured patt. To achieve improved
quality of parts, our research combines statistical techniques,
numerical simulations of physical models, and experimentation to
develop surrogate models for selecting process parameters. This
paper reviews the integration of experimental techniques with
multistage data collection and optimal sampling. By investigating
the effect of process control variables on individual droplet response
variables, we seek to gain an understanding of how these individual
droplet effects influence the resulting deposited layer.

Microcasting is a hybrid of conventional welding and thermal
spray deposition of metals. Thin layers of metal are deposited
selectively with the goal of creating parts with better mechanical
properties (density, strong interlayer adhesion) than sprayed
deposition and without severe distortion of the substrate due to
excessive heat (Merz, 1994). In microcasting, drops of molten metal
are created in a plasma away from the substrate; the drops fall due to
gravity onto the substrate and solidify. A robot moves the
microcasting apparatus, or microcaster, to deposit rows of drops to
form a layer of metal. Microcasting has been used to deposit several
metals including carbon steel, stainless steel, copper, aluminum
bronze and invar. A schematic of microcasting is shown in Figure 1.
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Figure 1: Schematic of the microcasting
manufacturing process

Several process parameters are set during microcasting.
Typically, only six parameters — plasma current, wire feed rate,
standoff, trajectory speed, path spacing, and table angle — are used to
control the deposition of a layer. These parameters are shown in
Figure 2. Plasma current, standoff, table angle, and wire feed rate are
changed to control the individual droplet formation and conditions at
impact. The trajectory speed and path spacing are changed to control
the formation of an entire layer. Microcasting involves the
deposition of molten metal droplets onto substantially cooler
substrates, so the key to accurate process modeling and the
production of high-quality parts is the ability to predict droplet
spreading, solidification, and bonding. Production of high-quality
parts also requires the ability to control droplet size, droplet
deposition rate, droplet impact velocity, droplet impact temperature,
and substrate temperature gradients. These factors combine to
influence mechanical strength, material microstructures (and
properties), residual thermal stresses, as well as part quality (voids).

The research detailed in this paper focuses on individual droplet
experiments that investigate the influence of microcasting process
parameters (e.g., plasma current, wire feed rate, torch standoff).
These process parameters affect droplet parameters such as size and
temperature and hence affect the quality of the resulting deposited
layer. The roughness of the substrate also affects the quality of the
deposited layer and is included as a parameter in the experiments.
These parameters relate the effect on the droplets to the resulting
deposited layer. In prior research, we have developed techniques to
quantify percentage volume of voids in a deposited layer and have
explored the design space of process parameters (Osio, 1996;
Padmanabhan, 1996). Because of the large number of parameters
involved in the microcasting process, we require an efficient method
for selecting the parameter settings to perform the experiments. We
have used a multistage approach to data collection, involving design
of experiments and optimal sampling. This approach allows us to
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build surrogate models that embody all available knowledge about
the influence of process control parameters on selected responses.

In addition to the experimental investigation presented in this
paper, concurrent efforts are underway to improve the microcasting
process through modeling and simulation. Through numerical
simulations of the impact and solidification of microcast droplets and
of the transient thermal stress behavior, we are beginning to
understand the interface heat transfer at droplet impact, the spreading
behavior of the solidifying droplet, and the overall cooling of both
individual droplets and successive layers (Amon er al., 1996a).
Process conditions such as the size, temperature and velocity of the
droplet as it strikes the substrate are taken as the initial conditions;
the simulation output yields the occurrence and extent of partial
substrate remelting, and the cooling history of the deposition
material. Thermal and mechanical modeling are strongly inter-
related because residual stress models depend on spatial-temporal
temperatures obtained from the thermal models, and bond strength of
successive layers is inherently linked to temperature-controlled
substrate remelting. Thermal and mechanical numerical models must
be coupled in order to be useful as predictive and investigative tools,
Predictive tools will aid in the selection of process parameters, help
achieve the desired substrate remelting, and help control residual
thermal stresses of the final artifact.

An overview of mechanical issues associated with microcasting
is given in Chin ez al. (1995, 1996), Beuth and Narayan (1996) and
Amon et al. (1996b). Mechanical modeling provides insight into
residual stress build-up during part manufacture and residual stress-
driven debonding between deposited layers. Residual stress build-up,
inherent to a process based on successive molten material deposition,
remelting and solidification, can lead to reduced strength in parts that
must withstand substantial mechanical or thermal applied loads,
induce undesirable effects such as part warping, loss of edge
tolerance, and residual stress-driven inter-layer debonding.
Therefore, the goal of stress modeling of microcasting is to
understand residual stress build-up and determine process and part
design changes to limit stress magnitudes and their unwanted effects.

Our previous work sought to understand how process control
parameters influence the quality of a standard part, as measured by
the area of voids at given cross sections. Proceeding with a
knowledge of the parameter settings that optimize the void area in a
deposition layer, we now present results of the variance of individual
droplet characteristics (e.g., droplet diameter, falling speed, droplet
spreading) with these process control parameters. Minimizing voids
requires that successive droplets flow over and wet previously
solidified droplets, filling the space between them completely. By
gaining insight into the motion of individual droplets and the effect
of process parameters on individual droplets, we aim to develop
process models that integrate information from physical experiments
and numerical simulations (Yesilyurt et al., 1996). In this paper, we
construct surrogate models to evaluate the relative effects of the
control parameters on droplet behavior using optimal sampling to
minimize the experimental data collection required.
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Figure 2: Microcasting parameters

2. MobELiNG

We use Bayesian surrogates (Currin ez al., 1991; Yesilyurt and
Patera, 1995) to create models for the microcasting manufacturing
process. Surrogate models do not require assumptions about the form
of the response but instead are defined in terms of the correlation
between sampling sites, allowing for automatic adaptability to the
response non-linearities. We build the surrogate models by
collecting experimental data in multiple stages (Osio 1996). Initially,
we perform screening experiments designed using orthogonal arrays
(Owen, 1992). Afterwards, we use optimal sampling to select the
sampling points for the next stages of data collection. To visualize
surrogate models for high dimensional spaces, we decompose the
response in an additive model that includes: the average effect, the
first order effects which depend on a single control parameter, the
second order cross terms which depend on pairs of design parameters
and the high order terms which depend on three or more variables.

In the following example, we illustrate the surrogate
methodology by starting with a known analytical function. We show
that, by sampling the function using multistage Bayesian analysis, we
can create a surrogate for the original function. We will use a
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function of three variables that all vary between zero and one so our
parameter space is the unitary cube [0,1]. To visualize this function
as a surface, the value of one of the variables must be fixed, so we
have made the function linear in z.

We use an orthogonal array design with 16 sampling points to
build our first stage surrogate model. A second stage surrogate is
built using optimal sampling over nine new sites. Optimal sampling
selects the sites for the next stage that maximize the amount of
information that can be gathered from an experiment of the selected
size. This is achieved by selecting the new sampling sites based on
the degree of non-linearity in each parameter of the surrogate model
from the previous stage. At each stage, the surrogate model
incorporates all the information gathered in the previous stages, so
the second stage surrogate represents the knowledge gathered in a
total of 25 sites of the design space. In Figure 3, the analytical
function is plotted for a fixed z value (z=z,), and the first and second
stage surrogates are shown for the same fixed value, z,. In Figure 4,
we show the main effects of the three variables on the response,
calculated from the analytical function, and show the main effects for
the first and second stage surrogates. For this example, we can obtain

¢) 2nd stage surrogate

Figure 3: Carpet plots of the original function with the first and second stage surrogates
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Figure 4: Main effect plot a) analytical b) surrogate

the surrogate model for each stage by adding all the corresponding
main effects because there are no interactions among the variables.

This surrogate methodology is used to create a model for the
quality of a standard part manufactured using microcasting (Osio
and Amon, 1996). The part quality is defined in terms of the voids
present in a typical layer deposited by microcasting. Each layer has a
height of about 1.25 mm. To assess the quality of the deposited layer,
we take values for the layer and average them at three different
heights: 0.75 mm, 1.0 mm and 1.25 mm from the top of the substrate.
At each height, quality is a function of measured response variables.
In this case, quality is defined as the average of four scaled
response variables: void count, average void area, standard deviation
of void area, and percentage void area. Each response is scaled to lie
within a [0,1] range, such that a quality score of 1.0 represents a
perfect layer. To measure quality, the layer is photographed and
digitally analyzed. The response variables are measured with digital
signal processing algorithms. )

We conduct the experiments in two stages. The first stage
shows the main effects of path spacing and table angle are near linear
in this range of parameters. A narrower path spacing improves the
quality, as does a higher table angle. The main effects of other
parameters exert a nonlinear influence on quality with a maximum
value near the center of the range sampled. The magnitude of the
main effect of each factor is approximately equal, with no single
parameter predominanting. In the second stage of experimentation,
the standoff and table angle are maintained at the individual maxima,
while other control parameters are varied over a smaller range around
the optimal value calculated from the first stage of experimentation,

The second stage validates the model created with the results of the

first stage and provides a more accurate model of process.

Even though previous experiments provide us with optimal
operating points, we still do not understand the interactions among
the process parameters that result in better deposition quality. To
understand these interactions, we must study individual droplets as
well as interactions between droplets. Our current work involves
optimal experimentation and analysis to understand the effect of
process parameters on individual droplets and the final quality of the
parts. The goal of the droplet characterization study is to understand
the relationship between the response and control variables
summarized in Table 1. Final splat diameter and height are the
largest horizontal and vertical dimensions of the solidified, flattened
droplet. Transient splat diameter is the largest horizontal dimension
experienced by the deforming droplet disk (Figure 6c). Droplet
cooling is measured during the solidification of the droplet, along the

droplet centerline and near the substrate.

Control Variables Response Variables
Plasma current Final splat diameter
Standoff Final splat height

Wire feed rate In-flight droplet diameter
Table angle Maximum transient splat
Substrate material diameter

Droplet material Droplet cooling rate

Table 1: Experimental variable summary
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3. EXPERIMENTAL TECHNIQUES

We have performed experiments to collect data related to the
behavior of an individual droplet striking a flat substrate surface and
solidifying. The data collected for the droplet include its in-flight
size, the transient spreading behavior, the final shape and height, and
an estimated cooling rate. The settings for the operating parameters
used to generate the droplets for these experiments are determined
with the multistage Bayesian surrogate described above. The
experimental techniques used to collect individual droplet data
include high speed photography to capture in-flight images of the
falling droplet and transient spreading, still photography of the
resulting solidified droplets, and micrographic characterization to
measure the microstructure of the droplets.

For ease in presentation and analysis, we normalize the control
variables to the interval [0.1}. Our first stage of data collection
consists of a set of screening experiments, using an orthogonal array
with three levels and a total of five sampling points for the three
dimensional space of each substrate and droplet material
combination. To gather data about the process variation, we also
repeat three of the experiments at the mid-point settings of the
orthogonal array, which corresponds to the mid-values of the control
variables in the range being considered. We perform a total of 14
experiments for this initial stage. For each experiment, we deposit
one row of four or five droplets for each parameter setting. We build
surrogate models for each response variable and perform the
functional decomposition to visualize the responses.

Except for the trajectory speed of the robot, all the deposition
parameter settings are within the typical operating range used while
creating artifacts. Normally, trajectory speeds on the order of 15 to
25 cm per minute are used to generate a continuous line of droplets.
Our goal of studying individual droplets requires trajectory speeds in
the range of 140 (for stainless steel) to 180 (for copper) cm per
minute to ensure that droplets land sufficiently far apart to be
considered independent. With these higher trajectory speeds, the
droplets are approximately two cm apart and have a flattened
diameter of less than 0.75 cm. Measurement of the final droplet
shape and spreading are determined by still photography of the
deposited droplets. Photographs are taken on a 35 mm black and
white 125 plus-X film with indirect diffuse lighting. The photographs
are developed and stored on a CD for digital analysis. Digital analysis
involves applying a series of filters with PhotoShop™ to obtain a
cropped black and white digital image from which the dimensions of
the individual droplets are measured.

High speed photography allows us to measure the diameter of
the falling droplet before impact and to record the droplet motion
upon impact with the flat substrate surface. As with the still
photographic experiments, we increase the microcasting deposition
path speed above normal path speeds by almost an order of
magnitude, leaving a gap of approximately 15 cm between successive
droplets. A HYCAM II model 41, high speed 16 mm motion picture
camera, capable of film speeds up to 11,000 frames per second
records the droplet motion. The camera’s drive motor rotates the
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film take-up spool through a reduction gear, pulling the reel of film
across an optical assembly. The film itself acts as a belt, engaging a
rotating prism assembly that directs the image onto the passing film.,
Drag and servo brakes maintain the appropriate tension on the film
during recording. To capture the motion of a droplet from impact to
solidification, film speeds of up to 5000 frames/second are required.
This speed records approximately 25 frames of the droplet between
the time of impact with the substrate until the maximum initial
droplet spreading is reached, which concludes in 10® seconds. All
ensuing droplet oscillations before final solidification are concluded
in approximately 10" seconds.

High speed filming provides a basis for verification of the
numerical model results, as well as critical information on transient
droplet/substrate contact angle during spreading, which is a necessary
input parameter for the numerical modeling. To see the spreading
droplet behavior requires the use of 400 feet of film at 5000 frames
per second, providing us with 3.8 seconds of recording time. The
camera accelerates the film for the first 50 feet of film length and
records the droplets at the set film speed for the remainder of the
experiment, Because the droplet’s fluid behavior before
solidification is also influenced by substrate roughness, our high
speed filming experiments include surface roughness as an additional
parameter. The substrate surface roughness is either increased or
decreased by using coarse (60 grit) or fine (600 grit) sandpaper. The
surface roughness is quantified using an arithmetic roughness value
(R)), determined from the surface deviations about the centerline of a
filtered profile. The profilometer has a resolution of 0.01 pm.

The final experiment involves a microstructural characterization
of the solidified droplet, allowing us to calculate an estimated cooling
rate for the droplet material. The spacing between dendrite arms
when a liquid alloy solidifies is directly related to the heat flux and
the solidification front movement that the particular region of
material experiences as it solidifies. By etching the solidified droplet
and directly measuring spacing between dendrite arms, we can
estimate the cooling rate during solidification at that particular
droplet location by comparing the measured spacing values with
previously correlated values, Material property consistency and fluid
motion depend on cooling rates, and by comparing the resulting
microstructure for different application parameters, we seek to gain-
insight into the effect these parameters have on droplet cooling rates.

4. ResuLts

The combination of control variables investigated in this paper
builds on previous work thqt analyzes the quality of parts as a
function of control variable combinations from an overall layer
viewpoint (Osio and Amon, 1996). We now seek to match individual
droplet effects with layer (or part) quality. The analysis of the still
photographs of the final shape of the solidified droplets reveals only a
slight influence on final droplet shape due to changes of our control
variables. For the case of a copper droplet on a steel substrate, the
droplet height is most strongly affected by the plasma current;



however, the total variation in the droplet height that the surrogate
model predicts due to the plasma current is small compared to the
average value of the droplet height (0.0465 cm) estimated from the
surrogate for our parameter space. It should also be noted that the
estimated standard deviation in the droplet height (0.009 cm) is of the
same order as the total variation of the response (0.0013 cm) when
the plasma is varied within the range considered, making it difficult
to draw definite conclusions about a trend. Process variation has a
more important effect on the final height of the droplets than the
variation of the parameters themselves. Similar results are found for
the droplet splat diameter; the standard deviation in the droplet splat
diameter is estimated from our surrogate model to be 0.006 cm
around an average main effect or mean value of 0.25 cm. If we
compare the standard deviation to the total change in splat diameter
due to a variation in plasma current (0.007 cm), we again conclude
that process variation has a stronger effect than the control
parameters on this response variable.

The set of experiments with the high speed camera uses the
same sampling points as the previous experiments, except that we
maintain a table angle of zero degrees, due to restrictions with the
high speed camera. Table 2 shows the average values of the in-flight
microcast droplets (averaged over three to six droplet measurements
per experiment). Of the control variables, only plasma current can
effect the in-flight droplet diameter. From the film data, we measure
the diameter of the droplets and the influence of plasma current on
the size of the droplets. These results indicate that the average
droplet size decreases for an increasing power level. For the stainless
steel, the average droplet is 5.3% smaller at the highest power setting
(84A), compared to the lowest setting (56A), while for the copper
droplets, the droplet size decreases 10.9% between 39A and S3A.

Figure 5 shows the droplet diameter variation for a copper
droplet as a function of plasma current. For this measurement, there
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Figure 5: In-flight droplet diameter vs. plasma current for
copper droplets

is a clear diminishing trend for the droplet diameter as a function of
the plasma current. ‘The total variation of the droplet diameter
within the range of study was 0.64 mm around a mean of 3.66 mm.
The standard error obtained from fitting a straight line as shown in
the figure is on the order of 0.14 mm. The transient droplet spreading
response variable is measured using high speed photography. Figure
6 shows four digitized film images, recorded at 5000 frames per
second, for a stainless steel droplet striking a stainless steel substrate,
The droplet reaches its maximum transient spreading shape in Figure
6¢ and begins to recoil in Figure 6d. Two types of experiments are
performed with the transient spreading response variable.

Plasma

Droplet Substrate Current Standoff Average
Material Material (Amps) . (inches) Size (mm)
stainless steel copper 56 4.0 4.49
stainless steel copper 65 4.0° 4.28
stainless steel | stainless steel 65 40 436
stainless steel stainless steel 84 4.0 425
copper stainless steel 39 3.0 3.81
copper stainless steel 53 35 - 3.44
copper stainless steel 46 40 | 3.58
copper copper 46 4.0 3.66
copper copper 53 35 3.69
copper copper 39 3.0 3.83
copper copper 46 4.0 3.82

Table 2: In-flight droplet diameter
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Figure 6: Stainless steel droplet impinging on a stainless steel substrate (time after impact)

First, we measure the effect of the control variables on transient
spreading. Table 3 gives the data from these experiments and Figure
7 shows the surrogate model for this data. Second, with a fixed set of
application parameters, we investigate the effect of surface
roughness. We performed this second sequence of experiments for
varying surface roughness, but used only one plasma power setting
and one standoff height (68A and 3.5” for stainless steel droplets, and
42A and 3.5” for copper droplets).

Figure 7 shows the surrogate model for the maximum transient
splat diameter. This surrogate model is a function of two parameters:
non-dimensional standoff and non-dimensional plasma current. The
maximum transient splat diameter is non-dimensionalized by the pre-
impact droplet diameter on the plasma current. The surrogate model
predicts a response that monotonically increases with the standoff,
while no dependence is shown on the plasma current. Therefore,
from the fact that the maximum splat diameter changes only with the
standoff (i.e., the free fall distance for the droplet), we conclude that
dynamic effects are governing the initial maximum spreading.

To determine the influence of surface roughness on transient
spreading, stainless steel and copper substrates of varying roughness
are prepared. For the copper plate, the smooth region R, = 0.18 pum,
the unmodified region R, = 0.32 pm, and the roughened region R, =
1.17 um. For the stainless steel plate, the smooth region R, = 0.10
pm, the unmodified region R, = 0.28 um, and for the roughened
region R, = 0.81 um. Droplet spreading is normalized by dividing
the maximum spreading diameter by the pre-impact droplet diameter.

Table 4 below shows the results of the measurements. The
column labeled Rough is the maximum spreading factor for each type
of droplet when striking the roughened substrate. The Normal and
Smooth columns represent the unmodified and smoothed substrate
surfaces respectively. In all cases, copper droplets undergo a greater
degree of spreading than stainless steel droplets, and the smooth
substrates permit greater spreading of the droplets than the rougher
surface. The reduction in the maximum transient spreading is more
pronounced for stainless steel than copper droplets, as shown in the
column S/R ratio, which divides the smooth column values by the
rough column values. Droplet microstructure is the final data
gathered using optimal sampling. The dendrite arm structure of the
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solid droplets, which is measured for both stainless steel and copper
droplets landing on either stainless steel or copper substrates,
provides an indication of the cooling rate history. Cooling rate
history in turn affects the expected material properties for the
resulting layer. For the stainless steel droplets, the structure that best
correlates with the cooling rate is the secondary dendrite arm spacing,
while for copper, the primary dendrite arm spacing is used. The
cooling rate correlation for copper using primary dendrite arm
spacing is:

A, =306-RO®
while the correlation for stainless steel cooling using secondary
dendrite arm spacing is:

Ao =64-R¥

where A is the dendrite arm spacing measured in microns, and R is
the effective cooling rate at that location, measured in degrees K per
second for the stainless steel (Wolf, 1986) and in degrees K per
minute for copper (Bower and Randlett, 1985).

The calculation of cooling rates indicates that on average the
copper droplets cool at a higher rate than the stainless steel. When
landing on a stainless steel substrate, the average cooling rate for a
stainless steel droplet is S000K/sec., while the copper droplet cooling
rate is 5400K/sec. When landing on a copper substrate, the average
cooling rate for a stainless steel droplet is 7500K/sec., while the
copper droplet cooling rate is 10,500K/sec. The calculated cooling
rates are very sensitive to the measured dendrite spacing, and
dendrite spacing can vary significantly depending on the location
within the droplet where the dendrite is measured. These factors
combine to make it difficult to determine qualitative trends from
microstructural characterizations to use in a predictive model.

Cooling rates are observed to decrease along the droplet
centerline when moving from the substrate interface toward the
droplet surface. There is little lateral change in measured cooling
rates along the interface from the centerline to the edge of the droplet.
Our experiments in which the plasma current setting is varied do not
indicate a relationship between the droplet cooling and initial
temperature. Due to remelt bonding, heat transfer in microcasting
droplets is not limited by interface thermal resistance. Changes to the



Substrate Plasma Current | Maximum Transient Spreading (normalized
Droplet Material Material (Amps) by in-flight diameter)
stainless steel copper 56 1.29 1.28 147
stainless steel copper 65 1.28 1.38 1.40
stainless steel stainless steel 65 1.36 1.31 1.33 1.23
stainless steel stainless steel 84 1.23 1.29 1.30 1.30 1.20 1.20
copper stainless steel 39 1.32 1.25 1.31 1.32 1.29
copper stainless steel 53 1.33 1.32 1.31 1.33 1.38
copper stainless steel 46 1.44 142 1.36 1.39 1.37 145
copper copper 46 1.55 1.55 1.47
copper copper 53 1.47 145 1.55 1.40 1.51 1.50
copper copper 39 1.37 1.47 145 147
copper copper 46 1.55 1.55 1.477

Table 3: Transient spreading under varying control parameters

1.35

Figure 7: Surrogate model for transient splat diameter vs. normalized plasma current and standoff

Droplet Material | Substrate Material Maximum Spreading Ratio (Substrate Surface Preparation)
Rough Normal Smooth S/R ratio

stainless steel stainless steel 1.63 1.74 2.00 1.23

stainless steel copper 1.14 1.44 1.63 143

copper stainless steel 1.56 1.77 1.90 | 121

copper | copper 1.83 191 1.95 1.07

Table 4: Transient spreading with varied substrate roughness
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plasma power alter the energy transferred to the falling droplet, and
larger droplets retain more of this energy. We expected these process
parameters to provide an indication of the droplet initial temperature
during impact. The superheat present in a droplet influences the
cooling conditions (such as the thermal gradient) during
solidification, consequently changing the dendrite spacing. We
attribute this lack of correlation to the variability of droplet
conditions for any given process parameter setting, rather than actual
independence between cooling rates and initial temperatures. A
more detailed description of the microstructure experiments and
analysis is given in Bishop et al. (1997).

5. CoNCLUSIONS

We have created adaptive Bayesian surrogate models of
microcasting from data gathered from a variety of experiments (e.g.,
high-speed and still photography, microstructure analysis), as well as
from numerical simulations. By employing a sequential updating of
surrogates along with optimal sampling for data collection, we can
reduce the data requirements and improve the accuracy of the
surrogate using our multistage approach. Bayesian surrogates allow
efficient exploration of the influence of different operating
parameters (see Table 1) on the quality of microcast artifacts. The
use of statistical techniques has allowed us to understand the
relationship between the droplet characteristics and the final quality
of the deposition layer.

Single droplet experiments provide accurate understanding of
molten droplet behavior. While only slight correlations exist
between solidified droplet shape (height or diameter) and plasma
current, transient droplet spreading is more strongly correlated with
both standoff height and substrate surface roughness. High speed
photography reveals that droplets strike and return to a near-sessile
profile before solidifying. Photography also reveals that a change in
plasma current can alter the size of the droplets and that both
substrate roughness and standoff height influence the maximum
spread of the droplet prior to solidification. The final droplet shape is
therefore determined more by droplet properties (surface tension)
than by changes in droplet characteristics (size, falling speed) or
substrate quality.  Drawing conclusions from the resultant
microstructure is more difficult. Predicted cooling rates are sensitive
to dendrite arm spacing; this spacing varies greatly within a single
droplet and across droplets. Copper droplets and copper substrates
induce larger cooling rates than stainless steel, due to the comparably
greater conductivity of copper.

We have identified operating parameters that minimize the
presence of voids. Similarly, we have determined the effect of these
parameters on droplet characteristics and behavior. However, from
the statistical analysis of our experimental data, clearly the
characteristics of single droplets cannot alone explain or predict the
occurrence of optimal results. In addition, single droplet
characteristics alone do not provide a complete understanding of
operating parameter design space. The data gathered from single
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droplet experiments must be coupled with multi-droplet parameters,
such as deposition travel speed and lateral spacing, to create models
to correlate deposition parameters with artifact quality (e.g., void
area).
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